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A binary Lennard-Jones Quid was cooled in an APT ensemble by molecular-dynamics simu-

lations. Depending on the cooling rate, we find a sharp transition from the melt either into a
disordered structure or into a phase of icosahedral long-range order. We also observed a decagonal

phase.

I. INTRODUCTION

The first quasicrystals were synthesized by spin melt-
ing, and applying the right cooling rate was an important
factor in Shechtman's discovery. Meanwhile large single
quasicrystals can be grown by the Czochralski method.
But frequently a high quality ingot must be prepared first
by rapid cooling of a melt and successive annealing.

From a theoretical point of view the solidification pro-
cess of quasicrystals rarely has been investigated in three
dimensions. ' Most of the studies deal with simple static
or dynamic growth models of clusters, where atoms are
afIixed to a given icosahedral seed. A series of nu-
merical simulations by molecular dynamics or relaxation
algorithms proceeds from quasicrystalline structures
and test, whether they remain stable, when the atoms
interact by pair potentials. In the present study we start
&om an unstructured Lennard-Jones melt. Hence we can
monitor the formation and perfection of clusters, and we
can be sure that nucleation and stability are not induced
by a given initial state, but by factors like the short-
range order of the liquid, the energy cost to create crit-
ical nuclei, and the formation enthalpy. The only previ-
ous molecular-dynamics simulation of quasicrystal solid-
ification from the melt has been reported by Dzugutov.
This author has cooled a monoatomic liquid with a pair
interaction favoring dodecahedra formation, and has in-
deed arrived at a dodecagonal T phase with icosahedral
nearest-neighbor shells. Here we investigate diatomic
systems, which are closer to experiment.

The simulations are expensive, as a large number of
atoms is necessary in representing a quasiperiodic sys-
tem, and as extremely long simulation runs are required
to achieve low cooling rates. Those obtained still are two
orders of magnitude faster than in experiment; nonethe-
less, for a system of 376 atoms we attained quasicrys-
talline "long-range" order up to at least fifth neighbors.

The paper is organized as follows. In Sec. II we de-
scribe the quasicrystalline structure model behind the
simulation and the simulation method. The results of
the simulation and the structure analysis are presented
in Sec. III. A conclusion and discussion of related work
are given in Sec. IV.

II. MODEL AND SIMULATION METHOD

First the stability and the pressure-temperature phase
diagram were determined by molecular-dynamics (MD)
simulations for a specific structure model of a three-
dimensional icosahedral quasicrystal, namely, the trun-
cated icosahedral binary model. Then we studied the
formation of a quasicrystal &om the melt. This has been
done in two diferent ways: Either a perfect quasicrys-
tal (truncated icosahedral binary model) was melted or
the atomic positions were generated by a random num-
ber generator. A subsequent cooling procedure was per-
formed in order to solidify the system. In the first case
we carefully equilibrated the melt and made sure that no
correlations of the quasicrystal structure remained using
the average mean square displacement. We could not find
any difI'erence in the behavior of both approaches. The
analysis of the final structures showed quasicrystalline
and diferent disordered phases, depending on the cool-
ing rate.

The truncated icosahedral binary model is based on a
three-dimensional rhombohedral quasilattice. All its ver-
tices and edges are decorated by atoms of type A (small
atoms). In addition two atoms of type B (large atoms)
are placed on the long diagonal of the prolate rhombohe-
dron, dividing it into three parts of ratios w: 1:w with
r =

2 (~5+ 1). The composition of the ideal quasicrys-
tal is N~ . N~ ——2w: 1. The model is assumed to be
a simplified description of the structure of (MgZn)A1 or

0163-1829/95/51(22}/15833(8}/$06.00 51 15 833 1995 The American Physical Society



15 834 ROTH, SCHILLING, AND TREBIN 51

(A1Cu)Li class quasicrystals. s' The small atoms at the
vertices are mostly icosahedrally coordinated, with bonds
defining the fivefold directions. The small atoms at the
midedge positions are also icosahedrally coordinated as
a rule, but their orientation is rotated by 90 compared
to the other small atoms, and so their axes point along
the twofold directions. Most of the large atoms have co-
ordination number 16, and their first-neighbor shell is a
truncated tetrahedron with additional atoms above its
hexagonal faces. Since we have a quasicrystalline struc-
ture, there are also other atomic environments which,
however, are less important.

Boundary effects are avoided by using rational approx-
imants. The local geometry is unchanged; only the per-
pendicular space structure is difFerent. This allows us to
repeat the arrangement of cells after a certain distance
and to use periodic boundary conditions. The simula-
tion cells contained 9760/3016, 2304/712, 544/168, and
128/40 A/B atoms with w 5/3, 3/2, 2/1, and 1/1. The
lengths of the simulation boxes are 23.32, 14.41, 8.91, and
5.51 nearest-neighbor distances, respectively. These are
the most simple cubic approximants having a set of pair-
wise orthogonal twofold icosahedral axes aligned with the
simulation box, but it is also possible to construct more
complicated approximants of difI'erent size. If the num-
ber of atoms is small, there are not so many possibilities
for approximants, but usually the system finds a way to
generate an ordered structure. To study the inHuence
of the periodic boundary conditions on the orientation
of the nucleated phase and on the possibility to form a
quasicrystal, we simulated a structure of 288/88 atoms
(length of the simulation box 7.20) which does not cor-
respond to a simple approximant. A crystal of the Laves
phase with 128/64 atoms has also been studied for com-
parison.

For our simulations we used the Lennard-Jones poten-
tials

sicrystalline structure is at least strongly metastable for
0 9,10

The equilibrium MD method used to calculate the
pressure-temperature phase diagram of the system re-
quires a canonical constant-pressure ensemble (NPT) in-
stead of the standard microcanonical one. So we modified
the Hamiltonian equations by a constraint as described,
for example, by Evans and Morriss. The equations of
motion are integrated in a fourth-order Gear predictor-
corrector algorithm (see, for example, Ref. 16). The time
increment ht* (Ref. 17) was adjusted after testing for nu-
merical stability. We find that bt* = 0.0046 or 0.0023 are
appropriate values. For simplicity the masses of small
and large atoms were set to unity.

For the cooling and heating simulations we used an
extension of the constraint method described by Landon
and Billard. The procedure allows us to adjust the tem-
perature (or pressure) at each time step. The cooling or
heating rates were between 8 x 10 ~OT*/t* = 2 x 10~

K/s and 8 x 10 sT*/t* = 2 x 10~ K/s~~. The length
of a simulation run was very difI'erent depending on the
cooling rate. The longest runs took up to 23 x 10 steps.

Prior to the cooling simulations we have to know the
approximate "melting" curve of our quasicrystal. The
melting point at a certain pressure has been determined
roughly by slowly heating the system with 3016 atoms
until it liquified. Then we determined the melting tem-
perature closer by running a number of simulations at
fixed temperature around the phase transition line until
the structure became Quid. For 0 ( P* ( 0.1 the melting
temperature TM is between 0.82 and 0.93. The boiling
temperature lies at TI3 ——1.35 for P* = 0.0025 and in-
creases up to T& ——1.4 for P* = 0.01. From these data
we decided to start our simulations in the temperature
range between T* = 1.0 and 1.2 at a reduced pressure
P* = 0.0025.

III. RESULTS

where n and P equal A or B. The bond lengths o p
and the coupling constants ~ p are chosen such that
the truncated icosahedral tiling is stable: o.~~ ——1.05,
o.~~ ——1.23, and o~~ ——1.21. The coupling constants
have been set to E~~ = egg~ = 0.656 for same species
and to e~~ ——1.312 for difI'erent species to prevent phase
separations into monoatomic domains. The unit of en-
ergy will be e~~ ——t 0. To save computation time we have
cut ofI' the potential at r = 2.5o~~. So at most steric
reasons, i.e., the local atomic arrangements favored by
the potential parameters, can induce the quasicrystalline
order, and not specific properties of a potential like one
having several minima.

The ground state of this system —for our set of po-
tential parameters and the chosen concentration of atoms—is not known; nor is it known for similar values. But
previous relaxation simulations, where the atoms were
displaced at random up to 25% of their shortest distance
and others where the quasicrystal was loaded with up to
20% Frenkel defects per atom, confirmed that this qua-

The behavior of the liquid under a cooling process
is summarized in Fig. l. Cooling Rom the liquid state
(Fig. 1, curve 1) with rates between 10 K/s and 10~
K/s results in a "glass" transition at about T& ——0.55
(Fig. 1, curve 2) for all cell sizes: The slope of the poten-
tial energy vs temperature changes significantly and the
diffusion of the atoms slows down from an unbounded
liquidlike to a bounded solidlike behavior. Above T&
there is a supercooled liquid, and the thermodynamic
properties, for example the potential energy or the ra-
dial distribution function, do not depend on the cooling
rate. Below we find a dependence of the structure and
its properties on the cooling rate, although all final struc-
tures are disordered (see Fig. 1, curve 2, where the curve
for the cooling rate 10 K/s is shown).

The fact that the glass temperature (and eventually
the crystallization temperature) is so much below the
melting transition has two reasons: First, we have peri-
odic boundary conditions and therefore no surface, where
usually the system starts crystallizing. Computer simu-
lations have shown that solidification in such a system
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FIG. 1. Potential energy vs temperature during cooling for
the system with 168 atoms. If the liquid (1) is cooled with
10 K/s, we arrive at an amorphous structure (2) after a
glass transition (8), which can be detected by comparing the
averaged slopes on the curves of the liquid and the glass side.
If the liquid is cooled with 10 K/s, a sharp transition (4) to
a defective quasicrystal is observed. Heating it (5) improves
the energy by annealing defects. The configuration with the
lowest defect concentration is quenched to T = 0 (6) and
heated until it melts (7) at a lower temperature than the per-
fect quasicrystal due to defects. The dashed curve shows the
potential energy of a 5/3 approximant. Smaller approximants
lead to the same result. The curve connects points obtained
by constant temperature simulations.

requires deep undercooling. Second, the system is small
and a two-phase coexistence is impossible due to the large
interfacial energy. Therefore the system stays solid or liq-
uid in computer simulations until it becomes unstable as
a whole.

If the cooling rate is reduced to 2 x 10 K/s, the 168-,
376-, and 712-atom structures transform sharply to an
ordered solid at about T* = 0.6 (Fig. 1, curve 4). The
solid may still contain domains of random orientations,
but the structure can be improved by annealing (Fig. 1,
curve 5). The annealed phases are quenched down to
T* = 0 for structure analysis (Fig. 1, curve 6). The final
state will be referred to as an "ordered structure. "

The transition to the ordered phase also took place for
a higher cooling rate between T* = 0.6 and 0.5, but in
that case it is not so clearly visible in the behavior of the
potential energy.

In the 168-atom system there are also some cases where
we observe sharp, but incomplete transitions if the cool-
ing rate is about 5 —10x 10 K/s. The structure analysis
shows that the nucleated phase does not fit the periodic
boundary conditions. If the solid domains grow further,
the defects become so severe that the structure melts
again and occasionally makes a new attempt to crystal-
lize if the temperature is not too low yet.

Constant-temperature runs with 500 000 steps at T* =
0.5 and 0.4 for the ordered 168-atom system and with
20 x 10 steps at T* = 0.5 for the 376-atom system as
well as 13 x 10 steps for the 712-atom system show that
the nucleated structures are stable. In the 376-atom case
we observed that a structure, which we initially consid-

ered to be disordered, turned into a quasicrystal, and
for the 712-atom case we observed a transition &om the
melt to a crystal with cubic symmetry and then to the
"quasicrystalline ordered" phase.

If we reheat the structures obtained in the cooling runs,
we see a clear difference in their behavior: The amor-
phous structure barely shows hysteresis. It softens and
transforms back into the melt (Fig. 1, curve 3). The 168-
atom system and the 376-atom system show a hysteresis
loop of about LT* = 0.12. They melt at T* = 0.74
and T* = 0.7, respectively (Fig. 1, curve 7). This also
demonstrates that the ordered structure has undergone
a phase transition and is different from the amorphous
structure where merely the dynamics has been frozen in.
The melting temperature of the ordered structure is lower
than that of the perfect structure since the ordered one
still contains defects.

To analyze the structure of a thermodynamic state at
a certain temperature we have used the standard pro-
cedure, quenching the system by a steepest gradient re-
laxation to T' = 0 to remove the thermal displacements
and the kinetic energy of the atoms. This improves the
calculation of the structure functions. Further improve-
ments have been obtained by averaging over up to 200
configurations obtained at intervals of 100000 steps.

The structure analysis of the quenched phases reveals
a long-range icosahedral order similar to that of the orig-
inal quasicrystalline model. Figure 2 displays projections
of the quasicrystalline ordered phase onto a plane per-
pendicular to the pseudofivefold axis. Although the five-
fold symmetry cannot be recognized easily, one observes
pentagons and rhombi similar to those in a perfect qua-
sicrystal.

We will now describe the quasicrystalline ordered
phase in more detail. It was observed in all the six runs
we performed with the 168-atom structures, and three
times in six attempts in the 376-atom system. The con-
figurations were obtained in many different ways by cool-
ing from the quasicrystalline melt, from a random config-
uration, and by melting, freezing, remelting, and refreez-
ing repeatedly. Our structure analysis did not reveal any
history dependence of the final state. In the 168-atom
case a pairwise orthogonal set of twofold axis of the icosa-
hedral symmetry was always aligned with the simulation
box. There are two possible arrangements for the fivefold
axis differing by a rotation of 90, and we observed that
during freezing, remelting, and refreezing the orientations
of the fivefold axis change, which clearly rules out that
the orientation is an artifact of a correlation between the
nucleated phase and the original quasicrystal. It could
also happen that the fivefold axis in the nucleated phase
had the same or different directions when compared with
the original quasicrystal. In the case of the random ini-
tial configurations obviously no correlation can exist. In
the 376-atom system, also generated from random con-
figurations, we found that the icosahedral symmetry el-

ements could be arbitrarily oriented, one of them being
nearly as aligned'as in the 168-atom case. But the other
two configurations show no preferred positioning relative
to the simulation box. If nucleation starts and the seed
grows, its boundary will eventually meet the boundary
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of the seed periodically translated. If no alignment ex-
ists in the small system, the defects at the meeting point
will be so severe that the structure will melt again. In
the 376-atom system this does not happen. This fact
clearly indicates that the system is large enough to allow
an icosahedral structure, and that the icosahedral struc-
ture is not an artifact of the smallness of the system and
of the periodic boundary conditions.
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PIG. 2. Projection of the crystallized structure onto a plane
perpendicular to a pseudofivefold axis. (a) Large octagons are
H atoms, small octagons A atoms. The places where many
octagons overlap indicate the sites of icosahedra. A pentagon
displaying the fivefold symmetry can be found, for example,
at the left side of the center of the figure. {h) The lines are
edges of rhombohedra which point along fivefold directions.
The picture is only periodic along the horizontal axis, but not
along the vertical axis. The apparent periodicity along the
vertical axis is only the result of the projection of diferent
layers.

In the 168-atom system we also twice observed a
decagonal layered structure. It will not be discussed in
detail here. This decagonal structure was found after
cooling the random liquid with 2 x 10 or 2 x 10 K/s.
The tenfold axis lies along a diagonal of the simulation
cell, and the structure shows a periodic stacking perpen-
dicular to this direction. The structure is distorted due to
the shape of the periodic cell, but the pentagonal sym-
metry can be clearly seen in the projections along the
periodic axis.

A. Radial distribution function and
difFraction pattern

The radial distribution function (RDF) is used to study
the quality of the translational order. The order be-
comes apparent if the RDF of an equilibrated perfect
quasicrystal is compared to that of the quasicrystalline
ordered and of the disordered phase (Fig. 3). Compared
to the RDF of the perfect quasicrystal, the RDF of the
quasicrystalline ordered phase is broadened since there
are many subpeaks, which merge during relaxation due
to the slightly different environment of each atom. The
RDF shows at least five major peaks [Fig. 3(a)] for the
AA bonds which are also present in the quasicrystalline
ordered structure. The results for the distributions of AB
and BBbonds are similar. We want to point out that the
second peak of the AA correlation is split, but the reason
is difFerent &om the splitting in amorphous structures.
The two parts can be attributed to correlations in three-
fold and fivefold directions. The disordered structure,
however, displays only a sharp nearest-neighbor peak:
the well-known split second peak and only small fiuctu-
ations at larger distances.

The translational order extends over the whole simu-
lation cell in the 168-atom structures, which is at least of
the same range as that obtained by Steinhardt et al. ,
although a comparison is diKcult since we have a binary
structure and not a monoatomic one, and their RDF is
shown only up to five atom distances. In the 376-atom
system and in the 712-atom structure we have an order-
ing up to the same range.

Since the RDF is an average over all correlations with
difFerent directions, it cannot account for details of a spe-
cific structure; e.g. , there is no difference visible between
the RDF of the icosahedral, cubic, or decagonal ordered
structures. But the amorphous structures are clearly dif-
ferent. The reason is that the tetrahedral close-packed
structures all contain similar local atomic arrangements,
which may extend up to five or more atomic distances,
and so their local order is quite similar. These units can
be arranged in different ways to give different global sym-
metries of crystalline or quasicrystalline type.

We have calculated diffraction patterns perpendicular
to the pseudofivefold symmetry axis. The pattern of the
quasicrystalline ordered structure [Fig. 4(b)] is pentag-
onal and very similar to that of the ideal icosahedral
structure at T' = 0.01 [Fig. 4(a)]. In the picture for
the disordered structure we had to increase the intensity
by a factor of 10 to make the difFraction pattern visible.
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There is, however, only one ring due to nearest-neighbor
ordering in Fig. 4(c); all other features are relics of the
Fourier transform of the 6nite system.

B. Bond-order parameters

It seems to be obvious to use the bond-order param-
eters (BOP's) as described by Steinhardt et al. and
their generalization to binary structures to characterize
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FIG. 3. (a) The radial distribution function (RDF) of the
equilibrated 168-atom approximant at T = 0.01. Solid lines,
AA bonds; dotted lines, AB bonds; dashed lines, BB bonds.
The RDF of a larger approximant is largely indistinguishable.
(b) The RDF of the "quasicrystalline ordered" structure. The
peaks at 1.8, 2 ~ 1, 2.4, and 2.7 indicate the difFerence to an
amorphous structure. (c) The RDF of the amorphous struc-
ture. No extra peaks appear beyond 1.7.
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with their result. The first problem arises if we consider
structures with distortions or defects. The BOP's then
decrease rapidly. Another problem is that the BOP's are
strongly dependent oii 1/N, where N is the number of
atoms. In general we find that Q(2) and Q(4) as de-
fined in Ref. 21 are always small, Q(6) is large, and Q(8)
is smaller than Q(6), but sometimes of comparable size.
This result would be consistent with icosahedral order-
ing, but we have to point out that there is no signifi-
cant difFerence between the weakly disordered systems
and the relaxed ideal quasicrystal. The largest values
for Q(6) are not found in the icosahedral structure but
in the decagonal configuration obtained by freezing, and
for the idealized decagonal structure model. In the cubic
712-atom structure all BOP's are small compared to the
icosahedral case. Thus vanishing BOP's clearly indicate
disorder, but the opposite must not be true. Part of this
problem stems from the fact that we have a rather com-
plicated structure. In fcc, hcp, or bcc crystals and in
the icosahedron one has 12—14 bond directions. In our
structure we have more than 40 major bond directions
and 140 minor ones in the perfect quasicrystal. There-
fore the BOP's are very sensitive to small deviations from
the ideal orientation.

and twofold symmetry axes or lie in the mirror planes of
the icosahedral symmetry. The fivefold bonds (and the
twofold ones to a lesser extent) are the only ones that
can easily be distinguished &om the others. In the tiling
description they point along the edges and face diagonals
of the rhombohedra in the perfect quasicrystal. We can
therefore use them to set up a network of fivefold bonds
and to reconstruct the original tiling. In the perfect qua-
sicrystal all A atoms lie on the vertices and edges of the
rhombohedra and therefore on the network. In the qua-
sicrystalline ordered phase the fraction is still 96%. All
the B atoms had been placed on the long body diagonal
of the prolate rhombohedra. After the simulation we find
75% of the B atoms on these diagonals.

Using the atomic positions of the frozen structure we

4
C. Further characterization

We have developed a method which can help to find out
if a certain structure is ordered or disordered and also to
find its symmetry. A histogram of the nearest-neighbor
bond distribution is mapped onto the surface of a sphere,
thereby keeping the direction of the bonds as it is in the
structure. Expanding the distribution into spherical har-
monic functions would give us the bond-order parameter.
Instead, we display the sphere graphically. The sphere is
half transparent which allows one to see the bonds at
the back side also. The sphere can be rotated until a
symmetry axis is found. Figure 5 shows some examples.
With the graphical method we could immediately recog-
nize which of our structures were ordered and if they had
certain symmetry axis. After the first symmetry elements
are found it is easy to determine the whole symmetry by
using their geometry relations.

Both the bond-order parameter (BOP) and the graph-
ical representation contain the same information. The
former one is just the expansion of the latter with respect
to the spherical harmonics. However, we found that the
bond orientational order reveals itself much better in the
graphical representation. This is due to the fact that for
the BOP many of the lower-order terms vanish due to
symmetry; others are very small since the major bond
directions point to the zeros of the spherical harmonics.
The remaining terms of usually higher order are not very
accurate for small structures. Therefore the BOP's give
only a crude approximation of the picture seen in the
graphical representations.

A second step involves building models of the frozen
structure. This has been done for the 168-atom system.
The bonds between neighboring atoms in the quasicrys-
talline ordered structure point along fivefold, threefold,

FIG. 5. Example of a bond histogram on a sphere. (a) A
fivefold axis of a 376-atom system. (b) A fourfold axis of the
712-atom structure.
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determined the atoms that would lie on a tiling as defined
by the ideal structure model. We started at an arbitrary
atom and added all atoms to a network which had five-
fold bond connections not deviating by more than 2%
&om the ideal length and orientation. With this infor-
mation we have built models with balls that allow only
icosahedral bonds and rigid sticks of unit length. The
models show that the quasicrystalline ordered structure
is composed of the original rhombohedra and of rhom-
bic dodecahedra, which consists of two prolate and two
oblate rhombohedra. Some of the faces and edges are not
complete, and there are also matching rule violations, but
essentially we have found a section of an icosahedral tiling
with about 30 rhoxnbohedra. If we use an alternative de-
scription of the structure in terms of tetrahedra, prisms,
pyramids, and octahedra, which are defined by including
the twofold bonds as edges, about 72% of the simulation
cells can be attributed to the tiling.

Before annealing the defect density is quite high: We
find almost no complete rhombohedra. If one tries to
complete the kagments, the additional cells will inter-
penetrate.

The perfect quasicrystal may alternatively be de-
scribed in terms of Frank-Kasper (FK) polyhedra. In
the ideal quasicrystal the large B atoms have a 16-fold
coordination (CN16), and most of the A atoms are icosa-
hedrally coordinated. The same structure is found in the
quasicrystalline ordered phase. However, the arrange-
ment of the FK polyhedra may be different, which makes
it impossible to combine them into rhombohedra. Closely
related to our model is the cubic crystalline Laves phase
C15, for example the structure of MgCu2. It consists
of the same CN16 blocks, but instead of the icosahe-
dra of A atoms at the corners of the rhombohedra there
are only tetrahedra present in C15. The Laves phase
can be decomposed into prolate rhombohedra which are
slightly distorted with respect to icosahedral geometry.
We find that this phase has a potential energy lower
than the perfect quasicrystal if we apply the same po-
tential parameters as for the cooling simulations. We
do not know, however, if the structure is indeed more
stable, since this would require us to know the chemi-
cal potentials for the Laves phase and the icosahedral
phase. A certain tendency to form the C15 phase can
be found in the quasicrystalline ordered phase at places
where equally oriented prolate rhombohedra meet. In the
712-atom simulation we find that a highly defective C15
phase is nucleated first. But after annealing the structure
for about 13 x 10 steps it transforms into a still defec-
tive quasicrystalline structure. It is remarkable that the
simulation of the crystalline Laves phase with 192 atoms
and with potential parameters that favor an icosahedral
model also resulted in a quasicrystalline structure.

IV. DISCUSSION AND CONCLUSIONS

The dodecagonal quasicrystal obtained by Dzugutov
is a monoatomic system of 16384 atoms. His structure
also contains FK-type atom shells. He used a poten-
tial with a maximum and two minima to stabilize the

structure. Liu and Wang on the contrary only got what
they call an "amorphized quasicrystal" by cooling a bi-
nary melt with 500 atoms at a rate of 2 x 10~e K/s.
They used effective potentials and compositions which
should model a Alo 86VO y4 quasicrystal. We have found
a formation of a quasicrystalline structure for up to 712
atoms, whereas the larger models could not be treated
with low enough cooling rates up to now. This clearly
indicates the fact that it is much more diKcult to get
a binary quasicrystal from a melt than a monoatomic
one, since in the binary case the atoms must be chem-
ically ordered, whereas all atoms are equivalent in the
monoatomic model. It also seems important that the in-
teraction in binary systems must be of longer range than
in monoatomic systems, since otherwise the structure of-
ten behaves like a monoatomic system and crystallizes
into a bcc or fcc crystal structure. Dzugutov's mecha-
nism for stabilization of the quasicrystalline structure is
the special potential which prevents the creation of fcc,
hcp, and bcc nearest-neighbor arrangements. In his case
the infI.uence of the cooling rate is not known, in con-
trast to our model where the very low cooling rate plays
a crucial role.

It may seem as if our system is too small to describe a
real quasicrystal. We point out, however, that in the 168-
atom structures the symmetry elements of the icosahe-
dral structure still had to be aligned with the simulation
box. But already in the 376-atom system they could be
oriented arbitrarily. Finally in the 712-atom system we
found a transition &om a crystalline state to a defective
quasicrystalline structure. Very recently Tsay and Liu
have shown for a monoatomic system that the periodic
boundary conditions do not acct nucleation and final
structure from their maximum value of 3500 atoms down
to 500 atoms. If we apply this observation to our binary
structure, it indicates that our results are not artifacts of
the small system size.

The fact that we have a binary system is also important
to prevent a simple crystal structure. We have chosen the
potential parameters in such a way that local atomic ar-
rangements in the quasicrystal are favored, and dense-
packed structures like fcc, hcp, or bcc are disfavored.
Usually the structure obtained in this way is a glass, not
a crystal. A Frank-Kasper crystal of the MgCu~ type
as described above, however, has a structure similar to
the ideal quasicrystal and a defective structure of this
type can be formed intermediately, as was observed by
us for the 712-atom structure. The Frank-Kasper phase
is more stable than the quasicrystal at its proper compo-
sition. But in our simulations we have too many small
A atoms which lead to high-energy defects in the crystal
and thus destabilize it. In monoatomic systems one must
choose very high cooling rates to prevent crystallization,
whereas in the binary system one usually gets a glass
even for rather low cooling rates. For the nucleation of a
crystal one really needs very low cooling rates. Therefore
it might be that our cooling rates are much too high to
allow a periodic crystal.

Before we describe our results in the context of icosahe-
dral glass models, we have to clarify the notation. There
is, for example, the icosahedral glass model as studied by
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Steinhardt et a/. for monoatomic and by Jonsson and
Anderson for binary structures. The authors are inter-
ested in the local icosahedral nearest-neighbor ordering
but they do not study the global symmetry of the struc-
ture as we did with the bond diagrams. Jonsson and
Anderson find relatively few icosahedra in their diatomic
simulations. In a 1500-atom system they find 61%%uo of
the atoms located in icosahedra and one spanning clus-
ter of icosahedra. In a 500-atom simulation they find less
icosahedra. For comparison, in our simulations only 50%%

of the small atoms are located in the icosahedra. It is
not possible to have much more since we have a binary
structure where the large atoms want to be 16-fold co-
ordinated. There is not only a spanning cluster but a
three-dimensional connected network which can be part
of a tiling. This leads us to the other type of icosahe-
dral glass model or, better, icosahedral cluster model.
Our simulation results certainly do not describe a per-
fect icosahedral tiling or even a random tiling, which is
defined as a random arrangement of tiles without gaps.
Such a result cannot be expected and also has not been
found in two dimensions. But if we drop the require-
ment of a gapless tiling, we arrive at the icosahedral clus-
ter model, which is defined as a random arrangement of
icosahedral clusters with fixed orientation, thus leading
to a network and a tiling with gaps.

In this &amework we can describe our results as be-

tween the two icosahedral glass models, although a more
quantitative comparison is not possible due to the limited
information in the data of Steinhardt et al. Compared
to their results we obtained a much larger icosahedral
orientational ordering. But our clusters are not perfectly
oriented, since we have defects and distortions which can-
not be prevented in a finite-temperature simulation. To
make a final decision as to which model fits better we
would have to test by what power of the particle num-
ber the intensity of the difI'raction peaks is increasing or
by what algebraic law the bond-orientation —correlation
function is decaying in a finite-size scaling analysis. This
would require structures spanning several orders of mag-
nitude. But our current computing power and algorithms
do not allow it.
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