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This paper presents a comprehensive calculation of attenuation of ultrasonic waves in silicon. We
have developed a computer program to calculate the attenuation using a much wider spectrum of
thermal phonon modes than that used in Mason's pure-mode formulation. The program takes into con-
sideration the dependence of Mason's integral on the cutoff frequency supported by the lattice. A com-
parison of these refined calculations with that using Mason s pure-mode scheme is presented for longitu-
dinal waves along the [100], [110], and [111]directions and for transverse waves along the [100] and

[110]directions in the temperature range 80—300 K. Use of experimentally measured relaxation times by
Ilisavskii et al. in our program gives excellent agreement with experimental results. The results indicate
essential validity of some of the objections raised against Mason's theory earlier by Barrett and Holland.

INTRODUCTION

Attenuation of high-frequency acoustic waves in solid
crystals has been studied as a fundamental problem in
solid-state physics with great interest in the last three de-
cades. ' The study of ultrasonic attenuation in semi-
conductors has also been reported extensively.
Mason' developed a theory to calculate the acoustic at-
tenuation in solids with the help of second-order elastic
constants (SOEC) and third-order elastic constants
(TOEC). The theory has been used widely to account for
the temperature variation of acoustic absorption in a
variety of crystals. ' '

All these investigations employ Mason's scheme of cal-
culation which is approximate in character as it considers
interactions of the sound wave with only the pure
thermal phonon modes (39 for longitudinal and 18 or 20
for shear waves) along principal directions for evaluating
average Griineisen number (y ) and the square average
Gruneisen number ( y ) . We have developed a computer
program which takes into account interactions of the
sound wave with a much wider spectrum of phonon
modes for calculating these averages. Thus a more com-
plete calculation using Mason's theory is possible with
this program. The need for such a study has been
stressed by several workers in the past. ' '

Mason's theory was critically examined by Barrett and
Holland shortly after it was put forward. However, it
seems that these objections have not led to any serious
modifications in calculation of ultrasonic attenuation
based on Mason's theory. The present work is aimed at
investigating the effect of inclusion of a more complete
spectrum of the affected phonon modes and incorpora-
tion of the suggestions of Merkulov, Kovalenok, and
Konovodehenko' in Mason's calculation of temperature

dependence of attenuation in silicon for which the data
on temperature dependence of TOEC is available. We
have estimated the attenuation in the temperature range
80—300 K using our program as well as using Mason's
scheme for longitudinal waves along the [100], [110],and
[111]directions and for transverse waves along the [100]
and [110] directions. Comparison with the experimental
variation of attenuation shows that these refinements in
Mason's theory lead to a striking improvement in the
quantitative agreement with the experimental attenuation
for 9 out of the 11 cases studied.

THEORY

The attenuation of ultrasonic waves in semiconductors
in the range ~~ &(1, where co is the angular frequency of
the acoustic wave and ~ is the thermal relaxation time, is
a result mainly of the interaction of acoustic phonons
with thermal phonons. The two types of thermal at-
tenuation in this region are (i) thermoelastic loss and (ii)
Akhiezer loss. Thermoelastic loss, which is a major
source of attenuation in metals but contributes only
about 4% in semiconductors, arises due to the Bow of
thermal energy from the compressed hotter part of the
expanded cooler part associated with the compressional
wave. This Aow causes an attenuation given by

A (Np /cm) = [co ( y ) KT]/[2pv& ],
where ( y ) is the average Gruneisen constant, K is the
thermal conductivity, T is the absolute temperature, p is
the density, and UI is the longitudinal velocity. Akhiezer
loss originates due to the sudden application of strain
causing phonons propagating in different directions to
have different temperatures. These changes in tempera-
tures result in a thermal energy storage proportional to
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the square of the applied strain and hence to an
equivalent increase in the elastic modulii associated with
the strain. Akhiezer's theory was modified by Mason and
Bateman who proposed a scheme of evaluation involving
the use of TQEC to determine the energy stored by the
phonon-mode temperature separations, together with a
relaxation time ~ to equilibrate this energy. Their expres-
sion for attenuation is

3 (Np/cm) = [EoD/6pu ][co r/(1+ co r )], (2)

(3)

is the nonlinearity constant. C is the specific heat per
unit volume, U is the appropriate wave velocity, and Eo is
the thermal energy content per unit volume. In the
high-temperature approximation Eo =nE;, where n is the
total number of modes and E; is the thermal energy of
the modes of type i given by

E, =[3hN;/v;] f [v dv/[exp(hv/kT) 1]], — (4)

whcrc X; 1s thc total number of Inodcs 1Il the scctoi of
type i and v; is the limiting or cutofF' frequency support-
ed by the lattice. Mason considered the nonlinearity con-
stant independent of temperature as the experimental
data on temperature dependence of TOEC was not avail-
able at that time. Recently Breazeale and Philip
presented the experimental determination of temperature
variation of all. six TOEC for Si and Ge using the simple
harmonic generation technique and Keating model.
The temperature dependence of D has been studied using
this data

The relaxation times ~& and ~, for longitudinal and
shear waves, respectively, are given by

r&=6K/(C(u ) )

yj " = [8,'/Bx, ][Ox„ /Bx„]yi

where Bxj /'Bxj are the direction cosines between the new
axes and the old axes.

Mason considers the actuation of only the phonon
modes along the crystallographic directions associated
with the propagation of sound wave for calculating the
averages ( y ) and ( y ) . The number of modes con-
sidered is thus only 39 in case of longitudinal waves and
is 18 or 20 in case of shear waves. This is only an approx-
imation for the complete integral for all directions which
requires the use of a computer and a complicated pro-
gram.

Shortly after Mason's theory was put forward Barrett
and Holland pointed out difhculties, both conceptual
and in formulation, in the theory. One of the major con-
tentions of Mason which was objected to was that the in-
tegral

I(vz ) = f I v d v/[exp(h v/kT) —1]j (11)

in Eq. (4) was taken to be essentially independent of v, in
deriving Eq. (2). In our computational scheme it is possi-
ble to remove this difficulty by explicitly estimating the
efFect of dependence of the integral on v, This was
pointed out by Merkulov' and leads to a correction fac-
tor

M, =1—[v, /3I(v, )][BI(v;)/Bvq, ] .

This factor is easily derived. The v; derivative of the in-
tegral in Eq. (11) above is just the integrand evaluated at
vql &

lic

BI(v, )/Bv; =v;/[exp(hv, /kT) 1] . —

This leads to

M, = 1 —1/[3I'(v~; )[exp(h v~; /kT) 1]], —

w, =w(/2 .

The Debye average velocity ( v ) is given by

& u ) '= [2u, '+ v, ']/3,
where U, is the shear-wave velocity.

The mode Gruneisen numbers yj can be expressed in
terms of SOEC and TOEC as

where the integral I'(v, ) is given by

TABLE I. Temperature dependence of various parameters
used in the calculation of attenuation.

(10 /K)
C

4', 10 erg/cm K) (10 erg/cm )

1I'(v~;)= f dye /fexp(hv;p/kT) 1], —

y~ =(1 /82')[ W2' UU k(+.Ck„+Ck „„,U„U„)N N„]

with

where X's and U's are the direction cosines of the propa-
gation direction and polarization direction, respectively,
in the acoustic mode i and C's are the elastic constants.

Gruneisen numbers along an axis other than cube axes
arc obta1ncd by

80
100
120
140
160
180
200
220
240
260
280
300

—0.5012
—0.3000
—0.1806

0.3257
0.680S
1.0479
1.4000
1.7131
1.9821
2.2069
2.3934
2.5540

8.0857
6.4686
5.3903
4.6197
4.0418
3.5917
3.2318
2.9373
2.6917
2.4841
2.3060
2.1516

0.2786
0.4711
0.6728
0.8620
1.0293
1.1725
1.2932
1.3945
1.4789
1.5499
1.6096
1.6601

5.8817
13.3380
24.7910
40.1708
59.1335
81.2163

105.9377
132.8998
161.6593
192.0210
223.6593
256.3640
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TABLE II. Temperature dependence of velocity and relaxation time for different directions. For the
[110]direction v„denotes the velocity for the wave polarized along the [110]direction. Velocity v,~ for
the [110] shear wave polarized in the [001] direction is the same as U, [100]. For the [100] shear wave
w, =xi/2.

[100]

Velocity
(10 cm/sec)

[110] [111] [100]

Relaxation time
(10 ' sec)

[110]
+sl 'r

80
100
120
140
160
180
200
220
240
260
280
300

8.4725
8.4708
8.4687
8.4657
8.4623
8.4582
8.4540
8.4493
8.4443
8.4400
8.4350
8.4297

5.8586
5.8582
5.8576
5.8564
5.8553
5.8533
5.8515
5.8497
5.8474
5.8458
5.8437
5.8415

9.1728
9.1710
9.1690
9.1660
9.1626
9.1S84
9.1540
9.1495
9.1443
9.1400
9.1350
9.1299

4.6868
4.6867
4.6861
4.6851
4.6843
4.6826
4.6812
4.679S
4.6776
4.6762
4.6745
4.6720

9.3947
9.3928
9.3908
9.3879
9.3844
9.3802
9.3758
9.3712
9.3661
9.3617
9.3567
9.3516

7.369
6.000
5.167
4.450
4.000
3.632
3.381
2.981
2.775
2.530
2.366
2.250

4.951
3.437
2.616
2.134
1.823
1.459
1.234
1.111
0.978
0.8S5
0.761
0.673

3.263
2.229
1.691
1.399
1.134
0.972
0.833
0.744
0.629
0.560
0.500
0.443

2.229
1.587
1.208
1.000
0.833
0.727
0.600
0.542
0.470
0.425
0.400
0.345

10.916
4.416
2.137
1.211
0.802
0.583
0.453
0.367
0.307
0.265
0.234
0.209

this factor can be incorporated into a numerical integra-
tion scheme to find the required averages of Gruneisen
numbers.

The computer program developed by us for this pur-
pose is based on Brugger-Fritz scheme of integration
over the length of the wave vector followed by double an-
gular integration over all directions. We have checked
the consistency of results using diff'erent single and multi-
ple integration routines. The program calculates the
averages of first and second power of mode Gruneisen
numbers required by Mason's procedure. The program is
flexible in the sense that weighted averages required for
other schemes like those of Maris and Merkulov, Ko-
valenok, and Konovodehenko' can be calculated by
making appropriate modifications. The program also in-
corporates the Merkulov correction factor mentioned
above.

35—

800MHz

25—

f = 286 MHz

10—

10—
C3

5— D o 0

RKSUI.TS AND DISCUSSIQN

In our calculation we have taken into account the tem-
perature dependence of each parameter in expressions (1),
(2), and (3) in evaluating the temperature variation of at-
tenuation. Temperature dependence of density was cal-
culated using the room-temperature density, p =2.331
gm/cm and the data on the temperature-dependent
thermal-expansion coefficient (u). The wave velocities
were calculated using the relevant expressions ' and the

temperature dependence of SOEC. Debye velocity and
relaxation time along the [111]direction were computed
using Eqs. (5)—(7) and the temperature-dependent
thermal conductivity data. For other directions the re-
laxation times used are those reported by Ilisavskii and
Sternin from the identification of the kink in the
frequency-attenuation plots at various temperatures. For
[100] shear waves we have used relaxation times which

0
60

o» o o0 l 1 l

100 140 1BO 220
T&oK)

o o o
l I

260 300

FIG. 1. Temperature dependence of ultrasonic attenuation
for longitudinal waves along the [100] direction at frequencies

f =800 MHz and f =286 MHz. 4: values calculated using
Mason's scheme, ~ and Cl: values calculated using our computer
program with and without Merkulov's correction factor, respec-
tively, 0: Experimental values from Ref. 8 for 800 MHz and
Ref. 7 for 286 MHz.
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TABLE 1jf. values of ( y ) and ( y~) at room temperature for diff'erent directions.

Direction
of

propagation

100
100
110
110
110
111

Direction
of

polarization

100
001
110
110
001
111

0.6368

0.6812

0.7252

0.6531

0.6531

0.6531

0.1315

0.1315

0.1315

1.0164
0.0601
0.8382
0.9338
0.0783
0.7848

& y')

0.9406
0.0732
0.7255
0.9320
0.0732
0.6540

0.1795
0.0146
0.1533
0.1196
0.0148
0.1445

'Calculation using Mason's pure-mode scheme.
"Calculation using our computer program without Merkulov's correction factor.
'Calculation using our program with Merkulov's correction factor.

are half the relaxation times for [100] longitudinal waves.
The Debye characteristic temperatures, OD were calculat-
ed at di8'erent temperatures using de Launay's tech-
nique which were further used to estimate the tempera-
ture variation of energy and specific heat. The tempera-
ture dependence of various parameters used in the calcu-
lation of attenuation is shown in Tables I and II.

For estimation of attenuation using Mason's pure-
mode scheme we have used expressions for y~ tabulated

by Mason. ' ' For longitudinal waves along the [ill]
direction we use refIned expressions for y~ deduced by
Merkulov, Kovalenok, and Konovodehenko. ' For cal-
culation of attenuation using our program the number of
directions for which y~ are evaluated is determined by a
convergence criterion for the numerical approximation of
the full integral. The minimum number of directions
considered is 800. For shear waves ( y~ ) was found to be
consistently less than 10 with the imposed convergence
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FIG. 2. Same as in Fig. 1 for (a) longitudinal and (b) shear
waves along the [100] direction for f =480 and 495 MHz re-

spectively. Experimental values from Ref. 7 for both cases.
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FIG. 3. Same as in Fig. 1 for longitudinal waves along the
[110] direction for f =800 and 72 MHz. Experimental values
from Ref. 8 for 800 MHz and Ref. 36 for f =72 MHz.
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criterion. This points to the essential correctness of the
numerical approximation to the full integral. Table III il-
lustrates the comparison of (y) and (y ) for different
directions at room temperature.

The attenuation calculated using both these ap-
proaches for different directions are shown in Figs. 1 —6.
The attenuation of longitudinal waves also includes the
contribution of thermoelastic loss calculated using Eq.
(1). There is no thermoelastic loss for shear waves. For
waves propagating along [110] direction Mason' has
suggested that y~ should be weighted by appropriate re-
laxation time. Merkulov has extended this refinement in
relative weighting of yj to waves along [111]direction.
The correct weighting of y J by different relaxation times
is taken into account in our program also for evaluation
of attenuation for these directions.

From the results presented in Figs. 1 —6 it is clear that
the calculation based on the correction factors resulting
from the dependence of integral (11) on the cutoff fre-
quency supported by lattice and the use of the collective
phonon relaxation time obtained from the condition
co~=1 leads to quite a close agreement with the experi-
mental attenuation, except for [110] shear waves polar-
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FIG. 5. Same as for Fig. 1 for shear waves along the [110]
direction polarized along the [001] direction for f =800 and 72
MHz. Experimental values from Ref. 8 for 800 MHz and Ref.
36 for 72 MHz.
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FIG. 4. Same as for Fig. 1 for shear waves along the [110]

direction polarized along the [110]direction for f =800 and 72
MHz. Experimental values from Ref. 8 for 800 MHz and Ref.
36 for 72 MHz.

T (oK)

FIG. 6. Same as for Fig. 1 for longitudinal waves along [111]
direction for f =800 MHz. Experimental values from Ref. 8.



15 866 S. D. LAMBADE, G. G. SAHASRABUDHE, AND S. RAJAGOPALAN 51

ized along the [001] direction for 72 MHz and for longi-
tudinal waves along the [111]direction. For longitudinal
waves along the [111]direction, better agreement can be
expected if the data on experimental relaxation times is
available. Here it may be recalled that apart from the v;
dependence of integral (11) Barrett and Holland have
pointed out other factors which are important for Si.
These include dependence of y's on the wave vector as
well as polarization.

As our program facilitates calculation of attenuation
using other rigorous theories outlined by Maris with
only little modification, a more complete theoretical in-
vestigation of attenuation in various solids using diFerent
models is being undertaken. The experiments on the fre-
quency dependence of attenuation at various tempera-
tures, which can be used to find the collective phonon re-
laxation times in other solids, would be quite useful for
these investigations.
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