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Structure and dynamics of two-dimensional lattices in random pinning potentials
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Two-dimensional lattices in random potentials characterized by weakly attractive random pinning
sites were studied via molecular-dynamics simulations. For a sufficiently high density of pinning sites,
a “fragile” glasslike (i.e., amorphous solid) phase is found to be stable at temperatures slightly below
the melting temperature. Simulations suggest that this phase can be replaced by a more stable phase,
namely, an approximately long-range-ordered solid phase, as the pins are made less dense and/or
with weaker strength. The dynamics of the system depends sensitively on the density of pinning
sites. This is probed by studying the velocity autocorrelation function of the particles in a random
pinning potential as a function of the density of pinning sites.

I. INTRODUCTION

Two-dimensional lattices in random pinning poten-
tials are realized in a variety of circumstances. The
most common examples in physical systems include
solid films with quenched impurities and/or on rough
substrates!® and flux-line lattices in type-II supercon-
ductive films.5"'2 The study of the equilibrium proper-
ties of two-dimensional lattices (i.e., without substrate
potentials) in the melting region'371€ is still an active re-
search area.!” The study of the effects of a uniform sub-
strate corrugation on the structural properties of two-
dimensional lattices, as found, for example, in high-
stage alkali graphite intercalation compounds*®~27 and
in adatoms on surfaces, continues to be an area of strong
current interest.?® At present, however, very little ap-
pears to be known about the structural properties of
two-dimensional lattices in random potentials,2® and in
general, very little appears to be known about the dy-
namical properties of all of these systems.3°™33 This pa-
per concerns the structural and dynamical properties of
two-dimensional lattices in random pinning potentials.
The underlying similarities between this problem and the
well-known problem of the pinning of flux-line lattices in
type-1II superconductors have been addressed recently in
Ref. 34.

Two key issues are studied in this work. First, the
structural properties of the lattices as characterized in
terms of sites with fivefold and sevenfold coordinations
or defect pairs'®!3 in the solid phase near the melting
transition as the density of pinning sites is varied. Sec-
ond, the dynamical properties are measured via the ve-
locity autocorrelation function of representative particles
in the system in the same temperature regime under the
same parametric variation.
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The paper is organized as follows. Section II describes
the model, the parameters chosen for the molecular dy-
namics studies, and the details of the simulation proce-
dure. The results are discussed in Sec. III. Section IV
summarizes this work.

II. MODEL SYSTEM AND THE SIMULATIONS

The interaction energy of the N-particle system with
N, randomly distributed pinning sites is defined as

N N Np
V= Z Va(|rs —r3]) + Z va(h‘i —rp|),

,5=1(i#3) i=1p=1
(1)

which consists of both one- and two-body interactions.
The two-body interaction potential between the particles
is chosen to be similar to that between alkali metal ions
in graphite intercalation compounds (see, for example,
Refs. 19-21 where some details concerning this potential
are presented). The two particles, each with with charge
q and at distance r;; = |r;j — r;| apart, interact with an
energy given by

Va(ri) = i’— exp{—rij/A}, (2)

where q2=4.8028 x 10~° esu and A = 2.1 A is the screen-
ing length. The one-body pinning potential is assumed
to consist of a random distribution of attractive Gaussian
potential wells, whose function form V,, is given by

V, = — 22 expl—(|ri ~ rp)?/R2], 3)
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where A, was chosen to be either 5 or 10 in the chosen
energy unit which was 300kp (kp=Boltzmann constant)
and which represents the strength of the pinning center
(we have also studied the model for weaker and stronger
Ap’s which suggested the present choice of magnitudes of
Ap), R, represents the width of the pins and is chosen to
be a unit length ao which was kept as 2.46 A (for pur-
poses of comparison with previous works in Refs. 24-27),
and rp is the location of the center of the pth pin. The
pinning centers are distributed randomly within the sim-
ulation cell. Periodic boundary conditions are utilized in
all of the simulations. The presence of pinning centers
has a considerable effect on the structure and dynamics
of our system. We have fixed the area of the molecular-
dynamics (MD) supercell; thus by varying the number
of pins, IV,, we can vary the density of the pins. The
pinning density NN, per supercell and the strength A,
are the parameters of utmost interest in this study. As
will be shown in Sec. III, it may be possible for a long-
range-ordered solid to exist below the melting tempera-
ture for sufficiently small A, in spite of large N,. The
system tends to be structurally very different when A,
is made stronger in that it resembles an amorphous solid
or “glasslike” phase below the melting temperature.

The functional form of V,, used in this work is sim-
ilar to that used by Shi and Berlinsky in Ref. 29 who
study the static properties of a two-dimensional lattice
with short-range two-body interactions. The two-body
potential V3, however, is different in this study, where
a screened Coulomb potential has been used as opposed
to the shorter-range Gaussian potential that was used in
Ref. 29. Given the nature of the two-body potential and
the magnitudes of the pinning strength used in this study,
the reader may note that our pinning energy scale is sig-
nificantly weaker than the two-body interaction energy
scale. In this respect, the present study differs from the
work in Ref. 29 in which the pinning strength played a
more dominant role. The regime with strong competition
between pinning and the two-body interaction addressed
in this work may be directly relevant to the flux-line lat-
tice problem in type-II superconductors.3®

The molecular-dynamics simulations were performed
using the microcanonical (E,V,N,P) ensemble, where
P is the total linear momentum of the system.3¢ The
Newtonian equations of motion for the system were inte-
grated forward in time using a fifth-order Gear predictor-
corrector algorithm3” and the center of mass of the sys-
tem was zeroed in every integration step. The mass unit
was set as 1 amu and the particles were assumed to have
the mass of Rb ions which meant that our natural time
unit was approximately 1 ps. The runs for which the
results are reported here had N = 256 distributed in a
36ao x 36ao rhombic supercell (ag=2.46 A is the length
unit) which is commensurate with the triangular lattice
for the particle density we studied. We considered cases
with IV, equaling 0, 20, 100, 200, and 400 per supercell.
The time step used in the simulation was 0.006 ps. Based
upon our experience with previous studies,?4 27 we be-
lieve that this was a sufficiently fine integration time step
for reliable calculation of the structure and dynamics of
the present system. Starting from randomly distributed
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particles and pinning sites, the system was first heated
up to about T' = 400 K and equilibrated. This temper-
ature is well above the melting temperature T,, ~ 200
K.22 The temperature was then reduced in steps of 50
K from 400 K to 250 K and thereafter in steps of 20 K
down to T' = 50 K by carefully scaling down the velocities
and by equilibrating the systems for ~ 300 ps. Thus, for
each temperature, 50000 time steps/particle were used
to equilibrate the system before calculating the thermal
averages of various quantities by using the data from the
next 100000 time steps. Most of the calculations we re-
port in this study have been carried out at 7' ~ 180 K.

In order to monitor the freezing transition, we calcu-
lated the translational diffusion coefficient D using the
relation

D = lim - ([x(t) ~ x(O)]?), (1)

where the angular brackets imply time averages (and
hence, via the ergodicity assumption,®® ensemble aver-
ages).

The structure of the system near the melting transi-
tion can be characterized in terms of the number of de-
fects in the simulation cell. To obtain this information,
Voronoi constructions3® were carried out and the num-
ber of topological defects was monitored as a function of
temperature and as a function of N,. In addition, the
dependence of the number of topological defects on A,
at various temperatures was also explored. The structure
was also characterized using the circularly averaged pair-
distribution function g(r) of the systems studied. This is
defined as

A

g(r) = —N—< ) 5(lr—rijl)>, (5)
4,7 (1#3)

where A is the area of the supercell and the angular

brackets imply a time average.

The dynamical properties of the system can be stud-
ied by calculating various response functions such as the
dynamic structure factor S(k,w). Given that the prese 1t
goal is to probe the most basic properties of the chosen
system we have therefore studied one of the most simple
and fundamental dynamical response functions, namely,
the velocity autocorrelation function which can be de-
fined as

v (t).vi(0
20  (Zv(Ovi(0))
(32 vi(0).v4(0))
The reader may note that the velocity autocorrelation

function is simply related to the diffusion constant as
D= %j‘o‘” dsZ(s) [see Eq. (4) above].

(6)

III. RESULTS

Figure 1(a) shows the temperature dependence of the
diffusion coefficient D for a pinning density N, = 100
per supercell with the pinning strength A, = 5 (dashed
curve) and A, = 10 (solid curve). In this study, we de-
fine the solid phase as the phase with D ~ 0 and the
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fluid phase as the one with D > 0. Our simulation re-
sults suggest that the two-dimensional lattice in a weaker
random potential has a higher melting temperature than
it does when the pinning is strengthened, although this
effect is difficult to quantify. The data in Fig. 1(a) reveal
that the melting temperature for A, = 5 is T,,, = 220 K,
whereas for A, = 10, 180 K < T;, < 200 K. The decrease
in D in Fig. 1(a) as the temperature is raised between
T = 240 K and T = 250 K is probably a fluctuation ef-
fect attributable to the rather small size of the system.
Thus, the lattice with A, = 5 behaves much like a two-
dimensional lattice without pinning whereas the lattice
with A, = 10 appears to behave differently. To probe the
real-space lattice structure of the two cases it is instruc-
tive to enumerate the number of topological defects (per
supercell) in the lattice as a function of temperature for
the two values of A, under examination. This is shown
in Fig. 1(b), where the dashed curve is for A, = 5 and
the solid curve is for A, = 10. If we define a long-range-
ordered solid as a system with the defect density § — 0
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FIG. 1. (a) Temperature dependence of the diffusion co-

efficient D for a pinning density N, = 100 per supercell with
pinning strength A, = 5 (dashed curve) and 4, = 10 (solid
curve). (b) Number of topological defects per supercell as a
function of temperature for a pinning density N, = 100 per
supercell with pinning strength A, = 5 (dashed curve) and
Ap = 10 (solid curve).
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(and D ~ 0) whereas a glassy system has § > 0 (and
D ~ 0), the data in Fig. 1(b) strongly suggest that one
obtains a glassy phase for A, = 10 for T < 200 K or so.
We prefer to call this phase a “fragile” glasslike phase be-
cause its emergence appears to be highly sensitive to the
magnitude of A,, at least, for the regime of IV, probed in
this work. We shall now focus on the properties of this
fragile glasslike phase itself.

Figure 2(a) shows the diffusion constant D as a func-
tion of temperature for A, = 10 and varying pinning
density 0 < N, < 400 [see the caption of Fig. 2(a) for
details]. Observe that the diffusion coefficient for A, = 5
and N, = 100 in Fig. 1(a) is comparable to that for
N, = 0 case (i.e., a pure two-dimensional lattice case)
in Fig. 2(a). The diffusion coefficient, however, behaves
very differently as IV, is increased from 100 to 400. The
system obviously becomes increasingly more “sluggish”
as IV, is raised. Our data suggest that the melting tem-
perature appears to increase slightly for N, > N com-
pared to the N, < N case (the particle density IV is
256 per supercell in all the calculations). Understand-
ing the detailed dependence of T, on NN, requires fur-

oz T T T T T T
(a) A
,
i S
0.100 — ;-
0.075 L -
L 3
] r ’ 1
0.050 -]
0.025 L %
0.000 L -
‘ 400
I I
©
0o ' 100 — 200 1 — 300 I 400
T(K)
FIG. 2. (a) Temperature dependence of the diffusion co-

efficient D for various pinning densities N, per supercell. O,
N, = 0; O, N, = 100; x, N, = 200; O, N, = 400. (b) Tem-
perature dependence of the number of topological defects per
supercell for various pinning densities NV, per supercell. O,
Np = 0; O, Np = 20; x, N = 100.
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ther analysis, preferably using Monte Carlo techniques
on very large systems, and will be addressed in a sepa-
rate publication.*?

As in Fig. 1(b), the number of defects as a function
of temperature for various values of pinning density N,’s
is shown in Fig. 2(b). Because of the large number of
defects found in the solid phase (i.e., D ~ 0 phase) for
N, > 100 in our study, we only show the results for
N, =0, 20, 100. The data suggest that for N, < N,
6 = 0 for T < T, and hence the long-range-ordered
solid phase emerges. Thus, the physical properties of
the fragile glasslike phase depend sensitively on IV, and
Ap. To summarize the results in Figs. 1 and 2, one may
observe that the simulations suggest the existence of two
different forms of solid phase characterized by D ~ 0.
These are the ordered solid phase characterized by § ~ 0
and the fragile glass phase characterized by § > 0. In
addition, the data suggest that T,, increases when N, >
N for A, =10 and also as A, — 0.

Figure 3 shows the circularly averaged pair-distribu-
tion function g(r) at T = 180 K for various densities of
the pinning centers with pinning strength A, = 10. The
solid line refers to N, = 0 and the peak positions re-
veal the existence of a triangular lattice. To see this, the
reader may observe that the lattice constant for a 16 x 16
lattice on a 36a¢ X 36ag supercell is a = 2.25a¢ (in units
of ag = 2.46 A), which is where the primary peak is lo-
cated in Fig. 3. The second nearest neighbor is located
at v/3a, i.e., at 3.897ao, and the third nearest neighbor
is at 2a = 4.5a9, while the fourth nearest neighbor is at
V7a = 5.953a¢ and so on. The lattice is only slightly
perturbed for small IV, i.e., N, = 20 (see dashed line in
Fig. 3), a result which is in accordance with our obser-
vation using Fig. 2(b) above that the number of defects
0 — 0 when N, < N. The lattice structure, however, be-
comes drastically different as IV, is increased to 100 and
higher. The g(r) resembles that of a liquid3” although
the system possesses D ~ 0. This is the fragile glassy
phase we have discussed earlier.

Figure 4 reveals information about the dynamics of a
particle in the time domain. It reveals the motion of the

G(R)
T

FIG. 3. The pair distribution functions at 7' = 180 K for
various pinning densities N, per supercell. Solid line, N, = 0;
dashed line, N, = 20; dotted line, N, = 100.
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FIG. 4. The velocity autocorrelation functions at 7 = 180

K for various pinning densities N, per supercell. Solid line,
N, = 0; dashed line, N, = 100; dotted line, N, = 400.

particles on a microscopic time scale where dynamical
details occurring over intervals of ~ 1073 s can be re-
solved. Since the interval is comparable to the typical
time scale between particle collisions, one is effectively
probing features of dynamical behavior most sensitive to
the details of the interactions.

The short-time behavior of the velocity autocorrelation

function can be studied by Taylor series expansion,?! i.e.,

vi(t) = vi(0) + vi(0)t + %vg'(O)tz TR (7)

Multiplying by v;(0) and taking an ensemble average we
obtain

(vi(t) - vi(0)) = (v2) — %<v;2>tz 4o
= (v) (1—%Qgt2+--->, (8)

where
Q5 = (|F|*)/2mkpT.

Time-reversal symmetry makes the odd terms in ¢ van-
ish. The short-time behavior of the velocity autocorrela-
tion function is related to the mean square acceleration
(or mean square force (|F2|)) and provides information
about the interaction between the particles, between the
particles and the pins, and of the lattice structure of the
system.

Figure 4 shows the velocity autocorrelation functions
at T' = 180 K for various densities of the pinning cen-
ters with pinning strength A, = 10. For the pinning-free
case, the particles form an ordered triangular lattice in
the solid phase. A minimum in the velocity autocorrela-
tion function occurs, indicating the correlations between
the random force F' and the velocity of any single particle
in the system [see Eq. (8)]. A particle in the triangular
lattice is trapped in the potential well due to the inter-
action with the other particles. With the presence of the
pinning sites, the substrate “roughness” affects the mo-
tion of these particles in a significant way so that the Q2
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increases, resulting in a faster decrease in the velocity
autocorrelation function in the short-time regime.

The intermediate-time behavior of the velocity auto-
correlation function is sensitive to the density of the pin-
ning sites. The nature of the velocity autocorrelation
function for the N, = 0 case bears resemblance to that
of a single particle in a strongly anharmonic corruga-
tion potential.32 As the pinning density is increased, the
lattice becomes more disordered due to the random force
field from these pinning sites. The memory effects (which
produce correlations between random force and velocity)
that cause the strong oscillations in the velocity autocor-
relation function become less important for higher den-
sity of the pinning sites. This is evident from Fig. 4 in
which the oscillatory behavior of the velocity autocor-
relation function! undergoes strong attenuation as N,
is increased. The behavior of velocity autocorrelation
function for the disordered system due to high pinning
densities is different from the behavior of velocity auto-
correlation function for the liquid phase®? in spite of the
fact that the structural similarities between the liquid
phase and the fragile glassy phase are note worthy (see
Figs. 2 and 3). Thus first minimum of the velocity au-
tocorrelation function for the systems with high pinning
densities is deeper compared to that in the ordered lat-
tice and that in the liquid structure. This suggests that
the interparticle forces are much stronger in the glassy
phase at short ranges and hence very different dynamics
should be expected.

IV. SUMMARY AND DISCUSSION

In summary, this study reports detailed molecular-
dynamics simulations of two-dimensional lattices in
a random pinning potentials, in particular a system
which has screened-Coulomb interparticle interactions
and weak pinning at temperatures that are slightly below
the melting transition temperature.

We have calculated the diffusion coefficient D as a
function of temperature for such two-dimensional lattices
with a variable density of pins and for two different pin-
ning strengths in the weak pinning regime. We found
that there exists some characteristic pinning strength
such that for relatively weak pins the effects of pinning
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are overcome by the particle-particle interactions. Thus,
for sufficiently weak pinning, one observes a triangular
lattice in the solid phase. This remains true even when
the number of pins is comparable to the number of parti-
cles. The structure of the lattice, however, is drastically
different and significantly disordered when the pinning
strength is increased. The defect density increases the
manifold in the lattice and the structural properties re-
semble that of a liquid (as in Fig. 3) in spite of a D ~ 0.

The microscopic dynamical properties of the system
have been probed by studying the velocity autocorrela-
tion function of a typical particle at T ~ 180 K. The
calculations reveal that stronger pins lead to higher-
frequency oscillations at the shortest time scales and at-
tenuation at intermediate times in the velocity autocor-
relation function when compared with the results of cal-
culations on a pin-free two-dimensional lattice.

The study presented here is not system specific and
hence can be useful in analyzing a variety of systems.
Physical systems such as adatoms on solid surfaces33 and
flux-line lattices in type-II superconductors are examples
of systems which offer closely related physical problems.
Indeed, the nature of the glassy phase in type-II super-
conductors is an issue of much interest at the present
time. Likewise, the structural and dynamical proper-
ties of films with quenched impurities! are being stud-
ied intensely by various groups. The present molecular-
dynamics study is among the very few to probe the de-
tails of the structure and possibly the first to probe the
dynamics of randomly pinned lattices in two dimensions.
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