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Gauss procedure for the construction of self-localized solitons in discrete systems
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Recently, stable self-localized solitons (SLS) have been found in the Fermi-Pasta-Ulam (FPU) chain.
In the present investigation a construction procedure for SLS solutions is presented. It is based on two
ingredients: (a) the exploitation of the harmonic wing property, and (b) a Gaussian step-by-step optimi-
zation starting from the wing. The procedure allows for highly accurate approximate solutions, which
already surpass in the one-frequency version the accuracy of previous solutions. The method is illustrat-
ed for the quartic FPU chain, but it is not restricted to this type of anharmonicity.

I. INTRODUCTION

The literature on solitary solutions in nonlinear con-
tinuous media is very rich. By contrast, in the field of
discrete lattices up to now only one exactly solvable sys-
tem has been found. For this system, which is character-
ized by an interaction potential of the form
V(x)=(a/b)e "+ax; (a, b) 0), Toda has found propa-
gating solitary solutions of the classical equation of
motion, with a velocity bigger than the sound velocity.
Numerical simulations seem to indicate, however, that no
self-localized excitations are possible in the Toda chain.

Historically, the first anharmonic system of discrete
nature is the Fermi-Pasta-Ulam chain (FPU chain). In a
famous investigation, Fermi, Pasta, and Ulam have
studied numerically the problem of the equipartition of
energy in a one-dimensional anharmonic lattice. In fact
the FPU system has kept its fascination up to the present,
and also in this system propagating solitons have been
found.

Recently Sievers and Takeno have proposed the ex-
istence of a kind of localized mode (self-localized soliton,
SLS) in the FPU lattice with an harmonic and an addi-
tional hard quartic potential. The existence of the SLS in
the FPU chain has been con6rmed by molecular-
dynamics simulations ' and in recent works ' the
properties of these modes are investigated. In our previ-
ous work, ' ' our emphasis has been on the evolutionary
process of local excitations of the FPU chain of alterna-
tive prototypes. Specifically, three alternative types of lo-
cal stimulation have been handled by means of direct
molecular-dynamics simulation: (a) an initial displace-
ment of the particle at site n =0, (b) an initial impulse at
the same site, and finally (c) a force acting on site n=0
for a given time period. From these studies it has turned
out that the characteristic features of the evolution cru-
cially depend on the type of initial stimulation. E.g. , for
an impulse excitation the main outcome is a pair of su-
personic "compressive" propagating solitons, if the exci-
tation energy is small, whereas for high energies addition-
al supersonic solitons both of "rarefactive" and compres-
sive nature and also subsonic solitons may be generated.
By contrast, a single-site local displacement excitation
does not display propagating solitons in regular chains.

Rather, in the long-time limit, it displays a stable self-
localized mode of the Sievers-Takeno type, provided the
energy is not too large. For higher energies the single
SLS eventually splits up in several spatially separated
SLS modes.

The SLS's are reminiscent of localized vibrations
present in a harmonic lattice containing point defects,
but the main difference is that in translationally invariant
FPU lattices they can occur at any lattice site. The ex-
istence of these modes is not limited to one-dimensional
lattices but they can also exist in two-dimensional or
three-dimensional lattices under certain conditions. '

In this paper we present a numerical procedure which
allows the accurate calculation of the form and of the fre-
quencies of the SLS in the FPU chain. The extension to
other types of anharmonicity is straightforward. The
procedure is based on the knowledge of the solution in
the wing region and on a recursive minimization of a
Gaussian error integral concerning the equation of
motion. Our numerical results are compared with other
approximate solutions, ' ' and an analysis of the quality
of the solutions will be given by means of the mean-
square variance of integrals of motion (energy and
momentum).

This paper is organized as follows. In Sec. II we
present the model and in Sec. III the numerical pro-
cedure. The comparison with other analytical solutions
is discussed in Sec. IV and the analysis of the stability of
the solutions is given in Sec. V. Finally in Sec. VI we
present a summary and discussion.

II.THE MODEL

We consider a regular one-dimensional chain (FPU
chain) with nearest-neighbor harmonic and anharmonic
interaction described by the Hamilton function:

2

+ g (q„—q„)
Pn f2
2m „, „~ 4

+ (q„—q„)

where q„and p„are the displacement and momentum of
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the nth atom, f2 and f4 are, respectively, the harmonic
and anharmonic force constants and m is the mass of the
atoms. For the harmonic chain (f4=0) the maximal
phonon frequency is given by

coD =2+f2/m (2)

Let a be an arbitrary reference amplitude. Then we may
introduce dimensionless variables:

9'n Pn
P~—,1 COD i

0 mCODQ

The Hamiltonian equations of motion then read

(3)

[(Q.—Q. )+«Q. —Q. )']
n 4 n n

where K =f„a /f 2. The Hamiltonian in our dimension-
less variables is given by

&=(ma con) gH„,

In this way we obtain the best solution for the given an-
satz.

At this point we do not discuss refinements of this vari-
ational principle, which in the future may be adopted in
the spirit of the original Gaussian principle of classical
mechanics. ' In particular we do not touch upon the
problem of auxiliary conditions, which may be adequate
to avoid the trivial solution Q„(r)—:0, since for our con-
struction principle this is irrelevant.

Since for any prospective localized solution the ampli-
tude Q„ in the wing necessarily turns small, we may
neglect the anharmonic part of the equation of motion
for great distances from the center of the SLS:

d 1

dV
- Q. = —

4 [2Q. —Q. + i
—Q. —i ]

For this harmonic equation we consider the ansatz

(10)

tion of motion. If we consider an ansatz for Q„(r) which
depend on one or more parameters (a„a2, . . .a~), we
can minimize the value of I (n) solving the equations

BI(n)
i =1. . .X .

Bcx

dQ.H„=—
2 d7"

+ g (Q„—Q„) +—(Q„—Q„) (6)

Q (r) =Be "'"'(—1)"cos(Qr)

where A=co/coD is the dimensionless frequency and p is
a real parameter that describes the exponential decay of
the wing. This ansatz satisfies Eq. (10) under the condi-
tion (wing condition):

is the dimensionless energy per lattice site. For conveni-
ence we always will choose %=1, which is no restriction
of generality but is to be considered as a choice of the ar-
bitrary amplitude-dimension parameter a.

III. THE METHOD

Recent theoretical and numerical studies ' ' ' ' '

have demonstrated that spatially localized oscillations
(self-localized solitons) can exist in a lattice with quartic
anharmonicity. The main characteristics of these SLS
are an ultra-Debye frequency, antiphase elongations of
neighboring atoms and an exponential spatial decrease of
the wings.

In this section we describe a procedure apt to find ap-
proximate solutions of the equations of motion (4) which
describe these SLS. We consider a trial ansatz for the
functions Q„(r) and we calculate the integral

T d Q„(r)
I(n) = I — F„(r) dr, — (7)

dr

A=cosh(p/2) . (12)

Q„(r)= (
—1)"A„cos(Qr), (13)

where 0 is given by Eq. (12). The Gaussian error integral
(7) then reads

TI(n)= —IT 0
—Q +—1

n

+ —(A„+,+ A„ i) cos(Qr)
1

+—[(2„+A„+,)
4

'2

+(3„+2„,) ]cos(Qr) ' dr,

Since this condition, being independent on n must be
satisfied for ~n~~~, it constitutes a necessary require-
ment between the intrinsic parameters p and Q of the an-
satz, which has to be adopted in the anharmonic regime.

For a Axed wing parameter p we search an approxi-
mate solution of the equation of motion (4) in the form

F„(r)= —— g [(Q„—Q„)+&(Q„—Q„)']1

4 „,

is the force which acts on the nth atom and T is the
period of the functions Q„(r). This integral constitutes a
Gaussian error integral and is equal to zero if the ansatz
for Q„(r) corresponds to the exact solution of the equa-

where T =2m/A. Solving this integral we obtain

I(n)= ,' U(n) + ,'—U(n)V(n—)+—,', V(n)
where

U(n)=[( —0 + —,')A„+—,'(A„+,+ A„,)]

(14)

(16)
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represents the harmonic part and 0.1

V(n)= —[(A„+A„+,) +(A„+A„,)3] (17) 0.08
B1
B2

the anharmonic one in the Gauss integral.
The main idea of our method is to start the numerical

procedure in a spatial region in which the harmonic solu-
tion (11) is sufficiently accurate, e.g., in a region on the
left side of the soliton and far away from the center such
that to the left of a chosen site no the solution is de-
scribed by the form

P(n —n0)A„=Be ' for n ~no .

In particular we choose
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A„,=Be

A„=B
(19)

FIG. 1. Maximal displacements A„as a function of site n for
the wing parameter y, =0.2 and two values of the constant B [see
Eq. (19)]. The full line shows the exponential behavior of the
harmonic solution A„=Be"".

r)I(no ) =0.
aA„

(20)

If we desire to have an increased accuracy, we have to
choose a smaller B value. To be specific about the error
made: if we consider the starting situation given in Eq.
(19), solving Eq. (20) we obtain

A„+i=Be"+ ,'KB [2(1+e"—) e~+e "]+—O(B ),
(21)

and the deviation from the exponential solution is pro-
portional to B .

Having fixed in this manner the value of A„+&, we

may proceed in the same manner. Then, the value of A„
0

and A„+i are used to find A„+2 solving Eq. (20) with
0 0

index no=no+1 and so on. . . . This recurrence pro-
cedure gives an optimized sequence of A„values which
describe the SLS with a fixed wing parameter p.

In Fig. 1 we show the quantity A„as a function of site
index n for the wing parameter p=0.2 and for two values
of the parameter B [see Eq. (19)]. With our approximate
numerical procedure the resultant distribution is not ex-
actly symmetric (see Figs. 1 and 2) and also a deviation
from the exponential behavior is observed in the right
wing. The latter is due to the augmentation of inaccura-
cies when moving to the right. &e now may choose B
and no in such a manner that Ao is a symmetric max-
imum between its two neighbors ( A, = A, ). After the
condition A

&

= A, is satisfied, the right wing, because
of the inaccuracy, still is not symmetric to the left one,
whence we replace the amplitude values on the right side

for two initial sites n o and n o
—1, provided B is

sufficiently small. In this procedure we do not yet know
the position of the center which depends on the choice of
B. It should be noted that a change of B amounts to a
translation of the solitary solution. For fixed values of
A„ i and A„ the integral I(no) is a function of A„+i,

0 0 0

and we may determine the best value of A„+, solving
0

the equation

by those of the left side, A„=A „ for n&1. This is
shown in Fig. 6. This solution, if longitudinal motion is
considered, constitutes an "odd mode, " which satisfies
the condition Q„=Q „. Vice versa, we may choose B
and no in such a manner that A&=Ao and replace the
amplitudes on the right side in analogous manner by
those of the left side, 2„+&=A „ for n&1. Then, the
longitudinal motions would represent an "even mode"
with respect to the site n =1/2, which satisfies the condi-
tion Q„+i= —Q „ for n )0. In this paper we focus our
attention on the odd-symmetry solutions, and the numer-
ical results of our procedure are always understood as be-
ing syrnrnetrized in the sense just explained.

IV. COMPARISON WITH OTHER
ANALYTICAL SOLUTIONS
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FIG. 2. Logarithm (base 10) of the Gauss- integral I„as a
function of site n for the wing parameter p=0.2.
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In the theoretical work of Sievers and Takeno and of
Bickham and Sievers (BS), approximate analytical solu-
tions are found, using lattice Green functions and the
"rotating-wave" approximation (RWA), where also only
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a single frequency component is included in the time
dependence. With this procedure BS find a solution in
the form:

GP 0
YW-----
BS-----

Q„(r)=a Ao( —1)"e I I Icos(Q&)

Qo(r}= Aocos(Qr),
(22)

0.8

where the parameters a,p, Q are determined for a fixed
"effective anharmonicity parameter" y4=KA 0 by solving
a system of equations obtained with the RWA.

At this place it is worth looking back at the original
variables. We have defined IC =(f4/f2)a and chosen
E=1. On the other hand we have qo=aAo, whence we
find

0.7

0.6

0.5
0.00 I 0.01 O. i

y4=f4/f2&o = Ao . (23)

R„(r)= Ao( —I )"sech(&3K/2Acn )cos(Qr), (24)

where R„=Q„—Q„, is the relative displacement,
II=1+(3/16)y4 and y~=lI Ao. This solution displays
even symmetry in the Q space and for localized modes
(hmI„R„=O) the transformation R„~Q„ is defined
by

n

Q„= g R;. (25)

For small y4 the transformation of Eq. (24) gives the solu-
tion

Hence, a specific solution (22} which is fixed by taking a
specific value of Ao, can either be reached by a large rela-
tive anharmonicity constant f4/f 2 combined with a
small amplitude qo or vice versa.

Another analytical solution is given by Yoshimura and
Watanabe (YW). ' In this work the authors derive a
nonlinear Schrodinger equation as a continuum approxi-
mation of the lattice and find a solution which describes
the SLS as an envelope soliton. The solution reads

FIG. 4. Ratio 3, /A0 as a function of the anharmonicity pa-
rameter y4 for our solutions (GP} and for the solutions of BS
and YW.

Q„(r)= Ao( —1)"sech[+6KA c (n + 1/2) icos(LIr),

(26)

which directly evinces the even-symmetry longitudinal
motion. The passage from even symmetry to odd symme-
try for small values of y4 can be considered as a shifting
of the form (26) by 5„=1/2. The odd-symmetry solution
derived from Eq. (26), then reads

Q„(r)= Ao( —1)"sech(i/ 61(.A c n )cos(Qr), (27)

where Q=1+(3/4)y4 and y~=EAc. This solution in

the terminology of YW would amount to an even-
symmetry motion in di6'erential space, R„=Q„—Q„
The solution given in Eq. (27) is also obtained by Ko-
valev, Usatenko, and Chubykalo' in the limit of small
anharmonicity. In fact there is no contradiction in the
appearance of both parity-type solutions [see Eqs. (27)
and (26)], as Kovalev, Usatenko, and Chubykalo seem to

GP 0
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BS----- .0
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/
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GP exp.
GP th. +
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FIG. 3. Wing parameter p as a function of the anharmonicity
parameter y4 for our solutions (GP}, for the solutions of Bick-
ham and Sievers (BS) and for the solutions of Yoshimura and
Watanabe (YW).
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FIG. 5. Frequency A of the particle at central site n=0 as a
function of the anharmonicity y4 for our solutions and for the
solutions of BS and YW. "GP exp" indicates the measured fre-
quency of Qo(r) obtained with numerical simulation and "GP
th" is the theoretical value of the frequency predicted by the
wing condition [see Eq. (12)].
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insinuate. In our calculations we have found that for
small anharmonicity both types can exist and be stable.

In our numerical procedure the wing parameter p is
taken as a fixed quantity. Then, considering odd solu-
tions, the value of the anharmonicity parameter
y4=KA o is determined by the maximum value of the dis-
placement Ao. In Fig. 3 we show the parameter p as a
function of the anharmonicity y4 and we observe that for
small y4 the values of p for our solutions are in agree-
ment with the solutions of YW. On the other hand, for
greater anharmonicity our solutions are in agreement
with the solutions of BS. The same behavior is observed
also for the quantity 2

& /Ao (see Fig. 4) and for the fre-
quency 0 (see Fig. 5). These results show that our solu-
tions connect the solutions of YW for y4 « 1 with the
solutions of BS for y4»1. As noted, the BS solution is
very good for y4»1. In fact Figs. 4 and 5 even seem to
indicate that the solutions of BS also in the small y4 limit
are rather accurate. But later it will turn out otherwise
(see below).

In Fig. 6 we show the absolute value of the displace-
ment A„as a function of the site index n for a small
anharmonicity. In this case we observe that the values of
A„obtained with our numerical procedure are in perfect
agreement with the solution of YW. For the same max-
imum amplitude Ao the solution of BS displays a less
steep wing, i.e., a smaller wing parameter p and there is
also a considerable deviation in the central region. The
solutions of YW are obtained from a continuum approxi-
mation of the lattice, whence these solutions are valid
only for small anharmonicity. For greater anharmonicity
(y4»1) the vibrational motion involves only a small
number of particles and it is reminiscent of the vibrations
of a triatomic molecule (see Fig. 7). In this limit the YW
solution practically would involve only a single particle
and the resultant total momentum of the chain
would not be conserved. On the other hand the solu-
tion given by BS exhibits a displacement pattern
(. . . ,0,—0.52, 1,—0.52,0,. . . ) which is normalized to the
central amplitude Ao and which is in agreement with our
numerical solution for the three central particles. How-
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FIG. 7. Maximal displacements A„as a function of site n for
our solution (GP) and for the BS and YW solution. The value
of the anharmonicity is y4= 8.8.

(28)

of this quantity relating to the approximate solution. In
our case the total moment

ever our solution shows a considerable greater value of
A2. In a recent work, Sandusky, Page, and Schmidt"
have investigated a chain with purely quartic an-
harmonicity. In this case the odd-symmetry mode
has a fixed normalized displacement pattern given by
(. . .0,0.02, —0.52, 1,—0.52,0.02,0. . . ) which is very close
to our solution in the strong anharmonicity regime. In
this limit (y4»1) the equation of motion is dominated
by the linear term and we expect that the displacement
pattern given by Sandusky, Page, and Schmidt is correct
also for the FPU chain with quartic anharmonicity. This
question is investigated in the next section where the sta-
bility of solutions is verified with numerical simulations.

A possible way to characterize the accuracy of approx-
imate solutions in a global way is by means of integrals of
motion. If C is a conserved quantity, we may consider
the mean-square variance

0.14
P= gP„ (29)

0.12 — GP o
BS----

YW-----

0.1

0.08

is a conserved quantity and we define

(P) =—J $ P„( )dr
1 T

T 0

and

(30)

0.06

0.04

0.02

10-20 -10-15 I 5 20-5 0 5

FIG. 6. Maximal displacements A„as a function of site n for
our solution (GP) and for the BS and YW solution. The value
of the anharmonicity is y4=0.015.

(H) =—f glr„(r)dr1

T 0
(32)

(P') =—j (31)T 0

For even (longitudinal) modes (P ) =0 by symmetry.
But since we want to consider odd modes, the mean-
square variance of I' is a nontrivial characterization. In
Fig. 8 we present the mean-square momentum fiuctuation
as a function of the mean energy,



15 852 R. DUSI AND M. WAGNER 51

104

rr///
/

/
/

/
I

/
I
I
I
I

10 s

1
h

v
I

yO-4-

V

0.1

1'r ~

~ ~ ~ . I

1

& II &
10 100

10

V ].0-4—
I

10 6-V

0.01
~ I

0.1 10

0

0
0

0
0/r

//
/.' 0//

//
/

/.'0//
/

/
/

/

/
I

/

/
/

/
/

J
I
I
I
I
I
I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

100

FIG. 8. Mean-square variance of the total momentum as a
function of the mean total energy for our solutions (GP) and for
the solutions of YW and BS.

FIG. 9. Relative mean-square variance of the total energy as
a function of the mean total energy for our solutions (GP) and
for the solutions of YW and BS.

for odd modes.
For (H ) & 0. 1 we note a smooth behavior of the curve

pertaining to our numerical procedure. It always lies
below the results of YW and BS and for (H ) & 1 is at
least two orders of magnitude lower than both other re-
sults. For small values of (H) ((H) (0.1) our result
can be shown to merge analytically into that of YW.
This can be seen as follows. We consider the value of the
amplitude given by the YW solution [Eq. (27)]

A Yw Ao

cosh[@(n —1)]

AoA„=A„
cosh(pn)

(33)

and we search for the optimized value of A„+I solving
Eq. (20). Let 3„+i

= 2 ~+, +X„+,we obtain in the limit
(H ) ~0 (which corresponds to p~O)

4 YW&n+I p An+I

From this expression we obtain

PGP —PYw[ 1 +g (+4) ]

(34)

(35)

where the index GP (Gauss procedure) indicate our nu-
merical solution. The mean-square variance of the
momentum is given by

(P2)GP —( P2) i'%[1+0 (p4) ] (36)

(H') =—f QH„(r) dr .
T 0

(37)

and for p~O we obtain (P ) ~(P ) . It should be
noted, however, that any "test solution" which displays a
small value of the quantity (28) not necessarily indicates
an approach to the exact solution; the requirement of
small fluctuation may also be satisfied by functional
forms which strongly violate the equation of motion. An
illustration of this point is noted if the relative Auctuation
of the total energy, ( (H ) —( H ) ) /(H ), is considered
(see Fig. 9). Here we define

In Fig. 9 we note that for small (H ) values the BS form
yields the smallest relative energy Auctuation, although
we know (see, for example, Fig. 6) that in this regime
both the solutions of YW and of our numerical procedure
satisfy the equation of motion much better. On the other
hand, for large (H ) values we find a relative energy Iluc-
tuation which is close to the BS solution. For the sta-
tionarity of the solutions in this energy regime we refer to
the next section.

V. STABILITY OF THE SOLUTIONS

All solutions considered so far have a time behavior
Q„(r) ~ cos(Qr), whence P„(0)=0. Using now the found
amplitude distribution of each solution at ~=0
[Q„(0)= ( —1)"2„;P„(0)=0], we can follow up the time
evolution by numerically solving the equation of motion
(4). We do that by a fourth-order Runge-Kutta method.
The time step in our program is always chosen to
preserve the total energy of the lattice to an accuracy
better than 10 . For each considered initial condition
we have an exponential decrease of the wings and we
start with a chain of a length such that all neglected sites
have an amplitude A„(10 ' at time ~=0. This choice
is made, since taking a longer chain, no change in the
behavior is noted any more. The chain is treated in a
self-expanding manner, ' i.e., we expand it whenever the
energy on the last atoms exceeds a preset small value.
With this artifice the chain is e6'ectively infinite.

For small effective anharmonicity (y4=0.015) we have
considered the initial conditions given in Fig. 6. In this
ease, our numerical solution corresponds to the YW solu-
tion whereas the BS solution deviates somewhat.

In Fig. 10 we show the value of g„" 25 H„ /
H„as a function of the time r. This quantity

measures the removal of the energy from the center and
is indicative for the stability of the solution. We observe
that for the initial condition of BS, this quantity has a
large increase at small times but then shows the tendency
to reach a constant value. At the end of this process a
fraction of about 2 X 10 of the total energy is
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FIG. 10. g„" »H„/g„" „H„as a function of the time r
obtained for our (Gp) initial conditions [Q„(0)=( —1)"/t„;
P„(0)=0] and for the initial conditions of BS. The values of the
anharmonicity considered are y4=0.015 and y4=8.8 (see Figs.
6 and 7).

transformed in energy packets which propagate away
from the center whereas the central region now is stable.
Taking the solution of our procedure as the initial condi-
tions the process of stabilization takes away only = 10
of the total energy. Another aspect of the process of sta-
bilization is displayed in Fig. 11 where we show the maxi-
mal value Qo'"(r) of the wave amplitude at the center of
the soliton as a function of the time ~. For the initial
condition of BS we observe an oscillatory behavior and
the value of Qo

'" shows the tendency to research a con-
stant value smaller than the initial one. On the other
hand, we observe that for an initial condition pertaining
to our procedure the value of Qo

'" remains approximate-
ly constant. For small anharmonicity the soliton form
given by BS is not stable and after a suKciently large time
(1000 periods), it transforms into the YW form with a

+O
+O

'~O
O+ O

Oc'o+ OO+~ ' Ooo,
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FIG. 12. Maximal displacements A„as a function of the site
index n. The points (BS i.s.) represent a BS-initial state calculat-
ed for the anharmonicity parameter y4 =0.015, i.e.,
Q„(0)=( —1)"3„;P„(0)=0 and the crosses (notation BS f.s.) in-
dicate the values of A„at time ~=8000. The line YW shows
the analytical solution of Yoshimura and Watanabe with anhar-
monicity y4=KA0 adapted to the amplitude A0 of the final
condition.

smaller value of y4 (see Fig. 12). These numerical experi-
ments confirm that for small anharmonicity the ampli-
tude distribution of our procedure (which correspond to
the YW solutions at the time ~=0) remains stable.

For greater values of the anharmonicity (ye=8.8) our
solutions are similar to the BS solutions. In the
molecular-dynamics experiments we have considered the
initial conditions given in Fig. 7. Figure 13 shows the
time evolutions of Qo' (r). Here the BS initial condition
yields an oscillatory behavior which does not disappear
for a long time, whereas the initial conditions pertaining
to our procedure display a much smaller fluctuation and
is stable, as seen in Fig. 10. The portion of the energy
that propagates away from the center (see Fig. 10) indi-
cates that the initial conditions of BS generate an unsta-
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FIG. 11. Maximal value of the wave amplitude at site n=O
as a function of time w as obtained for our initial condition (GP)
and for the initial condition of BS [Q„(0)= (

—1)"2„;P„(0)=0]
displayed in Fig. 6 (y4=0.015).
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FIG. 13. Maximal value of the wave amplitude at site n=O
as a function of the time ~ obtained for our initial condition
(GP; 0 & ~ & 4000) and for the initial condition of BS
(0(r(2000); Q„(0)=(—1)"/t„; P„(0)=0 displayed in Fig. 7
(y4= 8.8).
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wing region must merge into a solution of the harmonic
chain, i.e., into the form

e
—Pl I( 1)" for ~n~~ ac . (39)

-50

FIG. 14. Spatiotemporal evolution of the site energy H„{z)
for the initial condition [Q„(0)=(—1)"A„;P„(0)=0] of YW
with anharmonicity y4=8.8 {see Fig. 7).

ble mode, whereas for our initial conditions the mode
reaches a stationary state after an initial time of =20
periods and only a fraction of about 10 of the total en-
ergy spreads out. The evolution for the initial conditions
of YW is very different and displays a bifurcation in
space (see Fig. 14). In Fig. 14 we note that after some
time has passed the energy packet splits up in two local-
ized solitons with a smaller effective anharmonicity pa-
rameter. Further numerical experiments for greater
values of y4 as well as for intermediate values demon-
strate the stability of an evolution following initial condi-
tions generated by our procedure.

An interesting phenomenon is observed in Fig. 5. If we
take our numerically found form as the initial condition
[Q„(0)=(—1)"A„;P„(0)=0],the simulation (="experi-
ment") yields for the particle at site n=0 a measured fre-
quency Q, which for great anharmonicity is somewhat
smaller than the theoretical one [see Eq. (12)]. To explain
this we must note that for great values of the wing pa-
rameter p (large anharmonicity) a small change of the
wing parameter p causes a relatively great change of the
frequency Q:

bQ= bp= —sinh ~ bp .dQ 1
(38)

dp 2 2

We should, however, note that these deviations of Q take
place in an anharmonicity regime which hardly can be
realized in nature. We may expect that during the evolu-
tion the wing of our initial form changes somewhat,
preserving only the stable part with an effective wing pa-
rameter p smaller than the initial one.

VI. SUMMARY AND DISCUSSIQN

In this investigation we present a procedure for the cal-
culation of a self-localized soliton in chains with anhar-
monic nearest-neighbor potentials, which exploits the
known limiting behavior of the spatial wings. The crucial
idea is that for localized solutions, the solution in the

The knowledge of the form in the wing region is used as
starting condition in our procedure ("construction out of
the wing"). Our method is based on a step by step
minimization of the Gaussian error integral [see Eq. (7)]
and for a given wing parameter p we can construct the
complete form of the SLS by a recursive procedure. This
method f'urnishes even-symmetry or odd-symmetry solu-
tions, but in this paper we have considered only odd-
symmetry solutions. Our procedure can be applied to
any type of anharmonicity, but for illustrative purposes
we consider the quartic Fermi-Pasta-Ulam chain, which
historically is the most fascinating one, and which has
been considered by many other investigators.

The approximate solutions obtained with our pro-
cedure are compared with the solutions given by Bick-
ham and Sievers and by Yoshimura and Watanabe. '

We show that for small energy our solution merges into
the solution given by YW. On the other hand, for great
energy our procedure gives a solution which is in good
agreement with the solutions of BS. For extremely high
values of the energy we find that our solution involves
practically only three particles and merges into the solu-
tion given by Sandusky, Page, and Schmidt" for a purely
anharmonic lattice. To test the validity of the solutions
the mean-square variance of the integrals of motion (en-
ergy and momentum) is used. The analysis shows that
our procedure gives good solutions for all energy regimes,
which is not true for other approximate analytical solu-
tions (BS and YW). The accuracy of the various solu-
tions is also tested with numerical simulations of the time
evolution. We show that the initial conditions pertaining
to our procedure generate stable modes, maintaining the
initial form. By contrast, if we consider the initial condi-
tion pertaining to the BS or YW solutions, we find that
the evolution is not stable for respectively unsuitable en-
ergy regions. For example the YW initial condition for
great energy displays a bifurcation in space and the BS
initial condition for small energy shows an unstable
behavior, resulting in a modification of the wing parame-
ter p.

Our numerical procedure is only an optimized approxi-
mation of the exact solution. Its accuracy depends on the
chosen functional form and may be improved both in the
choice of the starting wing amplitudes as in the choice of
the time behaviors. For example, numerical simulations
and theoretical works' ' have demonstrated that the ex-
act solution of the equation of motion contains higher
frequencies which are odd multiples of the fundamental
frequency Q. However, the amplitude of these higher-
frequency additions are small fractions of the amplitude
at the fundamental frequency, and in the present illustra-
tion they are ignored. Therefore with the chosen ansatz
[see Eq. (13)], it is not possible to make the Gauss-
integral equal to zero, I(n) =0, and the minimum values
of I ( n ) can be interpreted as a measure of the goodness of
the approximate solution.
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