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The occurrence of anomalously high ionic-defect concentrations in solids at temperatures ap-
proaching the transition to a molten or superionic (i.e. , molten cation or anion sublattice) phase
is a mell-known phenomenon. We show that this premelting phenomenon can be quantitatively
described by a cube-root law not only for the Prenkel disordered AgCl, AgBr, and AgI, but also
for the anti-Frenkel disordered PbF2. In all cases, the computed defect-defect interaction leads to a
phase instability of first order or of higher order at a temperature which is very close to the actual
transition point. Moreover, the specific heat data can be consistently explained by the same e8'ect.
The validity of the cube-root law is discussed in particular regarding the unexpectedly good predic-
tion of the transition temperatures. Implications for the melting behavior of ionic conductors and
for doping e8ects are brieHy touched upon. A criterion for the transition order is given.

I. INTR, ODUCTION

Point defects in solids are basic constituents of the solid
state. Not only do they enable ionic conduction and mass
transport, they also carry information about the ther-
modynamic state of the solid, notably with respect to
temperature and the ambient chemistry. They are also
decisive for the propagation of chemical signals. In this
sense they are the relevant particles to consider in the
context of storage or transformation of chemical energy
and chemical information. Although the formation of a
single defect increases the energy of the immediate envi-
ronment, all ionic crystals exhibit at finite temperatures
a Gnite concentration of point defects which is due to a
compensating gain in a configurational entropy. The con-
ventional way to express the free enthalpy for defective
solid G is

Gperfect + kG*dc —TS, „g,
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where Gp, p, t is the free enthalpy of the perfect crystal
(i.e. , without point defects, but including other contri-
butions such as phonon contributions), and c and A G*
denote the defect concentration and the defect formation
free energy without the configuration entropy S,„„p. The
minimum of the free energy as a function of defect con-
centration appears usually at very low c values. This is
caused by the extremely steep inhuence of the configu-
rational part at c,' 0 [(ciS, „t/Oc) —+ ooj which soon
Battens compared to the steep increase of the formation
free energy. If the defect distribution is at random, LG*
is a constant with respect to c and the equilibrium con-
centration c, obtained via free enthalpy minimization, is
given by the usual expression

where LG* is the sum of a formation enthalpy AH* and
a term proportional to the change in the vibrational en-
tropy AS*. In the case of a Frenkel-disordered ionic crys-
tal we have to consider two oppositely charged defects,
the vacancy and the interstitial ion. Owing to electroneu-
trality the two equilibrium concentrations are equal in a
pure material. If they are again denoted by i, AG* means
half of the formation value of a Frenkel pair. The refer-
ence concentration c' is proportional to the geometrical
mean of the number of nonoccupied sites available for the
interstitial and vacant defects, or more specifically

c* = g;g„(o., —c)(n„—c). (2)

In Eq. (2) the n's denote the number of occupiable crys-
tallographic sites; the g's denote the degeneracy of those
sites. Thus, the product go. is equal to the maximum
number of sites per lattice molecules available to the erst
defect. By this distinction g- and Q.-value double intersti-
tials are excluded and statistics become straightforward.
For AgBr and AgC1 (rocksalt structure) the g values are
taken as 1, and o. is taken as 1 for the vacancy and 2
for the interstitial defect. So, in the above dilute case,
c*=~2. For PbF2 (fluorite structure) the most probable
values are n„= g„= g; =1 and o.; =1/2. In the Agl
case we set all n's and g's to 1. Equation (1) describes
an Arrhenius behavior for the defect concentration with
the slope

A(ln c)
A(1/T)

as long as LH*, i.e. , half of the erst Frenkel formation
enthalpy, is independent of temperature and concentra-
tion.

In many examples an anomalous increase of c, as com-
pared to Eq. (1), has been observed in a more or less
extended temperature range below the phase transition.
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In the case of P-Agl this phase transition is the first-
order superionic transition to the o. phase which exhibits
a "molten" Ag+ sublattice; for AgCl and. AgBr it is the
melting point, and for PbF2 it is a continuous (or dif-
fusive) superionic phase transition, resulting in a highly
disordered F sublattice. The ionic conductivity mea-
surements on those materials [AgC1 (Refs. 1—3), AgBr
(Refs. 4—6), AgI (Refs. 7, 8) and PbF2 (Refs. 9—12) are
considered here as the most obvious and well-studied ex-
amples] allow one to detect sensitively the deviation from
Eq. (1) (typically, c & 10 ) because of the defined con-
centration dependence of the conductivity.

Several attempts have been undertaken in the liter-
ature to explain this phenomenon. Schmalzried fol-
lowing an idea of Jost investigated the effect of volume
changes due to the Frenkel reaction on both the free en-
ergy of formation and the energy of migration. In the
light of later precision experiments (cf. also the review
by Friaufi4) the effect seems to be too low to explain
the major part of the anomaly. Batra and Sli&in
as well as Friauf showed that the prime reason consists
in anomalous concentration changes rather than mobility
changes. The attempts to explain the results in terms of
Debye-Huckel interactions or in term of ad hoc models,
which introduce a partial defect-defect interaction free
enthalpy (p;„&) being proportional to the concentration,
have not led to a satisfactory agreement.

On the other hand, Kurosawa showed in an early
paper that Debye-Hiickel effects (p;„& ci~2) may
lead to an instability reflecting a phase transition.
Later Strassler and Kittel, Rice, Strassler and Tombs
(RST),is and Huberman2o proposed models in which p;„q
is proportional to the defect concentration (quadratic de-
crease of the total free energy) with the explicit aim to
explain superionic phase transitions. In the RST ap-
proach the proportional behavior is attributed. to strain
e8'ects stemming from volume changes during the de-
fect formation; in this context the reader is also re-
ferred to Refs. 20(a) and 20(b). The approaches are very
much in the tradition of early melting theories (Frenkel,
Lennard- Jones and Devonshire, O'Reilly, 2 and oth-
ers). Again, though qualitatively helpful, these models
are —from a quantitative point of view —not satisfac-
tory. In terms of phase transitions Welch and Dienes
discussed the linear models in detail, even allowing for
a linear temperature dependence of the interaction free
energy. According to their analysis eventually the low
disordered phase transforms into a phase exhibiting a
very high defect concentration, which is better viewed as
a "weakly disordered interstitial crystal. " This means-
in a more or less symmetrical way —that the crystal with
c h (( 1 has transformed into a crystal with c (1—h),
resulting in a rather smooth change of the ionic conduc-
tivity. However, for most of the phase transitions to be
considered here, the conductivity changes abruptly from
a weakly disordered crystal with c b (& 1 to a disor-
dered state where c 0.5, i.e. , where cations or anions
are disordered over regular and interstitial sites. For this
reason Welch and Dienes introduced an ad hoc exponen-
tial damping term in their model. Since the symmetry of
the phase changes in the examples to be discussed (with

the exception of PbF2), a complete agreement between
phase transition temperatures which have been calcu-
lated in this way and those which have been experimen-
tally determined cannot be expected. This is especially
valid if the crystal melts. This point has been particularly
stressed by Talion. His statement, however, that both
states are thermodynamically independent is exaggerated
since both states contain the same composition and the
same ions; thus basically the same nature of interactions
occurs. As will be touched upon later, factors leading to
the conductivity anomalies in the low-temperature phase
are also the factors causing a destabilization of a highly
disordered high-temperature phase and thus a decreased
transition point compared to the ideal "Arrhenius crys-
tal. " This is also strikingly confirmed by the existence
of semiempirical relationships between properties of the
solid phase (e.g. , disorder energy, time constant of solid
state reactions) and melting temperatures.

In all the models discussed and in the model to be
described Eq. (1) may be rewritten as

c ( EGo +@.;„,(c))—= expc* i kT

where LG denotes now the standard formation value of
a defect pair, i.e., 2LG' for c —+ 0, i.e. , so to speak the
first formation value. The interaction has been put into

p;„q which can also be expressed in the electrochemical
language, as kT ln f (c), f being the activity coefficient.

II. CUBE-ROOT MODEL: GENERAL REMARKS

In the following we will show that the premelting con-
ductivity anomaly can be quantitatively described by
cube-root law for the excess chemical potential,

p;„~ ———Jc i = kTln f,

for AgCl, AgBr, AgI, and PbF2. In addition, it will be
shown that the same data set leads to a transition to a
really disordered state (c of the order 1/2) at the temper-
ature which is close to the actual transition temperature
(first-order superionic transition into o.-Agl exhibiting
cation sublattice disorder; continuous superionic transi-
tion for PbF2 into the high-temperature phase exhibit-
ing partial anion sublattice disorder; first-order transition
from the solid phase into the molten state, i.e. , total lat-
tice disorder for AgCl and AgBr). Moreover, the same
model is shown to be nicely consistent with data on the
specific heat.

Figure 1 shows how well the excess data given by
Aboague and Friauf ' for AgCl and AgBr can be fit-
ted by a c f law. In addition to this experimental ar-
gument, it is worth mentioning that a cube-root law is
known in liquid electrolytes to describe the activity co-
eKcients in concentrated solutions " above the validity
limit of the Debye-Huckel approach. The natural expla-
nation is that the defective solid can be efFectively de-
scribed —in a mean field sense by superimposing to
the regular ion lattice a defect lattice, which is charac-
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terized by a mean defect-defect distance given by c
Cube-root models are also known to be fulfilled in di8'er-
ent examples with respect to band gap narrowing rather
than to Debye-Huckel- or Thomas-Fermi-type models.
The interaction of excess electrons discussed in that con-
text is phenomenologically quite analogous to the inter-
action of excess cations and cation vacancies in the silver
halides. Kurosawa also mentioned a c / dependence
of the defect interactions in the context of assessing the
latent heat of melting. Unlike the c / dependence of the
Debye-Huckel and the c dependence in the Huberman
model, the c / dependence fulfills the requirement of a
sufficiently steep dependence on c to cause a transition
into disordered state.

III. THERMODYNAMICS)
EQUILIBRIUM DEFECT CONCENTRATION,

AND PHASE TRANSITION

Introducing the term —Jc / into the logarithm of the
activity coefficient and thus into the chemical potential
leads to an interaction term in the total Bee enthalpy,

C

p;„(c')dc' oc ——Jc ~ = —J'c ~,
4

and to a mean chemical potential P;„t = AG;„t/c or

s pint(c).
The total free energy of the crystal reads as follows:

G = Gp„r„t + c(AG —J'c'~ ) —TS, „f,

where

S, „f = k[clng g,. —2clnc —(cr —c) in(n„—c)
—(n; —c) in(n; —c) + n„ ln n„+ n, ln n;].

For J = J = 0 the equilibrium concentration is di-
rectly arrived at by setting clG/chic = 0 = p(c). As»e-
sult the equilibrium defect concentration e in the low dis-
ordered state is obtained. It is explicitly given by Eq. (1).
For J' g 0 g J the situation is more complicated. Denot-
ing the extreme value by c~, the equilibrium condition
results in the implicit equation, for c~,

EG —Jc~ ) c2@

( )kT ) g;g„(a; —c~)(n„—c@)

G4

tLi 0.1—
63

V

0.0
I I
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FIG. 1. Friauf's (Refs. 1, 14) excess free enthalpy data re-

plotted versus c reveals the validity of the cube-root law.

The equilibrium defect concentration c is that con-
centration among the set of the extreme values c~ for
which the free energy is absolutely the lowest G(c)
min(G(c@;)). Figure 2(c) shows the graphical solution
of Eq. (4) by analogy to Ref. 24. As shown in Fig. 2(a)
for n's and g's = 1, Eq. (4) has one or three solutions
corresponding to one minimum or two minima separated
by a maximum for the concentration dependence of the
total free enthalpy. The (AG —Jci~s)/2kT curve given
by the dashed line in Fig. 2(c) rotates with temperature
counter clockwise around the pivot point c = AII /J as
indicated. The behavior is similar to, but with the slope
steeper than, the linear model.

There are two scenarios. One is the appearance of two
minima for a relatively wide temperature range in the
vicinity of phase transition. At sufficiently high temper-
atures the minimum at high defect concentration may
become the absolute minimum and the first-order phase
transition occurs with the possibility of a kinetic hystere-
sis. The ln (c@) vs 1/T curve is shown in Fig. 2(b). It is

remarkable that due to the steep dependence of G on c
the high-temperature concentration is of the order of 1/2
and thus really results in a disordered state rather than in
a weakly disordered interstitial crystal (see above). The
other scenario is such that the absolute minimum in G
continuously shifts from a low to a high defect concentra-
tion value. Consider Fig. 2(b), which refers to the first
case; the concentration values of the absolute minimum
show an enhancement prior to the transition compared
to an Arrhenius behavior and a first-order transition at
that temperature where the two minima yield the same
G value [Fig. 2(a)]. In the limiting case leading to a
continuous transition the 1/T-ln(c@) curve exhibits an
inHection point with a horizontal tangent.

As shown in the Appendix the limiting case is obtained
by setting the first and second derivative of 1/T = f (c~)
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to zero. For o. = 1 we arrive at a limiting parameter ratio
(J/AH ) gpjt 4 /( 1 + jn 3/4 + AS /8k) and

corresponding concentration c„;q —1/4. This is graphi-
cally shown in Fig. 3. For an arbitrary power law form for
p, ;„t, oc c / the critical p value is obtained as (o., = 1)

+crit = (~+ ])1/m.

1+ +, (jnm+ ASo/2k)

and a corresponding concentration of c„;t ——(m + 1)
In the case of the often-used linear model (m = 1) we
have p„;t ——2/(1+ AS /4k) and c„;t——1/2, which again
points to the more realistic c values of the highly disor-
dered phase as m increases.

FIG. 3. Defect concentration as a function of tempera-
ture for diferent p = J/AH values. The case referring to
p = p „~ separates the first-order transition behavior from a
higher-order transition behavior. The bottom curve (p = O)

refers to the case without interaction.

IV. APPLICATION DF THE MODEL

I

O A. Conductivity experiments:
Premelting anomaly and phase transition

defect concentration

PIG. 2. (a) Two minima appear in the total free
energy [Eq. (3)] as a function of defect concentration
(Tq ( T2 ( . ( Tq) (b) The extrem. e concentrations cs
as a function of temperature. (c) Schematic representation of
the graphical solution of Eq. (4) in analogy to Ref. 24. The
solid line represents the term ln((1 —c)/c) oc DS, „r/Bc and
the dashed lines show the term (AG —Jc ~ )/2kT (circles,
absolute minimum; square, degenerate case; triangle down,
maximum; triangle up, relative minimum).

In the following we test the model by applying it to
various Prenkel disordered materials which have difFer-
ent crystal structures (AgC1, AgBr: rock salt; P-Agi:
wurtzite; PbF2. fjuorite), different disorder types (Ag-
halide: cation disorder; PbF2. anion disorder), and dif-
ferent types of phase transitions (AgI: first-order transi-
tion into the n-AgI phase exhibiting a molten Ag sublat-
tice; AgCl, AgBr: first-order transition into the molten
state; PbF2. continuous transition into superionic state).
Owing to the relationship cr = g cr~ =o; + cr„., where

o~ = z~ec~u~

(z~e, charge; u~. , mobility) the conductivity is an appro-
priate property to check models involving defect concen-
trations. Two points, however, have to be borne in mind:
(1) The mobility is temperature dependent via the acti-
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vation thresholds LH~ which have to be overcome by a
jump from one site to the next equivalent one, and (2) at
high defect concentrations it has to be considered that a
defect may be surrounded not only by regular neighbor-
ing ions and thus the mobility becomes weakly depen-
dent on the concentration itself. A somewhat corrected
expression for u~ reads

v, (n, —c ) f AH~)
T

'
xP I

—
kT j

Compound
~i) gi
O.'v) gv

AH /(eV)
AS /k
J/(eV)

10—
6/( cm K

)
H~/(eV)

p = J/AH
e

)crit

PbF2
1/2, 1
1, 1
1.08
8.48
0.75
0.088
0.18
0.694
0.779

AKCl
2 1
1 1
1.48
9.73
1.03

0.030
0.045
0.696
0.580

AgBr
2 1
1) 1
1.15
7.67

0.803
0.164
0.145
0.698
0.646

TABLE I. Defect thermodynamic parameters.

P-Agi
11
1 1
0.82
11.77
0.497
0.004
0.244
0.606
0.578

where the prefactor v contains quantities such as jump
distance, attempt frequency, and migration entropy. All
quantities besides the interaction parameter J are known
from the well-investigated behavior of the ionic conduc-
tivity at comparably low temperatures. Thus, the only
free parameter in our analysis is J. We obtained a slightly
better agreement by also adjusting the parameters v,LS, LH ) and LH~. It is very important to state
that in these cases the latter parameters are found to be
very close to the literature results. In the case of silver
halide the interstitial defect is much more mobile than
the vacancy so that we only have to deal with one defect
type as long as material is intrinsic. In the case of PbF2
there is some evidence that the situation may be more
complicated in that the material changes from a vacancy
to an interstitial conductor with increasing temperature
in the intrinsic regime well before the premelting regime.
In this case we used the low-temperature parameter set
to adjust J appropriately. Here we assume the vacancy to
be the mobile species over the whole temperature range.
For a more detailed discussion the reader is referred to a
special paper on PbF2 which we are preparing.

Figure 4 shows that our results nicely describe the con-
ductivity anomaly prior to the melting point for all the
materials considered. The relevant parameters are given
in Table I. It is the first time that such a quantitative
agreement has succeeded. Beyond that, even the tran-

Experimental data from
Experimental data from
Experimental data from
Experimental data from
See the Appendix.

Ref. 12.
Ref. 1.
Ref. 5.
Ref. 8.

B. Specific heat experiments

It is expected that the anomalous defect concentration
in the premelting region gives rise to an anomaly in the
specific heat. This has indeed been observed by difer-
ent authors [AgC1 (Ref. 30), AgBr (Refs. 30—33), P-AgI
(Refs. 34, 35), PbF2 (Refs. 36—38)]. We may split the
specific heat at constant volume into a part stemming
from phonons C;b and a part stemming from the point
defects Cd, p. We obtain (M, H /BT OJ/BT 0)

C~(.(T), T) =3 I +~Ho
OT

(5)

sition temperatures are predicted within an accuracy of
few percent. Since in these cases structural changes are
involved, a more detailed discussion is necessary (see be-
low).

1.5 2.0 2.5

10T (K )

3.0

FIG. 4. Temperature dependence of conductivity. Solid
lines were constructed according Eq. (4) with defect parame-
ters from Table I. Points present experimental data according
to PbF2, Ref. 12; AgCl, Ref. 1; AgBr, Ref. 5; AgI, Ref. 8.

In Eq. (5) the saturation limit has been used and differ-
ences between C~ and C~ have been neglected. The first
point is justified by considering the low Debye tempera-
ture [AgC1, & 210 K (Ref. 39), AgBr, & 160 K (Ref. 40),
PbF2, & 240 K (Ref. 41)] such that the Debye function
D(T/Oo) 1 in the premelting range of AgC1, AgBr, and
PbF2. Corrections with respect to the second point are
of the order of a few percent and may be neglected to a
first approximation.

Figures 5(a), and 5(b) show experimental data for CJ
of AgCl and AgBr. The solid line represents the theoret-
ical curve by using J values from the conductivity fits.
In the case of PbF2 the experimental uncertainty is con-
siderable. The upper line refers to the theoretical curve
using n„= 1, n, = 1/2, g; „=1 as done in the conduc-
tivity experiments. The lower line represents the curve
by using n„= 1 /2, n; = 1/4, g, „=2. The position of
the maximum is not affected. In all cases a reasonable
agreement has been achieved. AgI was not considered
due to unknown Debye correction at the relatively low
premelting temperatures.
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V. DISCU SSION
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FIG. 5. The specific heat of AgCl (a), AgBr (b), PbF2 (c).
Experimental data are from AgCl, Ref. 30; AgBr, Ref. 31,
Ref. 38 (PbF2, square), Ref. 37 (PbF2, triangle), Ref. 36
(PbF2, circle). The lines are obtained by using the pa-
rameters of the conductivity fits (Table I). Only the lower
curve in (c) was calculated using modified o. and g values
(n„= 1/2, n, = 1/4, g, ,„= 2). In all cases a correla-
tion from constant volume to constant pressure has been per-
formed ]omitted in Eq. (5)].

It is striking that good ionic conductors which are char-
acterized by low defect disorder enthalpies show low melt-
ing points [e.g. , T (NaC1) = 1074 K compared to 723 K
for AgC1 of the same structure]. Obviously, the reason
leading to a facilitated formation of defects is also re-
sponsible for the low disorder temperature. This may
indicate that a zero- J phase is not realistic and supports
in a qualitative respect the idea of "critical" defect con-
centration close to the melting point. These aspects
are highly supported by empirical rules connecting de-
fect properties to the melting points, such as Tamann's
thumb rule that solid state reactions (actually difFusion)
proceed. in reasonable times at temperatures higher than
2/3 of the melting point or the impressive relationships
between melting points and disorder enthalpies.

In the present paper a quantitative description has
been achieved by using a simple and eA'ective cube-root
law indicating that the defect-defect interaction can be
described in a mean sense by considering an effective de-
fect sublattice. Since the agreement achieved is com-
pletely sufIicient in view of the experimental error, a more
refined treatment taking into account volume changes,
variation of the mobility, the inclusion of Debye-Huckel
effects, and others requires a higher experimental accu-
racy. There are indications that the effective exponent
in a log-log plot may be somewhat higher than c /, but
this is probably an overestimation of the experimental
accuracy. It has already been stated that analogous laws
are found in liquid electrochemistry and semiconductor
physics to describe carrier-carrier interactions. Also,
such a law has been observed for the concentration de-
pendence of the defect association energy in Ce02. It
is probable that the correlation discussed above may also
apply to frequently observed anomalies in the atomic self-
dift'usion of metals prior to the melting point.

In order not to lose the phenomenologic generality, at
this stage, we do not intend to discuss the cube-root law
on a microscopic level, i.e. , to specify the type of interac-
tion. It can, however, be figured that long-range interac-
tions may scale with the mean carrier-carrier distance.

Again in an effective sense we may estimate that the
energy of the crystal is obtained by superimposing a de-
fect lattice of a mean lattice constant a~ g to the perfect
lattice (lattice constant a). We are well aware of the fact
that this is an efI'ective mean field argument, since we

are not assuming ordering eKects. On the other hand,
however, March and Tosi have indeed shown that the
Madelung energy of a molten salt in which ions may be
assumed to be more or less randomly distributed is sim-
ilar to the Madelung energy of the respective crystal.
Since for the materials under investigation p;„t and AH
are, for a 6.rst approximation, via the inverse dielectric
constant proportional to the Madelung energy of the
defect lattice and to the Madelung energy of the perfect
lattice, respectively, in this extremely rough approach
pc / is proportional to (z&,&(g ro, &,&)/(z (a ) (where z
is the charge, ( the Madelung constant) and thus for
the cases considered p (d,r/(. Also in the asym-
metrical compound PbF~ this is a reasonable approxi-
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mation since effects concerning charges and eKects stem-
ming from the more complicated relation between a, aQ f,
and c partly compensate. In this case ( is the reduced
Madelung constant. It is very encouraging that the p val-
ues in Table I indeed turn out to be approximately of the
order of 1 independent of the material considered. Even
the fact that the p values are slightly lower than unity
may be understood in this way for AgCl and AgBr, for
which reliable data are available. The empirical ratio of
lattice enthalpy and the product of e and L~H is not
unity but rather 0.7 . On the other hand we have to
consider the factor of 4/3 when transforming Gibbs en-
ergies into chemical potentials. Altogether a value p ( 1
would demand a Madelung constant for the defects lat-
tice which is somewhat lower than that of the crystal
lattice. Interestingly, indeed such a lower value has been
suggested by March and Tosi as the "liquid Madelung
constant. " However, due to the crudity of the model, we
consider the success of such refinements probably acci-
dental.

Moreover, the proportionality of J and LH empha-
sizes that the pure Arrhenius crystal is unrealistic, that
the defects necessarily interact, and that easily disorder-
ing crystals (generally good ionic conductors) necessarily
exhibit low melting points.

As shown above, not only the premelting behavior but
also the phase transition temperature can be described
for the Frenkel and anti-Frenkel disordered AgCl, AgBr,
AgI, and PbF2. Since in the case of PbF2 the struc-
ture does not change, the presuppositions of the model
are best fulfilled and the agreement achieved is very im-
portant. Moreover, the agreement also is surprisingly
good for AgI where a first-order transition occurs to the
o.-AgI phase exhibiting a difFerent structure. It even suc-
ceeds for the melting processes in the case of AgCl, and
AgBr. At best it could be expected that the disorder
model described gives an upper limit of the phase tran-
sition. If the agreement is not accidental, we have to
assume that the major reason for the relative lowering of
the free enthalpy of the actual high-temperature phase is
based on the same grounds which are responsible for the
defect-defect interaction. Or more precisely, the struc-
tural changes of the hypothetical disordered solid high-
temperature phase into the real high-temperature phase,
i.e. )

AgI (hypothetical disordered P-phase)
AgI (n-phase)

AgBr (hypothetical disordered rock-salt structure)
AgBr (liquid),

are, at the transition point, not accompanied by a ma-
jor free enthalpy change any more. This is definitely not
true at temperatures well beyond T . This hypothesis
may be checked in more detail by computer experiments
and more advanced theories of liquids. There is also the
possibility of a compensation efFect between the conse-
quence of the neglect of the real structure of the high-
temperature phase and an overestimation of the free en-
thalpy value in the low-temperature state by neglecting

structural modifications in the low-temperature phase.
The effect of the J term (compared to the ideal Arrhe-
nius phase where J = 0) on the G(T) curve of the phase
is mainly to stabilize a disordered high-temperature (HT)
phase and to reduce drastically the transition point com-
pared to the zero-J phase. Owing to the large steepness
of the G(T) curve for the HT phase, the transition acts
not very sensitively on the variation of the defect for-
mation parameters. Thus an overestimation of the free
enthalpy for the HT phase does not result in a large error
with respect to the temperature. A fact that is puzzling
us in this context is that the calculated free enthalpy of
the virtual phase is lower than actual values given in the
literature. How far this is afFecting the concept or how
far experimental errors are important has to be further
clarified.

Since (homogeneous) doping substantially changes
the carrier concentrations, the experimentally observed
changes of the phase transition temperature with the
doping concentrations is qualitatively understandable. A
more quantitative approach is being prepared for PbF2.

As shown in Ref. 53, large deviations of the ionic point
defect concentrations from the bulk values may also occur
in boundary regions. As a consequence, surface premelt-
ing and also surface phase transitions may occur even un-
der conditions where the bulk is not yet affected. Thus,
interactions among chemical excitations may be the rea-
son for such phenomena observed in CsHSO4. ' Also
phenomena such as amorphization in composite elec-
trolytes ("heterogeneous doping"), phase transitions in
thin films, or grain boundary melting may be at least
partly —traced back to these grounds. As already men-
tioned, an analogous interaction eKect in semiconductors
is the band narrowing due to the interaction of the elec-
tronic carriers. In light of these considerations it is very
tempting to explain the efFect of surface metalization and
surface melting very recently founds7 in Ge (ill) in the
same way. The analogous behavior is augmented by the
fact that the band narrowing effect has been shown to
follow a cube-root law in difFerent cases.

VI. CONCLUSIONS

We have shown for various Frenkel disordered mate-
rials that a cube-root term in the chemical potential of
the defects is able to describe quantitatively the anoma-
lous defect concentration at high temperatures below the
transition to a sublattice-disordered or totally disordered
(molten) state. Even the transition temperature (PbF2.
continuous solid/solid; AgI: first-order solid/solid; AgBr,
AgCl: first-order solid/liquid) can be predicted nicely.
We have given a necessary criterion for the limiting case
of a second-order transition. These considerations do
not only have an impact on the relationship between
the molten state and point defect disorder in the low-
temperature phase, but are also relevant for the discus-
sion of solid solutions, the occurrence of nonlinear kinet-
ics, and the discussion of phase transitions at interfaces.
There is no doubt that the given treatment has neglected
difFerent important features, such as structural changes
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or the appearance of additional defect types (e.g. , Schot-
tky disorder, etc.). However, a simplified lattice model
reproduces the fact that the effective chemical interaction
potential is —AH c / .
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Thus, a necessary condition for a first- or second-order
transition is (u = 0 )

X/m
a, + a

a; —( a„—(
= m. (A1)

u' = V(.„g L(&- t)

For p = J = 0 obviously no solution exists (no interac-
tion), whereas for p ~ oo the bracketed term needs to be

I I

zero. The second derivative iI" = " „,"" at the ( value
at which rl' vanished, reduces to rl" = v/u'. The critical
case demands g" = 0 with the consequence that

APPENDIX: CRITERION
FOR SECOND-ORDER PHASE TRANSITIONS

IN A POWER LAW MODEL

Generalizing cits to c ~, Eq. (4) can be recast as

X g

m(cr|t .
*. ~ +(~i-C-;.) (~.-~.-')

i + a'v
(a, ( „t) (n„(„;t)

(A2)

L(&)
~(() = (,]

where rj = AH /kT, ( = c@, p = J/AH, and

L(() = ln —AS /k.
i O.v

The limiting case from a first-order to a higher-order
transition is obviously characterized by g' = g" = 0.
Writing q'—:u/U we have

crit
1

1+m

Inserting («,t into Eq. (Al) yields for m = 3 the cijtical
p value

We arrive at the („;t value given by the cubic equation.
The („;& value is obtained by setting the bracketed term
in Eq. (A2) to zero. The general solution is too clumsy
to be given here. For the special case that o.i = o.„=1
we simply find

m—
Cki

Ct

41/3

1+ ln 3/4+ b, so/Sk

The other solution of Eq. A2), viz. , ((zi = exp(ASo/
k)/[I + exp(b, S /k)] and p i = exp( —b, So/k) + 1, can
be discarded since the denominator v vanishes too.

In order to calculate p„;t for n; g n„Eq. (A2) has been
solved for the specific materials considered (see Table I).
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