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Density of states of electrons in liquid lithium
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We present a Green-function theory for the electrons in liquid metals. In the self-energy part of the
Green function, we take into account the contributions of microscopic interactions between all the parti-
cles by the GW-like approximation. The effective interelectronic potential contains the ion-static and
electron-dynamic screening effects. We treat the electron-dynamical response function by the plasmon-
pole approximation and the corresponding self-energy part by free-electron-plasmon coupling. The
theory is applied to the liquid lithium near freezing. The calculated electron density of states is com-
pared with experimental photoelectron spectrum. It is found that the theory is in fairly good agreement
with experiment.

I. INTRODUCTION

The density of states (DOS) of electrons is of basic im-
portance for understanding the electronic properties of
the liquid metals. ' In the earlier Green-function calcula-
tions, the ion-electron scattering was considered as
the main perturbation to the free-electron system.
Though the electronic screening to the ion-electron pseu-
dopotential was taken into account, the direct interelect-
ronic coupling was completely ignored. The DOS so pre-
dicted for liquid alkalis shows not much deviation from
the free-electron model.

Recent photoemission experiments of the liquid alkalis
have provided the photoelectron spectra. It is believed
that the photoelectron spectrum directly reAects the actu-
al electron DOS. In contrast to the earlier theories, the
experimental results clearly exhibit strong deviations
from the free-electron DOS.

Besides the Green-function calculations, the band-
structure approach with local-density approximation for
the liquid metals has been developed. ' On the principle
of the approach, for a disordered ionic configuration, the
DOS can be calculated with the density-functional tech-
niques. The final DOS is obtained by statistical average
over a number of the ionic configurations which are gen-
erated by the computer-simulation method. However,
the effects of electron dynamical correlations are not tak-
en into account in the local-density approximation. In
principle, the one-electron states so obtained are not of
the quasielectrons which define the DOS. For liquid
lithium, the calculated DOS (Ref. 8) shows a strong
enhancement at the Fermi level and the conduction band-
width is strongly reduced compared to the free-electron
model. Also, there exists obvious discrepancy between
the calculation and the experiment for the photoelectron
spectrum.

In this paper, we will develop a Green-function theory
for the liquid metals. The self-energy part is given by the
GW-like approximation. According to the Feynman di-
agram rule, we take into account the contributions of the
interelectronic exchange correlation as well as of the
electron-ion and ion-ion correlations to the self-energy. '

By so doing, the particle-plasmon coupling is involved in
the electron-dynamic correlations. To simplify the calcu-
lation, we treat the dynamic electron density-density
response function by the plasmon-pole approximation. "
Also, we approximate the particle coupling with the
plasmon by the free electron. This could not bring severe
error to the final result for DOS of the main conduction
band. As an example, we calculate the electron DOS for
liquid lithium near freezing where the coupling constant
is about r, =3.3. ' The liquid lithium is a simple metal
but the coupling is intermediate among the metals.

II. GREEN-FUNCTION FORMALISM

We consider a liquid metal consisting of ions and con-
duction electrons at temperature T. In most cases, the
ions can be regarded as classical particles, while the elec-
trons can be treated as degenerated fermions since the
average thermal energy k~T is much less than the free-
electron Fermi energy, EF, which is determined by the
electron number density n. For the sake of description„
we will use the subscripts a and P to distinguish the
species of particles with a (or P)= l for electron and 2 for
ion. The interactions between the particles in q space are
expressed as u &(q). The interelectronic interaction is
simply given as u»(q) =4tte /q . The interionic interac-
tion is also essentially the bare Coulomb potential since
the ion core is much less than their average interdistance.
The expression for the ion-electron interaction can be
found in our previous paper' where besides the Coulomb
interaction we have taken into account the exchange-
correlation potential between the core electrons and the
conducting electrons.

For such a liquid metal, some electronic properties can
be obtained from the one-electron Green function. In
this paper, we refer the Green function to the retarded
Green function. ' In momentum space, it can be written
as

1

co —g(k) —M„(k, co)

where g(k) =Pi k /Zm —p is the kinetic energy of a free
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electron measured from the chemical potential p, and
M„(k, co) is the self-energy part of the retarded Green
function. The basic subject of the theory is to evaluate
M„(k,co). Given the self-energy and thereby the Green
function, the renormalized DOS can be calculated via'

2EF
X(E)= — QlmG„(k, E), (2)

Am%,

where N, is the total number of the conduction electrons.
It is convenient to start with the finite-temperature

Green function G(k, ico„);' then the real-frequency re-
I

tarded Green function 6„(k, co ) can be obtained by the
analytic continuation im„~co+ig with g a vanishing
positive quantity. According to the perturbation
theory, ' the self-energy can be expanded in a series of
the interactions and the Green functions. To apply the
theory to a numerical calculation, one has to truncate the
infinite series. The GW approximation has been shown
to be successful in a number of cases. ' For the electrons
in the liquid metals, according to the Feynman diagram
rule, by GW-like approximation the self-energy can be
expressed as

M(k, ico„)=— gu»(q)ge'" 6( k —
q~, ico„)— ggu, (q)u, p(q)QG(~k —q, ico„iv —)y &(q, iv ),A'PV " „'" RPV

(3)

where P= I/kz T, Vis the volume of the system, co„(v )

the Matsubara frequency for fermions (bosons), and

y &(q, iv ) represents the density-density response func-
tion between cc and P species of particles. By including
the local-field corrections, the response functions can be
expressed in terms of the free-particle polarizabilities and
the renormalized potentials. ' The first term on the
right-hand side (rhs) of Eq. (3) is the exchange part in
which the frequency summation gives rise to the momen-
tum distribution function n (~k —q~). Since the electron
system is essentially degenerated, the function n (k) can
be derived as

n(k)= ge " 6(k ico„)

1 0= ——J dco ImG„(k, co) .
QO

For the last term of Eq. (3), we divide the frequency sum-
mation into two parts of v =0 and v WO terms. Those
of v %0 terms include only the contribution from the in-

terelectronic density-density response since the ions are
classical particles. By the analytic continuation
ice„~co+iq, we have

M„(k,co) = ——gu»(q)n ( Ik —
ql )

1

q

from the frequency summations of v =0 and v %0, re-
spectively. To calculate the density-density response
functions, we have already developed a self-consistent
scheme. ' For a description of the ionic structure factor,
the scheme has been shown to be in very good agreement
with experiment.

To calculate the Green function, we also need the
chemical potential p. It is determined by the electron
number condition,

I dEX(E)=1 .
EF

Equations (1), (2), (5), and (7) compose a set of integral
equations. However, since Mo(k, co) involves a three-
dimensional integral, to solve the equation is almost for-
midable. Such difBculty has been encountered in many
cases. "' A successful approximation is to treat the elec-
tronic density-density response function y»(q, co) by the
plasmon-pole model. " According to Hedin and
Lundqvist, "we have

COp

ull(q)Xll('$~)

where co = lt/4mne /m is the plasma frequency, and

co =co +—6coF(q/k~) +cop(q/kF)

——QP(q)G„( ~k —
q~, co)+MD(k, co),1

q

Mo(k, co)= gu „(q)f dE[g„(q, co E)—
XlmG„(~k —

q~, E)

+6„(~k —q~, co+E)lmy„(q, E)],

(5a)

6„(k,co) =- 1

co 5 k + l 7f
(10)

with coF =4k' /2m the Fermi frequency and kF the Fermi
wave number of free electrons. Furthermore, we mimic
the Green functions appearing in Mo(k, co) by their corre-
sponding free-electron Green functions G„(not the
zeroth order):

where we have introduced a function

1p(q)= jul (q)u»(q)y cl(q, 0) .
aP

The second and last terms on the rhs of Eq. (5a) come

Here, the chemical potential in the definition of gz is the
free electron Fermi energy po=E+. By the renormaliza-
tion consideration, it is plausible to replace
gk

—ReM„(k, co) with gz in the Green functions in the
perturbation series. ' As for the particle-plasmon cou-
pling, the plasma frequency is large enough to consider
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the quasielectrons having long lifetime, ImM„(k, co)=0.
By so doing, the calculation of Mo(X, co) can be
simplified as a one-dimensional integration, the same as
learned by Hedin, Lundqvist, and Lundqvist for degen-
erated electron gas. " Knowing the particle-plasmon cou-
pling contribution Mo(k, co), we can solve the integral
equations by iterations.

1.6

1.2

0.8

III. NUMERICAL RESULTS

To iterate the integral equations, we should first evalu-
ate Mo(k, co) by the aforementioned approximation
scheme. For a certain momentum and frequency, the cal-
culation of Mo(k, co) happens to be principle integration
in which the integrand contains a few points of logarith-
mic singularity. This requires one to pay special attention
to the numerical calculation. This singularity produces
discontinuity and logarithmic singularity in the function
Mp(k 6)) as noticed by Hedin, Lundqvist, and
Lundqvist. "

By carrying out the azimuthal integration, the first
term on the rhs of Eq. (Sa) can be derived as a one-
dimensional integral. ' We here denote this term as
M (k), referring to the exchange part of the self-energy,

2

M (k)= f dqqn(q)ln
mk o k+q

where the integrand has a logarithmic singularity.
The second term on the rhs of Eq. (5a) is a convolution

integral in q space. It can be manipulated with the
Fourier transformation by which we can avoid the two-
dimensional integration. The convolution can be con-
verted to simple mathematical multiplication in the real
space.

For liquid lithium at a state of T =470 K and r, =3.3,
we have previously obtained the functions g &(q, 0). '

With this result, we have solved the integral equations
and calculated the momentum distribution function and
the DOS of the electrons. Shown in Fig. 1 are the

1.0

O. B

0.6

0.4

0.0
Og

0.0

FICi. 2. Density of states N(E), of the electrons in liquid
lithium at T =470 K and r, =3.3. Circles: experimental photo-
electron spectrum; solid points: present calculation; dashed
line: electron-gas theory (Ref. 11); solid line: free-electron mod-
el. The Fermi level is given by E =0.

momentum distribution functions of the present calcula-
tion and of the electron-gas theory of Hedin, Lundqvist,
and Lundqvist. Due to the disordered ionic scattering,
there is no clear-cut Fermi surface in the present case. In
Fig. 2 we exhibit the DOS of various calculations. For
comparison, we also depict the experimental photoelec-
tron spectrum which essentially describes the DOS of
the electrons. It is clear that, over the main conduction
band, the present prediction is in fairly good agreement
with experiment. In contrast to the free-electron parab-
ola, the conduction band shape given by the present
theory is rather triangular. The earlier Green-function
calculations with pseudopotential approximations pre-
dicted an enhanced DOS compared to the free-electron
parabola over the whole conduction band, and the
enhancement increases with energy. Since we have taken
into account the microscopic couplings between a11 the
particles instead of only the ion-electron coupling with
pseudopotential of the earlier theories, the present calcu-
lation gives the reasonable result.

At low energy beyond the conduction band, there ap-
pears a plasrnon-electron coupling band similar in char-
acter to that predicted in the electron-gas model. " This
distribution compensates for the reduction in the main
conduction band.

0.4 IV. CONCLUDING REMARKS
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FICs. 1. Momentum distribution function n(k) of the elec-
trons in liquid lithium at T =470 K and r, =3.3. The dashed
line denotes the corresponding electron-gas result.

In conclusion, we have developed the Green-function
theory for liquid metals. In the electron self-energy, we
have taken into account the couplings between all the
particles. By applying the theory to liquid lithium near
freezing, it is shown that the calculated DOS is in fairly
good agreement with experiment. Since the coupling
constant of the investigated system is r, =3.3, the present
scheme may have a wide applicability in the range from
weak to this intermediate coupling for liquid metals.

For heavier liquid alkali metals, however, the coupling
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constants are quite large. Vfe do not expect the applica-
bility of the theory to these strongly coupled systems.
Some other e6'ects may take important rule in the self-
energy part of the Green function. ' %ithin the present
theory, instead of the free-electron-plasmon coupling, the
effects of actual energy-momentum dispersion and the

finite lifetime of the quasielectrons may be significant.
Besides the second-order terms from the density-density
response contributions, the second-order exchange and
higher-order terms in the self-energy may be non-
negligible, and hence, a more sophisticated renormaliza-
tion procedure is needed.
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