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The solid-state portion of the W-Mo-Cr phase diagram is computed without the use of empirically ad-
justable parameters. The phase diagram is calculated using the bcc tetrahedron approximation of the
cluster variation method (CVM) formulated with an independent set of multisite correlation functions.
A set of volume-independent e8'ective cluster interactions (ECI's) are used to parametrize the

configurational energetics of the system; they are obtained using the method of direct configurational
averaging based on a tight-binding, linearized muon-tin-orbital Hamiltonian. The nearest- and next-
nearest-neighbor pair ECI s are found to be dominant and indicate clustering tendencies for all binary
systems (W-Mo, W-Cr, and Mo-Cr), consistent with experiment; triplet and higher-order pair interac-
tions are significantly smaller. The ternary phase diagram for W-Mo-Cr is analyzed using twelve ECI s

within the bcc tetrahedron, and while there is no experimental data for this ternary system, the results
are quite encouraging even though transition temperatures on the binary edges are overestimated. The
latter discrepancy is most likely due to the neglect of elastic relaxations driven by the large size
mismatch of the constituent elements or to the neglect of vibrational contributions to the free energy.

INTR(3DUCTIQN

A knowledge of the phase behavior of materials is not
only of scientific interest, but also of interest to the en-
gineers who design materials. A survey of commonly
used engineering materials would reveal most systems (al-
loys) to be multicomponent, i.e., mixtures of two or more
elements. The phase behavior of binary systems has been
well studied experimentally, but the same cannot be said
for ternary or higher-order systems. The simplest reason
for this is the "combinatorial explosion" in the number of
difFerent systems that can exist as the number of elements
in the system increases. Hence, an exhaustive experimen-
tal study of even ternary phase equilibria is most likely an
unrealistic goal. It would be advantageous if theoretical
methods could be brought to bear on this problem,
specifically methods that start from the atomic numbers
of the constituent elements only. Theorists could then as-
sist experimentalists in locating systems that might pos-
sess the desired phase behavior. Up to this point, the ma-
jority of theoretical studies have been limited to binary
systems, ' for which experimental data is already avail-
able. The real payofF in developing methods to determine
phase behavior nonempirically comes when these
methods are applied to ternary and higher-order systems.

The typical methodology in performing theoretical
studies of phase equilibria involves using a generalized Is-
ing model, where one studies substitutional disorder on a
given Ising lattice by the use of various statistical
mechanical techniques, e.g., the cluster variation method

(CVM), '" Monte Carlo simulations, or transfer-matrix
methods. In ab initio approaches, input to the
statistical-mechanical analysis comes from quantum-
mechanical calculations, which rely on the atomic num-
bers for the system of interest. In phenomenological ap-
proaches, the input to the statistical-mechanical calcula-
tions is usually obtained by using various experimental
data to fit the parameters used in the Ising model. The
latter approach can provide interesting results, but one
might argue that it is primarily a fitting procedure, which
does not necessarily yield any insight into the physics in-
volved in the problem at hand. In addition, it relies on
the existence of experimental data (i.e., phase diagrams)
in order to perform computations; clearly, this approach
is of limited usefulness in studies of ternary (or higher-
order) phase equilibria where such data is difllcult and
time consuming to obtain.

Studies of finite-temperature ternary phase equilibria to
this point have been predominantly phenomenological in
nature, ' with the remainder of analyses being either
based on prototype systems or on select systems
where input to the statistical mechanics was derived from
quantum-mechanical total-energy calculations.
Most studies (prototype or otherwise) have used short-
ranged correlations to study order-disorder phenomena
on the fcc and bcc lattices. It does not appear that any
ternary studies have been done on the hcp lattice or any
other more complex structure. Virtually all of the
aforementioned studies used a cluster probability formu-
lation of the CVM to compute phase equilibria, a method
that becomes somewhat intractable as the range of corre-
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lations is increased.
In the present analysis, we utilize the cluster expansion

formulation of the CVM for ternary systems based on the
seminal work of Sanchez, Ducastelle, and Gratias
(SDG). " Such a formulation of the ternary CVM should
allow CVM calculations for complex systems, where the
more commonly used cluster probability method is
unwieldy. The cluster-expansion development of the ter-
nary CVM is tailor made to receive input from quantum-
mechanical calculations based on a knowledge of only the
constituent elements of the alloy. This approach is used
herein to examine finite-temperature solid-solid. phase
equilibria in the W-Mo-Cr system, a bcc-based ternary
system in which phase separation is observed in all three
binary phase diagrams. The motivation for studying this
system is twofold: (1) the system has three transition met-
al elements that possess the same number of d electrons
and (2) the constituent binary systems do not exhibit
compound formation. The former point is of interest,
since the configurational energy in the present analysis
will be based on quantities determined by a real-space
nonempirical tight-binding (TB) method. Many TB cal-
culations for transition metals only distinguish elements
based on the number of d electrons they possess ("canoni-
cal d-band" analyses, diagonal disorder only), ' and
thus one might expect there to be no preference for or-
dering or phase separation in the W-Mo-Cr system.
This cannot be the case given the experimentally ob-
served behavior of the binary systems. The present TB
method uses an expanded basis set (s, p, and d-electrons)
and also allows for the presence of off-diagonal disorder
(ODD) in the Hamiltonian. Thus, we expect these fac-
tors (particularly ODD) to have a dominant effect on the
ordering or clustering tendencies in W-Mo-Cr. The
second motivation is less subtle and more practical in na-
ture: simplicity of the binary systems is a benefit since
one generally wishes to choose a system that should be
amenable to a nonempirical treatment. The basic intent
of this paper is to show the viability of nonempirical
methods in the determination of ternary phase equilibria;
hence any trial system chosen should not be expected to
possess pathological behavior. The W-Mo-Cr system
satisfies this criterion, yet despite its apparent simplicity,
the authors hope to demonstrate the difficulty in accu-
rately treating its phase behavior.

A. Generalized Ising models
and the cluster expansion

One method for treating substitutional (dis)order in al-
loys is to map the alloy problem onto a generalized Ising
model, where atomic species are assumed to be associated
with the sites of a given Ising lattice. In this model, no
dynamic displacements of atoms away from lattice sites
are allowed; only configurational eftects are examined.
The occupation of each site in this lattice is then
represented by a pseudospin variable (site occupation
operator) o;. For a binary alloy, cr; can take the values
+1 or —1 if site i is occupied by an 3 or B atom. Simi-
larly, in a ternary alloy, one can represent site occupation
by + 1, 0, or —1 if site i is occupied by an A, B, or C
atom. The configuration in the alloy can then be
represented by a vector, which specifies the occupation of
each site o =(o.i, oz, , cr&I. A paper by Sanchez, Du-
castelle, and Gratias (SDG) showed that any given func-
tion of configuration f (o ) can be written as a linear ex-
pansion in terms of a set of functions that depend on the
configuration cr Fo.r example, when f (o. ) is the energy
of a configuration of atoms on the lattice, the expansion
of SDG allows this energy to be written as a sum of
"cluster energies, " where the cluster refers to a collection
of lattice sites, (e.g. , a pair or triplet of sites). The expan-
sion is thus commonly referred to as the cluster expan-
sion. A detailed discussion of the specific application of
the cluster expansion to ternary systems can be found in
Wolverton and de Fontaine.

For a ternary alloy, we need to be able to describe
functions that depend on the occupation of the lattice
sites by three species ( A, B,C) As a sta.rting point, con-
sider a function that depends on the occupation of a sin-
gle site i (e.g. , the atomic number of the species on that
site). In order to completely describe such a function,
three separate functions of the site occupation operator
cr; are necessary. These functions y, (cr;) (s; =0, 1,2) are

l

then distinguished by a label s;; numerous choices are
possible for the exact form of these functions. ' ' If
we then wish to describe functions that depend on the oc-
cupation of a cluster of lattice sites (a), we take products
of these "point" functions y, (o,. ) to yield the so-called

cluster functions @":
@"(a)=g,, (ai)g, ,(a~) g, (a ) .

I. FORMALISM

The formalism associated with the computation of
phase diagrams is quite extensive, and an exhaustive re-
view of all of the relevant methods would not be instruc-
tive. The following section will present a brief overview
of the methods used in the computation of the W-Mo-Cr
phase diagram: generalized Ising models and the cluster
expansion for functions of configuration, parametrization
of configurational energetics, and the cluster variation
method (CVM). For the sake of brevity, the majority of
the formalism will not be presented; references which
contain more detailed information will be provided in the
text for the interested reader.

The subscript a =
Ip i,p2, . . . ,p I specifies the sites of

the lattice that comprise cluster a, and the superscript
s=Is„sz, . . . , s ] (s;=0, 1,2) is the function label.
Hereafter, the function label (s) will be referred to as the
decoration of cluster a, not to be confused with the possi-
ble configurations of atomic species on o.. For an arbi-
trary function of configuration f (cr ), the most general
ternary cluster expansion is then written as

f(o )=g g f' @"(rr), (2)

where f" are referred to as the cluster expansion-
coe~cients (CEC's). If the functions y, (a;) correspond

t

to discrete Chebychev polynomials, then one recovers the
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original formulation of SDG. In this development, one
can actually write down a definition for the CEC's by us-
ing certain properties of the expansion. If one instead
chooses to use a simpler set of functions such as
I l, o;, (r, I for g, (o;), ' there is no simple definition for

t

CEC's. However, any set of y, (o; ) that are viable can be

related via a linear transformation to any other set of
y, (o.;). ' This property allows either cluster functions

or expansion coeKcients to be computed with respect to
any viable choice of y, (o, ).

l

The expansion coefficients in Eq. (2) possess the sym-
metry of the Ising lattice under consideration. Thus„all
CEC's are equivalent for decorated clusters (specified by
a and s) that can be transformed into one another by
symmetry operations of the space group of the lattice.
Such a. set of CEC's are said to be in the same crystallo-
graphic orbit, a term which will hereafter be used to
denote a set of objects that are symmetry equivalent. Ap-
plication of the space-group symmetry to the cluster ex-
pansion allows one to group terms in Eq. (2) and then
rewrite the expansion in terms of a set of lattice-averaged
cluster functions (LACF's) (indicated with an overbar):

y(~ )
—y y m (s)y(s) (y(s)(~ )

A S

Summations in Eq. (3) include only symmetry-distinct
clusters a and decorations of those clusters (s). The mul-
tiplicities m" correspond to the number of clusters of
type e with decoration s that can be associated with a
given lattice site. This quantity is simply the number of a
clusters per lattice point (m ) multiplied by the number
of equivalent decorations of type s (m, ) on cluster a (i.e.,
m ' =m m, ). It should be pointed out that the cluster
expansion equivalent to Eq. (3) in Ref. 26 does not use the
same convention for the multiplicities; in that paper,
summation over the index s includes aII decorations on
the cluster o., not just those that are symmetry distinct.

The cluster expansion in Eq. (2) is exact if one includes
all 3 terms in thc cxpaIlsion, although 1n pI'actlcc this is
clearly impossible. The expansion is truncated at a point
dictated by the problem at hand, and in most cases this
makes the problem tractable. The convergence of the ex-
pansion is an issue that has been discussed in the context
of binary systcIIls to a gI'cat cxtcIlt, but thcI'c has
been very little discussion of convergence in ternary clus-
ter expansions, primarily due to the limited extent to
wh1ch thc cxpanslo11 has bccIl used. SO1Tlc dlscuss1OIl of
the convergence of ternary expansions can be found in
Wolverton and de Fontaine.

B. Pax'ametrization of con6gmational energetics

When the function of configuration in Eq. (3) is the en-
ergy of a configuration of atoms, the CEC's are referred
to as e+ectiue cluster interactions (ECI's). The interface
between quantum and statistical mechanics for the com-
putation of phase equilibria is provided primarily by
these ECI's. Numerous methods exist' ' to com-
pute effective cluster interactions, each of which has its
own set of advantages and disadvantages. The approach —&ac —Eca+Ecc» (6)

that has been used in the present work is the method of
direct configurational averaging ' (DCA) in which the
ECI's are computed directly from the definition provided
by the cluster expansion based on Chebychev polynomi-
als. The linear independence of the basis functions allows
for a transformation of the interactions from this Cheby-
chev representation into potentially more convenient
basis sets (e.g., I l, o;, (7; J ). ' In the present formulation
of the DCA, the primary contribution to the interactions
comes from the sum of one-electron eigenvalues (the
"band energy"). The DCA is a real-space technique
based on a tight-banding (TB) Hamiltonian with parame-
ters usually obtained by casting a linearized-muon-tin-
orbital (LMTO) Hamiltonian into TB form using the
prescription of Andersen and Jepsen. The ECI's are ex-
pressed as diagonal matrix elements of the one-electron
Green's function, which are computed using the recur-
sion method. ' A detailed description of the DCA and
calculations based on the DCA can be found in Ref. 33.
The major advantage of the DCA is that it computes in-
teractions based on an exact definition, which allows
ECI's to be computed independently of one another. The
ECI's would not be independent if one were to use
methods based on the ideas of Connolly and Williams.
One disadvantage of the DCA is that at this point one
seems to be limited to using a TB representation, which
may not always provide the most accurate descriptions of
the electronic structure of the alloy.

The specific form that ternary Chebychev ECI's take
can be determined using the cluster expansion. The
definitions become somewhat complex, and, in the case of
pair interactions, it is no longer possible to assess by ex-
amination the ordering tendencies of a given alloy sys-
tem. In contrast, the interpretation of binary pair ECI's
is straightforward. For a binary alloy, the pair ECI for
sites p and p' takes the following form:

Vpp
=

—.'«~~+Eaa E~a —Ea~ )
—.

Each term Etj in Eq. (4) represents the auerage energy of
all binary configurations with sites p and p' filled by
atoms I and J, respectively. The interpretation of the
ECI in Eq. (4) is quite simple: when V ~ ) 0 ( (0), the
system prefers unlike (like) atoms on sites p and p'.
Hence, if p and p' connect nearest-neighbor (NN) sites,
the system will produce ordered compounds if V ~ &0
and will phase separate if V ~ (0. For ternary alloy pair
ECI s, there are three distinct ternary pair interactions
for a= [p,p'I, which we will call V~(~"', V~~ ', and V' ~ ',
the superscript in brackets denoting the decoration of the
cluster of sites. Each of these ECI's corresponds to a
slightly di6'erent linear combination of configurationally
averaged pair energies. In that sense, the interactions are
not very different in spirit from the expression in Eq. (4).
The exact expressions for these interactions with respect
to the Chebychev formulation of Eq. (2) are as follows:

V,')'" = 6«~~+Ecc E~c Ec~»— —
v'3

( —&~~ +E~a+ Ea~
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—2E~c+Ec~ —2Ecii +Ecc ) .

Now, each term EIz in Eqs. (5)—(7) represents the average
energy of all ternary configurations with sites p and p'
filled by atoms I and J, respectively. In Eq. (6), we have
written the sum of V'p" and Vpp ', since it yields a more
useful expression, which can be recast in terms of pseudo-
binary interactions. In the case where the points p and p'
are symmetry equivalent, these two interactions should
be equal in the limit of averaging over all 3
configurations. Since the DCA averages over a finite
number of configurations, we do not in general expect the
two to be exactly equivalent. Therefore, in the cluster ex-
pansion of the energy, we simply use Eq. (6) and divide by
two to obtain the Vpp ECI.

A comparison of Eqs. (4) and (5) shows that the ternary
interaction V"" is nothing more than a "pseudobinary"
interaction with a slightly di6'erent normalization. This
interaction is pseudobinary in the sense that the
definition has the same form as Eq. (4) (a binary
definition), but the configurational averaging for the ener-
gies EIJ is performed with respect to a ternary medium.
It is actually possible to rewrite the ECI's in Eqs.
(5)—(7) as three pseudobinary pair ECI's: W ~, W", and

8 ~ . Each of these 8&z interactions then have the same
interpretation in terms of ordering vs clustering tenden-
cies as the binary alloys ( W~~ & 0 = ordering for binary
system IJ, W &0 = clustering for binary system IJ).
This transformation allows for a simpler assessment of
the relative ordering tendencies in the binary edge sys-
tems ( AB, AC, and BC) using the ternary pair interac-
tions. Note that definitions similar to those in Eqs.
(5)—(7) can be written for triplet and higher-order
ECI's, although it is unclear whether a transformation
of these ECI's to pseudobinary form is possible.

C. The cluster variation method

The cluster variation method (CVM) is a statistical-
mechanical technique for approximating the
configurational entropy of systems of interacting species
(in this case, the atoms of an alloy). The fundamental ap-
proximation of the CVM resides in assuming that species
are only directly correlated over a given range specified
by choosing one or more maximal clusters (a~ ). ' ' The
configurational entropy is then written as a sum of cluster
entropies associated with the probabilities of observing
various configurations (J) of atoms on clusters (a) of lat-
tice sites (the so-called cluster probabilities X ). There
are primarily two methods of constructing a free energy
based on the CVM. In the first (see, for example, Ref.
18), one writes both the energy and entropy in terms of
the cluster probabilities (a dependent set of variables). In
the second approach, one expands the cluster probabili-
ties according to Eq. (3) and writes the CVM free energy
as a functional of independent multisite correlation func
tions (g"). The correlation. functions are just the ther-
modynamic average of the LACF's presented in Sec. I A.
A11 ternary (C,VM studies to this point except those in

Refs. 20 and 23 have used a cluster probability formula-
tion of the ternary CVM. The more general approach us-
ing a cluster expansion for the probabilities (hereafter re-
ferred to as the cluster expansion formulation of the
CVM) provides for greater fiexibility in terms of both the
computation of ECI's and in the level of complexity that
can be treated.

The cluster expansion formulation of the CVM for ter-
nary systems is essentially identical to the formulation for
binary systems, which can be found in Ref. 42. The
CVM Helmholtz free energy per lattice point of a given
ternary structure can be written as follows:

(8)

The first term in Eq. (8) corresponds to the
configurational energy based on the effective cluster in-
teractions V". The second term represents the
configurational entropy, and the sum contains all clusters
up to and including the maximal cluster(s). In the energy
expression, the sum need only contain a subset of these
clusters (it cannot contain a superset, i.e., clusters outside
the maximal cluster, without introducing additional ap-
proximations to the CVM free-energy expression). The
coeKcients y& are geometrical quantities commonly re-
ferred to as Kikuchi-Barker coefBcients ' and are the
same for a given lattice, regardless of the number of com-
ponents. The cluster probabilities (X&) in their cluster-
expanded form are given in Eq. (9) as a sum over all sub-
clusters of cluster P, where po is a normalization factor
and vp are the so-called V-matrix coefficients (deter-
mined by group theoretical methods). A discussion of the
V-matrix in ternary systems can be found in Ceder
et al.

Given an expression for the CVM free energy of a
phase, one chooses a suitable starting point for the corre-
lation functions (usually a superposition approximation)
and then obtains their equilibrium values by minimizing
the free energy. In the present formulation, minimization
is performed with a multivariable Newton-Raphson
method, which allows for the treatment of relatively large
sets of correlation functions. Once the free energy is ob-
tained for the disordered phase and all other phases of in-
terest (the latter usually determined by a ground-state
search based on the interactions V" ), one can then
build the phase diagram using standard techniques such
as common-tangent construction or location of grand-
potential intersections. ' '

II. COMPUTATION OF THE W-Mo-Cr
PHASE DIAGRAM

The method of direct configurational averaging (DCA)
described in Sec. I is used to compute ECI's and the
solid-state portion of the phase diagram for the W-Mo-Cr
system. Each of the constituent elements in W-Mo-Cr
possess the bcc structure, which means that calculations
need only be performed on the bcc lattice. The experi-
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mental equilibrium molar volumes of W, Mo, and Cr are
9.443, 9.601, and 7.274 cm mol ', respectively, indicat-
ing a huge size mismatch between (W, Mo) and Cr. The
W-Cr and Mo-Cr binary phase diagrams exhibit miscibil-
ity gaps with maxima at 1677 and 880'C, respectively,
while W-Mo shows complete solid solubility in the range
of temperatures studied with indications of a possible
low-temperature miscibility gap. One theoretical study
of the phase diagrams for these three binary systems
agrees quite well with experiment and indicates the pres-
ence of a miscibility gap in W-Mo at very low tempera-
ture, as anticipated. An additional theoretical study of
the Mo-Cr system also agreed with experiment (see Sec.
II C for a more extended discussion of Refs. 46 and 47).
No experimental data appears to exist for ternary alloys
in this system.

A. Effective cluster interactions

LMTO calculations in the atomic-sphere-
approximation (ASA) are performed at several volumes
for all three of the pure elements. These calculations are
performed scalar relativistically (i.e., without spin-orbit
interactions) and include the combined corrections to
the ASA, while muffin-tin corrections to the ASA are not
included. Calculations are not performed with spin po-
larization, even though Cr has an antiferromagnetic
ground state. It seems justifiable to neglect spin polariza-
tion, since the Neel temperature for Cr is 308 K, a tem-
perature low enough so that one expects magnetism to
play an insignificant role in high-temperature phase
equilibria. In addition, it is known that the local density
approximation (LDA) does not treat magnetism in Cr
properly, predicting a paramagnetic ground state. 4 '

The exchange-correlation potential of Von Barth and
Hedin ' is used, and the basis set contains orbitals with
l=0, 1, and 2. All total-energy calculations are con-
verged to within 0.1 mRy/atom with 165 k points sam-
pled in the irreducible wedge of the Brillouin zone; ener-

gy computations are performed at a series of volumes for
each element, and the resulting total energies are fit to a
third-order polynomial in volume. Equilibrium quanti-
ties are determined based on the cubic polynomial equa-
tion of state. The predicted equilibrium volumes, lattice
constants, and bulk moduli for W, Mo, and Cr are given
in Table I. Agreement with experimental results is stan-
dard for calculations based on the LDA for W and Mo;
the large error in volume and bulk modulus for Cr are
due to the incorrect treatment of magnetism.

Effective cluster interactions for W-Mo-Cr system are

computed using the DCA. Slater-Koster (SK) TB param-
eters [on-site energies, NN and next-nearest-neighbor
(NNN) hopping integrals for s, p, and d orbitals] are ex-
tracted from pure-element LMTO calculations at two
different volumes: (1) all elements at the volume of an
equiatomic alloy given by Vegard's law (00=8.774 cm
mol ') and (2) each element at its equilibrium volume.
The sets of interactions computed at each of these
volumes are hereafter referred to as sets SK(I) and SK(II),
respectively. The on-site energies and hopping integrals
for the two volumes are given in Table II. It is clear from
an examination of this table that the TB parameters are
quite sensitive to the volume used in the LMTO calcula-
tions. The ECI's calculated using the DCA are also sen-
sitive to these parameters, although one can make some
qualitative assessments about what set of parameters are
more reasonable (see Sec. II C).

DCA calculations are performed using the SK parame-
ters in Table II. The on-site energies of Mo and Cr are
shifted to maintain configurationally averaged charge
neutrality. ' Hopping matrix elements between ele-
ments of difFerent types are obtained by taking the
geometric mean of pure-element hopping integ rais
[pl&=(p~lpjz)'; I,J = W, Mo, Cr]. In order to deter-
mine the shifts for Mo and Cr, calculations are performed
using ten levels of recursion on the TB Hamiltonian (five
levels exact), which yields a recursion cluster of roughly
1000 atoms; results are averaged over 8 and 20
configurations of the atoms on these sites with little or no
change in the results. Shifts and Fermi levels for the two
sets of SK parameters tSK(I) and SK(II)] are given at the
foot of Table II. The interaction clusters are the first-
through fifth-NN pairs and the triplet containing two
NN and one NNN pairs. For both sets SK(I) and SK(II),
a total of 23 different ECI's are computed with the DCA,
15 based on pair interactions ( V~2'J„', n = 1 —5) and the oth-
er eight computed for triplet interactions (V3","'). The
notation V„" will occasionally be used for ECI's V",
where n indicates the number of points in the cluster cz

and m gives a relative size or point separation. It is as-
sumed that quadruplet interactions will be small and can
be neglected at this stage in the calculations. The various
interaction clusters are shown in Fig. 1; for each one of
these clusters, there are multiple ECI's which have
different decorations of the interaction cluster (see Secs. I
A and I B). The distinct decorations, cluster multiplici-
ties (m" ) and Kikuchi-Barker coefficients (y&) are given
in Table III. Information for the third- through fifth-
nearest-neighbor pairs is omitted from Table III, since
these clusters will not be included in CVM calculations.

TABLE I. Equilibrium volumes, lattice constants, and bulk moduli for W, Mo, and Cr as determined by LMTO-ASA calculations.
Calculations are performed at a series of volumes and then fit to a third-order polynomial in volume. The agreement between theory
and experiment (indicated in parentheses) for W and Mo is quite good, but the volume (bulk modulus) for Cr is predicted to be too
small (large) compared with experiment.

Element Volume (cm' mol ') 0
Lattice constant (A) Bulk modulus (mbar)

W
Mo
Cr

9.784 (9.443)
9.631 (9.601)
6.869 (7.274)

3.190 (3.165)
3.173 (3.147)
2.835 (2.885)

3.1856 (3.232)
2.7880 (2.725)
2.9256 (1.901)
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TABLE II. Pure-element tight-binding parameters for W, Mo, and Cr extracted from LMTO-ASA calculations for each element.
On-site energies (r.;) and nearest- and next-nearest-neighbor hopping integrals (PNN and PNNN) are given for two diferent sets of
LMTO calculations. In case I [SK(I)] (columns 1 —3), LMTO calculations are performed for the elements at the equiatomic volume
given by Vegard's law (Q0=8.774 cm3 mol '). In case II [SK(II)],LMTO calculations are performed for each element at its equilib
rium volume as determined by LMTO-ASA calculations. All SK parameters are in rydbergs. Shifts and Fermi levels indicate values
of these quantities for DCA calculations based on each data set.

SK parameter W(I) Mo(I) Cr(I) W(II) Mo(II) Cr(II)

p
f2g

eg

0.3435
1.5559
0.2810
0.2193

0.5347
1.5680
0.1971
O. 1460

0.2614
1.0736

—0.0598
—0.0815

0.1891
1.285
0.1630
0.1105

0.3907
1.339
0.1035
0.0591

0.5731
1.5312
0.1197
0.0881

$$0

pp0
pp&
dd 0'

ddt
dd6
sp cT

Sd 0'

pd0
pdK

—0.1070
0.4320

—0.0659
—0.1680

0.0810
—0.0083

0.2144
—0.1262
—0.2622

0.0734

—0.1116
0.4295

—0.0655
—0.1392

0.0671
—0.0069

0.2184
—0.1173
—0.2380

0.0666

PNN—0.0978
0.3594

—0.0548
—0.0590

0.0284
—0.0029

0.1870
—0.0715
—0.1418

0.0397

—0.0955
0.3866

—0.0590
—0.1432

0.0690
—0.0071

0.1916
—0.1100
—0.2290

0.064 10

—0.1019
0.3903

—0.0595
—0.1208

0.0582
—0.0060

0.1989
—0.1044
—0.2113

0.0591

—0.1233
0.4474

—0.0682
—0.0860

0.0414
—0.0042

0.2343
—0.0969
—0.1908

0.0534

$$ CT

pp~
pp'I7

dd0
ddt.
dd6
$p0
Sd 0'

pd cT

pd 7T

Shift

—0.0327
0.1523

—0.008 20
—0.0656

0.0134
—0.0007

0.0714
—0.0465
—0.1008

0.0102

0.000

—0.0349
0.1538

—0.0083
—0.00554

0.0113
—0.0006

0.0742
—0.0441
—0.0930

0.0094

0.038
0.1167

PNNN—0.0422
0.1763

—0.0095
—0.0394

0.0081
—0.0004

0.0874
—0.0409
—0.084O

0.0085

0.251

—0.0366
0.1702

—0.0092
—0.0770

0.0157
—0.0009

0.0800
—0.0533
—0.1154

0.0116

0.000

—0.0382
0.1692

—0.0091
—0.0638

0.0131
—0.0007

0.0814
—0.0496
—0.1048

0.0106

0.0225
0.0362

—0.0335
0.1416

—0.0076
—0.0271

0.0055
—0.0003

0.0697
—0.0302
—0.0624

0.0063

—0.02

0

2, 1 2,2

0

2,3

0p~ rw yr

2,4

~P~
2,5 3,1

FIG. 1. bcc interaction clusters used in DCA calculations for
the W-Mo-Cr system. The nth neighbor pair cluster are indicat-
ed (2, n), and the first triplet cluster is shown as (3,1).

The results of the ECI calculations for SK(I) and
SK(II) are given in Table IV; it should be emphasized
that these interactions are computed with respect to the
Chebyehev basis set. The value of each ECI is the mean
value of all of the ECI's computed for the number of
configurations (N„„r) specified in the third and seventh
columns of Table IV. In order to assess the accuracy of
the configurational averaging process, the standard devia-

tion of the average ECI (the second and sixth columns of
Table IV) can be written in terms of the standard devia-
tion in the set of ECI's (o„„&).3 For the calculation of
ECI's using SK(I), ten levels of recursion are used with
five levels computed exactly. Some tests showed that
identical results can be obtained using only eight levels of
recursion (three levels exact), so for calculations with
SK(II), the latter is used. In all cases, the configurational
averaging is performed in a medium with the equiatomic
concentration; using such a concentration ensures the
equivalence of concentration-dependent and -independent
interactions. ' ' ' Examination of the table of ECI's
shows that for the NN and NNN pair ECI's, the devia-
tion of the ECI s is quite small, indicating acceptable con-
vergence with respect to con6gurational averaging. It
should be noted that two groups of the triplet ECI's
(V" " and V' "' V' ' ' and V3'i ') are actually in the
same decoration orbit, although the values of the ECI's
for the (121) and (211) ECI's are difFerent. The average
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TABLE III. Information for the ternary cluster expansion on the bcc lattice. %umber: indicates a la-
bel for the cluster function or corresponding interaction. Cluster: indicates the atomic sites, which
make up the given cluster, relative to a conventional bcc unit cell with scaled coordinates, where (200}
corresponds to the corner atom along x and {111)corresponds to the body center. Decoration: Corre-
sponds to decoration of the cluster of sites indicated in the second column by the point functions; the
order of the decoration corresponds to the order of presentation of the sites in the second column. The
decorations in parentheses are all other decorations of the cluster a that are equivalent by symmetry.
Multiplicity (m" ): number of clusters of type a with decoration (s) per lattice point. Kikuchi-Barker
coe+cients: y&, equal for all cluster functions that share a common cluster a.

Number

1

2
3

5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Cluster (a)

Empty
(000)
(000)

(000) (200)
(000) (200)
(000) (200)
(000) (»1)
(000) (111)
(000) (111)

(000) (111) (200)
(000) (111) {200)
(000) (111) {200)
(000) (111) (200)
(000) (111) {200)
(000) (111) (200)

(000) (111) (200) (111)
(000} (111) (200) (111)
(000) (111) (200) (111)
(000) (111) (200) (111)
(000} (111) (200) {111)
(000) (111) (200) (111)

Decoration (s)

None
2
1

22
12 (21)

11
22

12 (21)
11

222
221

212 (122)
211 (121)

112
111

2222
2221 (2212,2122, 1222)

2211 (1122)
2121 (1212, 1221, 2112)
1211 (1112, 1121, 2111)

1111

1

1

1

3
6
3

8
4

12
12
24
24
12
12
6

24
12
24
24

6

—1
—1

3
3
3

4
4

—12
—12
—12
—12
—12
—12

6
6
6
6
6
6

value is used for the representative interaction in the
ground-state and CVM calculations. A ground-state
analysis within the range of the bcc tetrahedron is done
with this set of ECI's, and it is found that no compounds
form for this set of interactions, i.e., the ground states are
simply the three pure elements. LMTQ-ASA calcula-
tions of the formation enthalpies for a series of com-
pounds are in agreement with this prediction, although
compound formation enthalpies predicted with the DCA
interactions [either SK(I) or SK(II)] are larger in magni-
tude (i.e., more positive).

All of the pair ECI's computed using SK(I) (LMTO
calculations at Vegard's law equiatomic volume) and
SK(II) (LMTO calculations at equilibrium volume of
each element) are plotted as a function of pair separation
in Figs. 2(a) and 2(b). It can be seen quite clearly that the
NN pair ECI is the dominant one with the NNN pair
ECI quite a bit smaller but still signi6cant. All of the
higher-order pair interactions are small compared with
the NN and NNN ECI's. An examination of the triplet
interactions in Table IV also reveals these triplets are all
quite small compared to the NN pair ECI's. It is there-
fore expected that higher-order ECI's such as quadrup-
lets would be insignificant, and neglecting these interac-
tions is justified. The trends followed in the ECI's appear
to be consistent with the trend observed in binary ECI
calculations: ' the ECI's decay in magnitude with

respect to both separation of the points in the cluster and
with number of points in the cluster. It is natural to ask
whether, for a given cluster of sites, there is a systematic
variation in the relative sizes of ECI's with different
decorations of that cluster. For at least the pair ECI's, it
appears that the magnitude of the ECI's for a given clus-
ter of sites is inversely proportional to the number of
terms in the de6nition of that ECI, i.e.,
V' ~

' & V" '( V"" for p and p' fixed. Similar behavior
can be observed in the calculations of Wolverton et al.
for the pair ECI's in their study of three different ternary
alloys. In addition, it appears that the rate of conver-
gence with respect to cluster size (e.g. , pair separation or
number of sites in cluster) is relatively independent of
cluster decoration. The foregoing discussion should not
be taken as a general assessment of convergence of the
ternary cluster expansion; additional studies need to be
performed.

If we transform the NN pair ECI's for SK(I) and
SK(II) into their pseudobinary representation, we can
assess the predictions made concerning the W-Mo-Cr sys-
tern by the DCA in a straightforward way. The pseudo-
binary interactions for SK(I) [SK(II)] indicate phase sepa-
ration for all three binary systems: WNN' = —215 ( —35)
meV, WNN

' = —131 ( —20) meV, and WNN
' = —3.5

( —1.6) meV. In order to gain an estimate of the transi-
tion temperature that will arise from these pseudobinary
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TABLE IV. Effective cluster interactions (ECI's) for the W-Mo-Cr system computed using two different sets of Slater-Koster pa-
rameters [SK(I) and SK(II)]. Within each SK(i) block are given the configurationally averaged (CA) value of the interaction (in meV},
the number of configurations (N„nf) that were averaged over in the DCA, the rms deviation of the value of the ECI (o.„„f),and the
deviation (o.„„f/R„„f)in the CA value, where R„„f=(N„nf)' . The deviation in the CA value is a measure of the effect of
configurational averaging; a small value of this quantity indicates relative convergence with respect to configurational averaging. In-
vestigation of the table shows that for the NN pair ECI s {11,12+21, and 22), the deviation in the mean value is small (1%) com-
pared to the values of the interactions themselves.

SK{II)
Cluster

y(11)
2, 1

y(11)22
y(11)23
y(11)

2, 4
y(11)

2, 5
y(12+21)

2, 1
y(12+21)

22
y(12+21)

23
y(12+21)

2, 4
y(12+21)

2, 5
y(22)

2, 1

y(22)22
y(22)23
y(22)

2,4
y(22)

2, 5
y(111)

3, 1

y(121)
3, 1

y(112)
3, 1

~(211)
3, 1

y(122)
3, 1

y(221)
3, 1

y(212)
3, 1

y(222)
3, 1

V(s)a

—144.415
—19.290
—1.322

0.548
2.025

—99.156
—14.540
—1.272
—0.039

2.137
—13.635
—3.379
—0.188
—0.057

0.487
0.472
0.2SO

0.336
0.229
0.178
0.046
0.178
0.064

Nconf

20
20
10
10
10
20
20
10
10
10
17
20
10
10
10
10
10
10
10
10
10
10
10

~conf

2.4818
2.0695
0.6265
0.3523
1.0586
3.0870
1.7877
0.3396
0.2049
0.9635
0.6956
0.3223
0.0793
0.0544
0.2287
0.3372
0.1588
0.1378
0.0928
0.0513
0.0344
0.0513
0.0186

conf ~R conf

0.5549
0.4627
0.1981
0.1114
0.3348
0.6903
0.3997
0.1074
0.0648
0.3047
0.1687
0.0721
0.0251
0.0172
0.0723
0.1066
0.0502
0.0436
0.0294
0.0162
0.0109
0.0162
0.0059

y(s)a

—23.554
—1.622

0.847
0.724
0.572

—13.842
—2.296

0.445
0.184
0.630

—1.755
—0.325

0.043
0.026
0.139
0.138
0.121
0.094
0.077

—0.013
0.000

—0.013
—0.007

Nconf

20
20
10
10
10
20
20
10
10
10
20
20
10
10
10
10
10
10
10
10
10
10
10

~conf

1.5641
0.7656
0.3006
0.1145
0.9681
1.2792
0.5697
0.3719
0.1492
0.4909
0.3761
0.0862
0.0779
0.0255
0.1128
0.1488
0.0772
0.0702
0.0707
0.0448
0.0378
0.0448
0.0186

~conf ~R conf

0.3497
0.1712
0.0950
0.0362
0.3061
0.2860
0.1274
0.1176
0.0472
0.1S52
0.0841
0.0193
0.0246
0.0081
0.0357
0.0471
0.0244
0.0222
0.0224
0.0142
0.0120
0.0142
0.0059

pair ECI's, we use an approximate prototype result for
phase separation on the bcc lattice at
c =0.5: kT/8 VNN =0.80. With this result, it can be
seen that the transition temperature for the W-Cr binary
edge that we will obtain using the ECI's from SK(I) is
close to 16000 K, clearly an unphysical result. The tran-
sition for W-Cr using SK(II) will be approximately 2600

K, in much better agreement with experiment. CVM cal-
culations using the SK(II) interactions confirm these ap-
proximate results. In Sec. II C, we will attempt to ad-
dress why the results for SK(I) are so unreasonable.

As a final assessment of the ECI's for SK(I) and SK(II),
the formation energies of disordered W Mo Cr, al-
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FIG. 2 Pair interactions (in meV) for W-Mo-Cr as a function of separation for the two sets of Slater Koster parameters given in

»ble II [SK(I}»dSK(ll}]. «gend»ndicate the three types of interactions for each pair. In both cases, the interactions decay rap-

idly with respect to pair separation; for n & 2, all interactions can be neglected. The values for &2 „are those for y „ from Tab e(12) (12+21) 1

II divided by two.



McCGRMACK, de FONTAINE, WOLVERTON, AND CEDER

0.2

0.2

Cr

X X' fil Xil ~

~ E

0.2 0.4 0.6

Cr

0.8
Cl~ 'XIRSRL

::~PX
XX

;:~XXX' "'~"&~"XXXX
XXX0.6

4;.-g....
%XXXXXXX

i~a('~t 'XXXXXXXX
'ir'IXXXXXXXXXX
XCXXXXXX

k418io
4 I~

0.604

X
XX
XXX
XXX
XXXX
XXXXX
XXXXX
XXXXXX
XXXXX
XXXXX
XXXXX
XXXX
XXX
X

0.8

0.8

SK(l)

SK(II)

E
400

2OO &

Illi i 0

120 ~
E

100

80
E

40

20

0

The formation energy for disordered alloys as a function
of composition is plotted is Fig. 3 using ECI's from SK(I)
and SK(II). At all compositions and for both SK(I) and
SK(II), the formation energy of the disordered state is
positive, indicating the fact that a mixture of the pure ele-
ments is more stable at T=O K than a disordered alloy
(i.e., the system shows clustering tendencies). The
difference is minimal between the topology of formation
energies predicted with SK(I) and SK(II); it appears that
the formation energies for SK(I) are roughly seven times
those for SK(II). The formation energy also appears to
show a slight asymmetry on the Mo-Cr binary edge,
while the other two edges are essentially symmetric.
Table V contains formation energies at several different
compositions for the binary alloys and experimental re-
sults for the same where information is available. The
Mo-Cr system appears to be the only system for which
there is an experimental heat of formation, and the
agreement between the formation energy predicted with
SK(II) and experiment is excellent. In general, from Fig.
3 and Table V, it is seen that SK(I) predicts formation en-
ergies that are significantly larger than those computed
with SK(II). This simply supports the conclusions ob-
tained with the pseudobinary interactions above: SK(I)
predicts the system to phase separate much more strong-
ly than SK(II).

FICz. 3. Energies of formation as a function of concentration
for disorder ed Wz Moy CI

& & —y alloys for SK(I) and SK(II).
Positive formation energies indicate phase separation to be
favored for all alloy compositions. Formation energies on the
W-Cr and W-Mo binary edges appear to be symmetric, while
there is a slight asymmetry in Mo-Cr formation energies. The
qualitative features of the formation energy surface do not
change much between SK(I) and SK(II).

loys are calculated using the ECI's in Table IV. The for-
mation energy of a disordered alloy at concentration
(c~,cc) is given by

EEr„(c~,cc)=E, do (c~ cc)

—(1—c~ —cc )E~ c~E~ ccE, ,—(1—0)

where E„„z, (c~,cz) is the energy of the completely
disordered state computed using Eq. (3) with ECI's from
Table IV and LACF written as a product of point corre-
lation functions determined at the given composition.

B. Cluster-variation-method calculations

The ECI's based on SK(II) are used to compute the
solid portion of the %-Mo-Cr phase diagram. The
ground-state search confirmed that only the pure ele-
ments are ground states for the given set of ECI's; hence
CVM calculations only need to treat the disordered bcc
phase, since this is the only phase that will appear at
finite temperature. Since all of the significant interactions
from the DCA calculations are on clusters within the bcc
tetrahedron ( V~2'~,', V~2'~2', Vi3'~,'), it is acceptable to perform
CVM calculations in the bcc tetrahedron approximation
to the entropy. All CVM calculations are performed us-
ing the ( l, o, o ) basis set for simplicity; hence the DCA
interactions are transformed into this basis set (see Refs.
26 and 29 for the methodology). The usage of ( l, o, o )

simplifies the calculations for two reasons: the V matrix
[Eq. (9)] contains only integers in this representation, and
the correlation functions are on the interval [ —1, 1]. In a
Chebychev formulation, for example, the V-matrix en-
tries would contain real (irrational) numbers and the

TABLE V. Energies of formation for binary and ternary random W„MoyCr& „y alloys for Slater-
Koster sets I and II. All enthalpies are given in meV/atom. In general, formation energies for SK(I)
are larger than those for SK(II). ExPerimental results for Moo soCro so are indicated; no data was avail-
able for the other alloys considered.

SK(I)
SK(II)
Expt.

'Reference 55.

Moo. soCro. so

+605
+78.0
+74 8'

EHf (random)
Wo. soCro. so

+954
+ 128

Wo soMoo. so

+23.3
+4.58

0. 33 0.33 0.33

+706
+93.3
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correlation functions would be bounded on an interval
between two real numbers. A free energy is constructed
with 12 symmetry-distinct DCA interactions (numbers
4—15 in Table III) and is then minimized with respect to
all 21 syrnrnetry-distinct correlation functions given in
Table III. Effective cluster interactions are not computed
as a function of volume; hence the CVM calculations are
volume independent. Calculations are performed in a
mixed ensemble, where one chemical potential and one
composition are held fixed; this facilitates construction of
the phase diagram using intersections of the grand poten-
tial.""

Isothermal sections for a series of temperatures are
given in Fig. 4; these sections are grouped together into a
three-dimensional diagram in Fig. 5. At the highest tem-
perature (2700 K), the miscibility gap (MG) of the W-
Mo-Cr edge begins to penetrate into the Gibbs triangle.
As the temperature is progressively decreased, the two-
phase field enlarges; tie lines within the two-phase field
are seen to rotate towards the Mo-Cr binary edge, indica-
tive of the fact that this will be the next MG encountered.
At a temperature of roughly 1750 K, the critical temper-
ature for the Mo-Cr binary is reached, and the system be-
gins to phase separate along this binary edge as well. As
the temperature is decreased more, the two-phase field

Extrapolated WCr
Binary MG

T (K)

2800

2400

2200

1600

1400

Cr
Extrapolated MoCr

Binary MG

Cr

FIG. 5. Complete three-dimensional ternary phase diagram
for the W-Mo-Cr system computed within the bcc tetrahedron
approximation of the CVM using ab initio effective cluster in-

teractions. Each bold curve represents a phase boundary within

an isothermal section; tie lines are only included in the 2400-K
section for illustrative purposes. Limiting W-Cr and Mo-Cr
binary miscibility gaps are indicated.

Cr

Mo W Mo

Mo W Mo

FIG. 4. Isothermal sections of the W-Mo-Cr phase diagram
computed within the bcc tetrahedron approximation to the clus-
ter variation method. Each two-phase field is enclosed by bold
phase boundary, ' tie lines are indicated across two-phase fields,
and the location of the bcc solid solution is also given. Phase
separation occurs in the W-Cr binary first at roughly 2750 K.
As the temperature is lowered, the two-phase field grows and
the tie lines rotate from the W-Cr edge towards the Mo-Cr in
anticipation of the Mo-Cr transition temperature at roughly
1750 K. At 1400 K, the system is essentially completely immis-
cible except for a small region of Cr deficient solid solution. A
slight asymmetry can be seen in the limiting Mo-Cr binary mis-
cibility gap, whereas the W-Cr miscibility gap appears com-
pletely symmetric.

simply continues to enlarge, and at the lowest tempera-
ture shown (1400 K), there is almost no solubility in the
Gibbs triangle. Phase separation is never seen to occur
along the W-Mo binary edge; convergence difficulties
with the CVM at very low temperature prevented an ab-
solute determination of the MG transition temperature,
although it should definitely exist, since there is a finite
tendency towards phase separation along this edge. An
estimate using the previously mentioned prototype result
(kT, /8 VNN =0.8) yields a transition temperature of
roughly 120 K for the W-Mo edge.

The behavior shown in Figs. 4 and 5 for the phase
equilibria in this system seems to be consistent with intui-
tion for how W-Mo-Cr should behave (see Sec. II C).
One nice feature that the calculations seem to predict is
the (a)symmetry present in the binary W-Cr and Mo-Cr
phase diagrams, a feature one might expect based on the
observed asymmetry in the formation energy of disor-
dered alloys (Fig. 3). Experimentally, W-Cr exhibits an
almost completely symmetric MG, while there is an
asymmetry in solubility in the Mo-Cr system of approxi-
mately 5%%uo (Mo is more soluble in Cr than vice versa).
The limiting behavior for W-Cr in Fig. 5 seems to be
completely symmetric, while that for Mo-Cr shows a
slight symmetry in the correct direction. The asymmetry
is most apparent in the iosthermal section for T= 1725 K
[Fig. 4(d)]. In binary systems, if one uses only
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concentration-independent pair interactions, it is impossi-
ble to produce a phase diagram that is asymmetric
around e=0.5, i.e., the multiplet interactions are com-
pletely responsible for any asymmetry. The same wi11 be
true for the binary edges that comprise a ternary system,
hence the small triplet interactions given in Table III
(and included in the calculation) seem to be necessary to
reproduce the asymmetry observed experimentally. The
main shortcoming of these calculations is that the transi-
tion temperatures for the W-Cr and Mo-Cr edges are pre-
dicted to be roughly 800 and 600 K higher than the ex-
perimental results for W-Cr and Mo-Cr, respectively.

C. DlSCUSSlOIl

The topology of the predicted W-Mo-Cr phase dia-
gram is pleasingly consistent with intuition for this par-
ticular system (no experimental results exist for compar-
ison). Since the W-Cr and Mo-Cr binary edges strongly
exhibit phase separation, one expects that addition of a
small amount of the third component (Mo and W, respec-
tively) should not alter the phase behavior significantly.
Thus, solid solutions of all three components should ex-
hibit phase separation over a range of compositions in the
Gibbs triangle. Addition of the third component will ei-
ther raise or lower the MG transition temperature rela-
tive to the binary edge depending on the relative magni-
tude of the ordering tendencies between the three pairs of
elements. ' In the present case, the addition of Mo to
W-Cr 1owers the MG temperature as Mo is added to W-
Cr (no island MG is formed in the center of the Gibbs tri-
angle). Below the binary W-Cr MG maximum, the sys-
tem will start to phase separate for 6nite concentrations
of Mo. As the temperature is decreased further, the ten-
dency for Mo and Cr to phase separate becomes more im-
portant, and the MG extends further away from the W-
Cr binary edge. Finally, at the critical temperature for
phase separation in Mo-Cr, the two-phase field connects
with the Mo-Cr binary edge. The two-phase field widens
as the temperature is lowered, indicating the cumulative
e6'ects of clustering tendencies in W- and Mo-Cr. Even-
tually, we expect a reaction on the W-Mo binary edge,
which should intrude into the Gibbs triangle, creating a
three-phase equilibria between W, Mo, and Cr. This
three-phase equilibria will ultimately yield phase separa-
tion between the pure elements in the limit of zero tern-
perature. The latter three-phase equilibria is not ob-
served in the CVM calculations since it is not possible to
probe low enough temperatures. Regardless, all of the
CVM calculations are consistent with what we would ex-
pect in a system that contains three binary MG's with the
relative transition temperatures observed in this analysis.
It is also what has been partially observed in ternary fcc
prototype studies using NN pair interactions that pro-
duce the same ground states.

It seems that the primary objection that might be
raised to these results would concern the overestimates of
the transition temperatures for the limiting binary edges
(and presumably for phase separation away from the
edges as well). While it is commonplace for mean-field

calculations to overestimate transition temperatures by
roughly 5 —10 %, the error in the present case is exces-
sive. The calculations are done without including any
eAects of volume relaxation on the free energy, a severe
approximation in a system that has such a large size
mismatch between the elements. The importance of
treating elastic relaxations has been demonstrated to be
important in binary systems,

' and the same will hold
for ternary systems. Hence, we expect that the results
could be improved if either a set of volume-dependent in-
teractions is used (discussed below) or some other correc-
tion is made to address the issues of elastic relaxation in
the disordered phase. Vibrational e6'ects on the free ener-
gy, which are neglected, could also be significant in this
system, ' but no attempt will be made here to address
this issue in any depth.

An issue that is related to the question of volume relax-
ation is that concerning the choice of Slater-Koster pa-
rameters for the DCA calculation. The interactions com-
puted using the two di6'erent sets of SK parameters are
vastly di6'erent, and it is natura1 to ask why this is the
case. To address this question, it is useful to discuss gen-
eral trends observed in tight-binding descriptions of or-
dering in alloys. Many TB calculations of properties of
binary transition-metal alloys involve d-band-only com-
putations, where the pure-element hopping integrals are
all assumed to be equal to canonical values (a "canonical
d-band" calculation), i.e., there is no off-diagonal disorder
(ODD) in the electronic Hamiltonian. ODD is basically
a measure of how strongly the configuration of atoms in
the system (i.e., ordered or disordered) aff'ects the off'-

diagonal matrix elements of the Hamiltonian (hopping in-
tegrals between unlike atoms, in the case of TB). If the
oA-diagonal matrix elements are configuration indepen-
dent, then there is no QDD. In canonical d-band calcula-
tions for binary phase diagrams, the ordering tenden-
cies are only based on the number of d electrons that
each element possesses. ' If the two elements have the
same number of d electrons, then a canonical d-band cal-
culation would predict no tendency towards ordering or
phase separation. Ducastelle showed with some simple
arguments concerning the moments of the density of
states that when QDD is present, the tendency for order-
ing (phase separation) is always reduced (enhanced).
Since W, Mo, and Cr possess the same number of d elec-
trons, a canonical d-band calculation would predict no
ordering tendency in any of the binaries. Thus, if any
QDD is present in the Hamiltonians for the three binary
alloys, the systems should phase separate, since QDD al-
ways enhances this tendency.

A common measure of the QDD for transition-metal
alloys is the ratio of the d-band widths of the two ele-
ments (5&w), each of which (in d-band-only calculations)
is proportional to the NN ddo hopping integral for that
element. We de6ne an QDD parameter as the ratio of
the XX dd o. hopping integrals: 5Bw(I J)=dd o(I )I— .

ddo (J), where 5Bw= 1 corresponds to no QDD. Using
the values for the NN ddcr(I) from Table II, one finds for
both SK(I) and SK(II) that there is QDD (5Bw&1)
for W-Cr, Mo-Cr, and W-Mo with 5iiw(W-Cr))5Bw(Mo-Cr) )5Bw (W-Mo). Thus, for this system, we
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would predict phase separation for all three binary sys-
tems with the tendency towards phase separation in
binary I Jp-roportional to 6Bw(I —J). In addition, all
ODD parameters for SK(I) are larger than those of
SK(II), indicating a stronger driving force for phase sepa-
ration in the former. Both of these predictions are borne
out by the results presented in Sec. II A: NN pseudo-
binary pair ECI's follow the trend

~ W~~.
'

~)
~
W ' '~ & Wzz™~,with results for SK(I) larger in

magnitude than those of SK(II).
The diff'erence in ODD between SK(I) and SK(II) can

easily be rationalized by considering the effects of
changes in volume on the respective d-band widths (ddo.
elements). In the set SK(I), we have used elements based
on the equiatomic volume given by Vegard's law and
have thus compressed (expanded) W and Mo (Cr). In do-
ing so, we increase (decrease) the respective d-band
widths and ddt hopping parameters, and thus increase
the magnitude of the ODD parameter (5sw). In the case
of set SK(II), we use the elements at their equilibrium
volumes; hence no alteration in bandwidth of the pure
elements occurs, and the ODD is smaller. In both cases,
the ODD for W-Mo is small because these elements have
almost identical equilibrium volumes. In general, it
seems that minimizing the amount of ODD in systems is
the best course of action when performing calculations
with the DCA, and this is what is done in the calculation
of the W-Mo-Cr phase diagram.

The choice of set SK(II) is essentially a way of trying to
minimize the deleterious effects that size mismatch has
on the calculations. There is another course of action,
which involves computing ECI's as a function of volume
and performing volume-dependent CVM calculations. In
order to compute volume-dependent interactions there
are several possible methods, which could be used. The
first method one could use is the DCA: one would need to
do several LMTO calculations, each at a different
volume, then perform the TB-LMTO transformation to
obtain interactions at each volume. Such a procedure
was employed with success for the Pd-Rh system by Wol-
verton, de Fontaine, and Dreysse. If a TB representa-
tion is not well suited to the system at hand, then the
DCA would not be the best method for computing such a
set of ECI's.

If one wished to avoid the use of TB altogether, then
one could compute volume-dependent or -independent
ECI's using the structure inversion method (SIM). '

The only drawback to using this approach in ternary sys-
tems is that often a large number of total-energy calcula-
tions are necessary to obtain a well-converged set of in-
teractions. Consider the present case of the bcc tetrahed-
ron approximation with only empty, point, pair, and trip-
let interactions (a total of 1S ECI's). In order to compute
this set of ECI's using the SIM, total energies must be
computed for a minimum of 15 structures. In reality, it
would most likely be necessary to include at least 20
structures or more. Such calculations have, in fact, been
performed, but the large size mismatch seems to create
problems in the LMTO-ASA calculations. If one chooses
equal sphere radii for W, Mo, and Cr in the ASA, then
there is a large amount of charge transfer. If one

modifies the sphere sizes to achieve a charge neutral
state, then the total energy changes by 1 —4 mRy/atom
depending on the sphere sizes. The dependence of total
energy on sphere size varies significantly from structure
to structure, hence structural energy differences are not a
unique function of sphere radii. In general, the LMTO-
ASA formation enthalpies are found to vary by up to
100% as a function of sphere radii, and thus it seems that
a multiplicity of answers are possible. This problem
might be ameliorated by the use of full-potential LMTO
(FLMTO) calculations, which is of course even more
problematic when one considers the number of structural
energies which need to be computed.

Finally, some commentary is needed about the results
of Hawkins, Robbins, and Sanchez and Sigli, Kosugi,
and Sanchez (hereafter referred to as HRS and SKS, re-
spectively) and what bearing these studies have on the
present analysis. HRS computed the phase diagrams for
binary W-Cr, W-Mo, and Mo-Cr alloys using the tight-
binding cluster-Bethe-lattice method (CBLM) in conjunc-
tion with the CVM (no ternary alloy properties were con-
sidered). The study of SKS included a CVM analysis of
the binary Mo-Cr phase diagram, with ECI's that were
computed within a TB framework that utilized the
coherent potential approximation (CPA) in conjunction
with the generalized perturbation method (GPM). SKS
also included an ad Roc vibrational entropy correction to
the free energy to reproduce the experimental results.
The studies of HRS and SKS presented results that were
in better accord with experiment than the present
analysis. For example, in the Mo-Cr system, the critical
temperatures for phase separation are 1153, 800, 1050,
and 1750 K as given by experiment, HRS, SKS, and the
present study. The differences between the predictions
made by these studies makes it interesting to compare
and contrast the methodology (both in the electronic
structure and statistical mechanics) used by HRS, SKS,
and that used here. All three sets of calculations utilize
the bcc tetrahedron approximation of the CVM, an ap-
proximation known to be quite accurate compared to
more "exact" methods such as Monte Carlo simulation.
Given the equivalence in the levels of statistical-
mechanical approximation, it is clear that this is not the
source of discrepancy between the studies. We therefore
turn to an examination of the differences in the treatment
of electronic structure (HRS and SKS) and vibrational
entropy (SKS only). We begin with a discussion of HRS
and their treatment of the electronic structure of the al-
loy.

The CBLM used in HRS treats the electronic structure
of the alloy in a mean-field approach, and also approxi-
mates the geometry of the lattice with a single coordina-
tion number. In contrast, the DCA not only treats the
geometrical aspects of the alloy problem correctly, but
also provides a non-mean-field description of disordered
alloys in which configurational averages are taken for the
appropriate physical quantities. Since the DCA provides,
in principle, a more accurate description of the alloy
problem than the CBLM, one must consider the practical
details of the electronic structure used in both ap-
proaches. The present work relies on a TB approxima-
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tion, as does HRS, and this leads naturally to an exam-
ination of the parameters that enter into the alloy Hamil-
tonian: the hopping integrals and on-site energies.

The hopping parameters used by HRS were taken from
Harrison, where hopping integrals are based on pure
elements at their equilibrium lattice constants. Hence,
these parameters are comparable to the SK(II) hopping
integrals contained in Table II, which were found to give
the best representation of W-Mo-Cr alloy thermodynam-
ics (Sec. II A). The hopping parameters in HRS show nu-
merical differences with the SK(II) integrals (10—40 %).
Both the study of HRS and the present approach show
similar differences with the two-center hopping integrals
found in Papaconstantopoulos, hence the difference in
hopping parameters between HRS and SK(II) does not
seem to be unreasonable. The more important fact about
the hopping integrals is that those in HRS and SK(II)
both possess roughly the same amount of ODD:
ddo (W)/ddo (Cr) =1.78, 1.67, and 1.91 for HRS,
SK(II), and Papaconstantopoulos, respectively. Given
the qualitative agreement between these three sets of hop-
ping integrals, these parameters do not seem to be the
source of discrepancy. The only possible source of
discrepancy in terms of the hopping integrals lies in the
fact that HRS considered only s+d electrons, whereas
the present analysis uses s+p+d electrons. A compar-
ison of the on-site energies between HRS and the present
analysis is dificult, since these authors included phenom-
enological Coulombic terms in their TB Hamiltonian.
HRS incorporate effects due to repulsion (i.e., the ion-ion
minus double-counting terms in the Hamiltonian) into
the on-site energies via these Coulomb terms.

The TB-CPA-GPM analysis of SKS (Mo-Cr only) used
a basis of d orbitals with hopping integrals determined
using canonical SK parameters according to the prescrip-
tion of Harrison (presumably quite similar to those used
in HRS). These authors included the important eff'ects of
ODD in their analysis, and the CPA treatment of the
electronic structure in SKS does not make the severe to-
pological approximations of the CBLM. On-site energies
were determined self-consistently using atomic on-site en-
ergies shifted by a direct-exchange Coulomb term (similar
in spirit to that used in HRS), the value of which seems to
have been arbitrarily fixed. An examination of the dom-
inant NN pair interaction in SKS, HRS, and the present
study shows the NN EPI in SKS (

—16 meV) to be twice
the magnitude of that in HRS, and only 25% smaller
than that found using SK(II) in this analysis ( —20 meV).
Without the empirical correction for vibrational entropy
included in SKS, their interactions should lead to a tran-
sition of roughly 1250 K (again utilizing kT, /VNN =0.80
from de Fontaine), much higher than the 800 K predicted
by HRS for Mo-Cr. This high transition is lowered by
fitting a large vibrational entropy correction (roughly
25% of the formation enthalpy at 1500 K) to yield the ex-
perimental result. This large correction [which amounts
to a shift in T, (Mo-Cr) of roughly 200 K] was necessary
in SKS in order to obtain a close fit with the experimental
phase diagram.

In summary, there are several considerations that most
likely lead to the different predictions made in HRS,

SKS, and the present analysis. The neglect of s and/or p
orbitals in the studies of HRS and SKS is a contributing
factor, although this effect is most likely small. The dom-
inant effect that differentiates the EPI's predicted by
HRS, SKS, and the present study appears to be the phe-
nomenological Coulombic terms in the Hamiltonian's of
HRS and SKS. The DCA is based solely on the one-
electron contributions to the Hamiltonian with the on-
site energies shifted so as to guarantee local neutrality on
average. This choice of on-site energies should, however,
minimize errors associated with neglecting Coulombic
terms in the Hamiltonian. In alloys that possess large
size mismatch, such as W-Cr or Mo-Cr, it may be that
explicit inclusion of repulsive corrections to the Hamil-
tonian is necessary, regardless of whether these terms are
obtained phenomenologically or otherwise. Both HRS
and SKS present phase diagrams that are in good agree-
ment with experiment, although this does not Inake these
studies unqualified successes. SKS must include a large
vibrational entropy correction (obtained by fitting experi-
mental results) to achieve good agreement with experi-
ment. HRS have fairly good agreement without this
correction, which seems to present a dilemma: inclusion
of a large correction in HRS would most likely worsen
the agreement with experiment, and omission of this
correction in SKS would do the same. In general, it
seems that the phase stability of large size-mismatch sys-
tems cannot be derived from only a knowledge of the
band-structure energy. Corrections need to be added to
account for repulsive terms in the TB Hamiltonian, static
atomic displacements and/or vibrational contributions to
the free energy. Unfortunately, there is no straightfor-
ward first-principles prescription for including the former
two effects in a TB framework and the latter in the CVM
calculations, aside from using phenomenological correc-
tions as in the studies of HRS and SKS.

CONCLUSION

We have performed a calculation of the W-Mo-Cr ter-
nary phase diagram using the cluster variation method in
the bcc tetrahedron approximation. The present study
uses the cluster expansion formulation of the ternary
CVM in conjunction with the use of effective cluster in-
teractions determined using only the atomic numbers of
the constituent elements. The CVM calculations are
done using effective pair and triplet cluster interactions
computed with the DCA based on a TB-LMTO Hamil-
tonian. The TB transformation is performed using
LMTO-ASA calculations for the three pure elements at
two different volumes: (1) the volume of an equiatomic al-
loy given by Vegard's law and (2) the equilibrium
volumes of each element. In each case, the ECI's indicate
phase separation, although in the former case, the ten-
dency towards phase separation is unreasonably large due
to the degree of off-diagonal disorder in the system. In
general, it is found that the tendency towards phase sepa-
ration scales directly with the degree of ODD. However,
it appears that changing the off-diagonal disorder only
changes the quantitative results for the ECI's, as evi-
denced by the insensitivity to ODD in the topology of the
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disordered alloy formation energies as a function of con-
centration.

ECI's based on LMTO-ASA calculations at the equi-
librium volumes of each element are used to compute the
ternary W-Mo-Cr phase diagram. CVM calculations are
performed using a set of 21 independent multisite correla-
tion functions; isothermal sections are found at several
temperatures, and the complete solid-solid phase diagram
is constructed. While the transition temperatures ob-
tained for the phase diagram are higher on the binary
edges than experimental data, the correct trends are ob-
served. Phase separation in the Gibbs triangle begins at
the binary W-Cr edge, and as the temperature is lowered,
the two-phase field grows until it reaches the binary Mo-
Cr edge. A continued decrease in temperature simply in-
creases the size of the two-phase field. No phase separa-
tion is observed on the W-Mo edge for the temperatures
studied. In addition, if the results are extrapolated to the
binary edges, they seem to be consistent with the symme-
try (asymmetry) observed in the W-Cr (Mo-Cr) binary
phase diagrams. This asymmetry is also manifested in
the disordered alloy formation energies.

In general, the results obtained are quite encouraging
considering the level of approximation used. The large
size mismatch in W-Mo-Cr makes some approximations
necessary in the computation of TB parameters, yet it is

still possible to obtain excellent qualitative results. A
more accurate treatment would include the effects of elas-
tic relaxation or vibrational effects on the free energy of
the disordered phase, although it is unclear whether such
an effort would be justified with respect to changes in the
topology of the phase diagram. At any rate, we believe
the work in the present paper to be a necessary and im-
portant step in nonempirical studies of ternary phase sta-
bihty. Such an approach to the treatment of ternary al-
loy phase equilibria has a great deal of potential in terms
of theoretical understanding and engineering applica-
tions, and will hopefully yield results for more complex
systems in the near future.
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