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I. INTRODUCTION

The iron oxide wiistite, Fez 0, exhibits an extremely
large deviation &om stoichiometry, x, which extends
from 5% up to 15% as shown the phase diagram (cf.
Fig. 1). The nonstoichiometry, x, is due to an oxida-
tion of divalent iron to trivalent iron. It can be adjusted

2by temperature, T, and oxygen partial pressure, po, .
In comparison to other transition metal oxides, such as
Niq 0, Coi 0, or Mni 0, which also crystallize in

the Nacl structure and where x is very small (x ( )
at low oxygen partial pressures, wustite exhibits a mini-

mal cation deficit of about 5% even at the lowest possi-
ble oxygen partial pressures in equilibrium with metallic
iron. At high oxygen activities, where 2: may reach 15%,
the neighboring phase of wiistite is magnetite, Fes04 (c .

Fig. 1). It crystallizes in the spinel structure, where the

oxygen ions form again a fcc sublattice, while the iron

ions, Fe + and Fe +, now occupy both the octahedral
and the tetrahedral sublattices. Because of the large
values of x and the similarity of the structures, there
have been several attempts to explain the defect struc-
ture of wustite by defect aggregates which are precursors
of the spinel structure. The simplest subunit in this sense
would be a cluster formed by a trivalent iron ion in the
interstitial (tetrahedral) sublattice of wiistite and four

neighboring cation vacancies (occupying octahedral sites
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FIG. 1. Phase diagram of iron-oxygen after Muan and Os-
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achieve the equilibrium conditions.
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in the regular cation sublattice). This so-called 4:1 clus-
ter (cf. Fig. 2) possesses five negative charges relative to
the ideal lattice. Larger m:n clusters composed of m va-
cancies and n interstitials can be formed according to the
same building principle combining several 4:1 clusters, ei-
ther edge, corner, or face sharing. In addition the charge
state of the clusters might change by binding electron
holes, yielding clusters with negative effective charges be-
tween 0 and 5. On the other hand, defects in the oxygen
sublattice are more unlikely than defects in the cation
sublattices because of the large size of the oxygen ions
compared with th.e iron ions. Indirectly this is reflected
by the very small diffusion coefficient of oxygen com-
pared to that of iron. This picture of the defect struc-
ture of wustite is confirmed by theoretical calculations
of the formation energies of clusters in transition metal
oxides. Particularly in wustite, they yield high bind-
ing energies of the 4:1 clusters, which. stabilize them even
at elevated temperatures. The results of the first neu-
tron diffraction study of wustite by Roth were already
interpreted in terms of clustering of defects. Since then,
wustite has been regarded as the prototype of a strongly
disordered crystalline compound containing defect clus-
ters. One should perhaps note that the term clustering
commonly used in this context could be misleading, since
the correlation between cation vacancies and interstitials
can in fact be understood as an ordering tendency and.
in this case presumably towards the neighbored spinel
phase.

However, the exact defect structure, i e. , the de-
fect configuration and the associated displacement fields
around the defects, is still under discussion, despite the
numerous experimental investigations. These can be
divided into two classes: In structural investigations,
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FIG. 2. Wiistite structure. Ideal vriistite would have the
NaCl structure. One of the proposed defect clusters, the
so-called 4:1 cluster, is shown also in the unit cell. It consists
of a tetrahedral cation surrounded by four nearest cation va-
cancies. This 4:1 defect cluster is expected to have the charge
5—,since there are four 0 and one Fe + interstitials.

x-ray, neutron, ' and electron, diffraction
and scattering methods as well as Mossbauer and per-
turbed angular correlation (PAC) spectroscopy20 were
used to study polycrystalline and single-crystalline sam-
ples. As a result of these studies clusters of different
size and composition were proposed, ranging from the
2:1 Roth clusters and 4:1 clusters, to 13:4 clusters or
even larger aggregates. A compilation of all proposed
cluster types can be found in Ref. 21. However, many
of these structural studies were done on quenched sam-
ples, which raises doubts as to whether the defect struc-
ture at high temperatures has really been observed. Due
to the very short relaxation times of defect equilibria at
high temperatures, it seems more probable that a de-
fect structure &ozen-in at intermediate temperatures has
been seen in these experiments. The results of these stud-
ies become even more questionable when one notes that
the wiistite phase is thermodynamically stable only at
temperatures above 570'C and oxygen partial pressures
—26 ( logic pQ, ( —6 (pQ, in bar). Below this tem-
perature wiistite decomposes into iron and magnetite.
This means that iron and spinel Fe3O4 precipitations
could affect experiments on quenched samples. Prom
in situ Rietveld experiments occupation numbers for
regular and interstitial lattice sites were obtained &om
which the ratio of vacancy and interstitial concentrations,
p =[V]/[Fel], can be calculated. For one composition,
x=0.08, the authors report with increasing temperature,
850 & T & 1100'C, increasing p values, 2.6 ( p & 4.3,
which they interpret by a transition &om large clusters at
low temperatures to smaller clusters and &ee vacancies at
high temperatures. Diffuse scattering experiments offer
a direct approach to the local order. Koch and Cohen
proposed on the basis of such measurements on quenched
samples a 13:4 cluster, which is formed by, 4:1 subunits,
to be a typical element of the defect structure. In partic-
ular one difFuse x-ray experiment was carried out under
in situ conditions. i~ It was concluded &om this measure-
ment that the typical cluster should consist of two in-
complete corner-sharing 4:1 clusters aligned along (110)
directions. In contrast to these structural investigations
thermodynamic and transport measurements were per-
formed to obtain the nonstoichiometry, tracer-diffusion
coefficients, ' '2 the chemical diffusion coefFicient, the
electrical conductivity, ' and creep data2 as function
of T and po, . These data can be obtained under in situ
conditions and were used to model the defect structure of
wustite and to test proposed cluster models. ' ' How-
ever, again a wide spectrum of clusters ranging &om 4:1
to 13:4 clusters, sometimes with a periodic spacing, was
deduced &om the macroscopic observations. Guided by
superstructure peaks in TEM studies on quenched and
annealed samples, new phases, P' and P", were also pro-
posed and their possible existence at high temperatures
was discussed.

The above discussion shows the need for an extensive
structural study of wustite under in situ conditions cover-
ing several temperatures and compositions and yielding
sufficient information for a sound structure determina-
tion. Therefore we have performed in situ diffuse elastic
neutron scattering experiments, the results of which we



DEFECT STRUCTURE OF FERROUS OXIDE Fe& „0 j.5 773

have analyzed using diferent types of data analysis to de-
duce the defect structure under equilibrium conditions.
The remainder of the paper is organized as follows: in
Sec. II we describe the experimental procedure and the
results, part of which has been published before. In Sec.
III one particular data set is used for a Fourier analysis,
from which occupation numbers in the difFerent sublat-
tices and short-range-order parameters can be obtained.
On the basis of these results, Sec. IV introduces a simple
defect model which uses the Kanzaki-force approach to
calculate the displacement fields around the defects and
describes the experimental results well. In Sec. V the
results and possible ixnplications are discussed.

II. EX.PER.IMENTAI METHDD AND
MEASUB.ED DIFFUSE INTENSITIES

A. Samples and environment

Two single-crystalline samples were prepared from iron
Fe and hematite Fe20s (purity of the samples 0.99999)
under 2 x 10 mbar oxygen partial pressure in a cold
levitation crucible by the Czochralski method. Large
specimens of good quality were grown along a (100) di-
rection up to a size of about 10 x 10 x 40 mm . The
mosaicity was found to be better than 2 FWHM, being
sufBcient for the difFuse-scattering experiments.

The samples were spark cut and further cut by a dia-
mond saw in order to facilitate mounting the specimens
with either the (100) or (110) planes horizontal on an
A1203 sample holder. Thin platinum spacers were used
to avoid direct contact in order to prevent any chemical
reaction or interdict'usion of the two oxides.

We used a special furnace, in which the de6ned oxy-
gen. partial pressure was achieved by a constant ffow (37
l/h) of a CO/CO2 gas mixture of fixed ratio and at nor-
mal pressure through the sample chamber. Various gas
mixtures were produced by the gas mixing pumps which
enabled us to change the oxygen partial pressure at ambi-
ent temperatures 2 determining the deviations from stoi-
chiometry, x, of the Fe~ 0 sample at high temperatures.
The relaxation times for equilibrating the sample after
changing the How gas mixtures were in the order of 1 h
at 1423 K. These times are determined by the time to
establish the new gas mixtures in the furnace volume as
well as by the diII'usion properties of the sample. The
change in x means that the single crystal has to grow or
to shrink (up to 9% in volume) by exchange of oxygen
with the gaseous phase and diffusion of the cations. In a
similar study ' on Mn~ ~O the surface became porous
because of this. Here, in the case of Fe~ 0, however,
the surface remains smooth. Temperatures were changed
only slowly as required by the sensitive ceramic interior
of the furnace. Heating and cooling at a rate of 200 K/h
gave reproducible diIII'use scattering results between 723
and 1423 K. The temperature was controlled by two ther-
mocouples (PtRh6-PtRh30). The temperature gradient
at the sample position was about 5 K/cm. The absolute
accuracy of the measured temperature was estimated to
+10 K.

B. DifFuse neutron scattering experiments

The di6'use neutron scattering experiments were per-
formed at the time-of-flight (TOF) spectrometer for dif-
fuse scattering, DNS, in Julich, using a wavelength of
A = 3.3 A. . By the TOF measurements the diffuse elastic
signal can be easily distinguished from the high back-
ground due to inelastic scattering events. Typical time-
of-ffight spectra for Fei 0 (+=0.08 and T=1423 K) and
a particular sample orientation are given as examples in
Fig. 3. The signals of interest, the elastic difFuse intensi-
ties, are centered at TOF channel 88. Most apparent
for shorter times of Rights, further neutrons were de-
tected which have gained energy by inelastic, (multi-)
phonon scattering but also by quasielastic paramagnetic
scattering events. The broadening of the elastic intensity
is in general fully described by the instrumental reso-
lution. The elastic scattering at high scattering angles,
Fig. 3(a), is low in this particular case and compara-
ble to the weak background due to incoherent scattering
of iron. At low scattering angles, Fig. 3(b), the elas-
tic scattering intensity is typically also low. In addition,
a broader additional air scattering becomes just notice-
able by a line shape analysis around the elastic line. The
strong elastic intensity [cf. Fig. 3(c)] corresponds to the
most intense difFuse elastic peak. In most cases the en-

ergy resolution of 1 meV (FWHM) was sufficient to sep-
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FIG. 3. Typical time-of-Bight spectra as measured for
Fep.g2O at T=1423 K for one sample orientation. The elastic
scattering appears around channel 88. In addition a high in-
elastic scattering background, in particular in energy gain of
the neutrons at shorter times, is seen due to (multi-) phonon
scattering and paramagnetic scattering events. Examples
show the variations of elastic scattering intensities, which may
be small at high (top) as well as at low Q vectors (middle) in
comparison to the maximum of the di8'use elastic intensity at
h = (1.63, 0, 0) (bottom).
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nonstoichioxnetries +=0.063, 0.076, 0.079) and with sam-
ples slowly cooled to room temperature. At the highest
temperature, T=1423 K, the study was extended to dif-
ferent deviations &om stoichiometry achieved by various
flow gas xnixtures of CO/CO2 (see Table I). At 1423 K
with 2:=0.08 and at room temperature we also measured
two-dimensional data in a (110) plane. During heating
(e.g. , Fig. 4) and cooling, and also during the changes
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FIG. 4. Variation of the diffuse elastic peak intensity at
h = (1.63, 0, 0) during heating in a CO/COq atmoshere
of ratio one. The discontinuity around 650 K indicates
the phase transition from a metastable long-range-ordered
wiistite to the homogeneous, however still metastable, dis-
ordered wiistite phase. At higher texnperatures the inten-
sity is steadily decreasing without any particular changes at
the boundary to the stable wiistite phase Beld at 850 K and
slightly rising again above 1300 K. (c)
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arate by fit procedures the elastic scattering from the
inelastic background. I)mthermore, a few detectors were
also affected by background contributions due to the fur-
nace, i.e., the Debye-Scherrer rings of the PtRh heating
element. The magnitude of this background scattering
was determined by measurements of the empty furnace.

At each measured composition ar d temperature we ro-
tated the sample in steps of 2.5 and collected simul-
taneously with 64 detectors the diffuse-scattering in a
wide angle range (2 —132'). The measurements for one
plane covered typically 3000 up to 5000 TOF spectra.
Due to the high Bux —the monochromatized beam was
horizontally and vertically focused —such measurements
took less than a day with generous counting statistics,
i.e., in the order of 10000 thousand counts of elastically
scattered neutrons in the dift'use peaks. As usual the
calibration was done using the incoherent scattering of
vanadium as reference.

We measured the dift'use elastic intensities of wiistite
single crystals at various temperatures and various devia-
tions &om stoichiometry. Two-dimensional data sets in
a (100) plane in reciprocal space were measured both in
the stability Beld of wustite, at T = 1023, 1273, and 1423
K, using a CO/CO2 ratio of one (which corresponds to

TABLE I. Measuring conditions of the Fez 0 single crys-
tal for the difFuse neutron scattering experiments. The devi-
ation from stoichiometry x is determined by the temperature
and the oxygen partial pressure achieved by COq/CO Sow
gas mixtures.

(e)

/'

(g) @ . . (h)

(

L
FIG. 5. Contour plots of the measured disuse elastic scat-

tering intensities, all in the (100) plane, except (d) showing
the (110) plane. (a) At RT a long-range-ordered phase is
observed coherent to the parent wiistite structure. (b)—(d)
and (f) show the variations with temperature at constant
ratio CO/COg = 1: (b) 1023 K, (c) 1273 K, (d) and (f)
1423 K. (d)—(h) show results at high temperature, T=1423
K, as a function of the nonstoichiometries: (d) x = 0.079, (e)
x = 0.054, (f) x = 0.079, (g) x = 0.104, (h) x = 0.131. (h)
x = 0.079. Contours are given in steps of 0.1 b/sr. The bcc
Brillouin zones of fcc cation sublattice are indicated in the
6gure.



DEFECT STRUCTURE OF FERROUS OXIDE Fe& „O 15 775

of the oxygen partial pressure we measured the difFuse
scattering also at the most intense diffuse peak.

C. Experimental results

After slow furnace cooling (= 200 Kjh) of the speci-
men, but also just after the single-crystal growth, an in-
commensurate long-range-ordered phase was found with
reciprocal cell vectors b = 0.37(1,0, 0) as shown in
Fig. 5(a). In some cases additional peaks also occurred
with b = 0.37(1,1,0). These long-range-ordered, incom-
mensurate phases (P' and P") have been reported pre-
viously from x-ray scatterings and TEM studies. ~

( The
latter found similar results for quenched samples and for
samples annealed at 300 C, because it was not possi-
ble to quench in the structure from 1000 C. In addition
the TEM images showed 110-Bragg peaks, referring to
the Fe0 unit cell, which indicate a precipitation of the
neighbored spinel phase Fes04. )

In order to explain the peak intensities measured
by Koch and Cohen, models of the superstructure
were devised including not only occupational ordering
of Fe vacancies and interstitials, but also displacive
modulations. ' Note that according to the phase di-
agram in Fig. 1 tais long-range-ordered wustite phase
should be only metastable compared to a two phase mix-
ture of iron and magnetite Fe304. However, within our
experimental resolution our crystals show no indications
of any iron or Fe304 precipitates. The diffuse scattering
as a function of the scattering angle, including the peak at
h = (1.63, 0, 0), was measured during heating (cf. Fig. 4)
and cooling, and an order-disorder phase transition oc-
curred around To ——(623 + 50) K. While at higher tem-
peratures the peak intensity increased with lowering the
temperature, at To a discontinuous transition occurred
with a clear loss in the difFuse peak intensity. During fur-
ther cooling the intensity increased again. No particular
change of the difFuse scattering was found at the equilib-
rium phase boundaries at temperatures around 843 K.

The diffuse elastic scattering results for the high tem-
perature measurements under equilibrium conditions are
shown as contour plots in Figs. 5(b)—5(h). For all mea-
surements at different points in the stable wustite phase
Geld, we found a pronounced difFuse scattering around
the 200 Bragg peak. The two common features which
evolve with increasing nonstoichiometry are first, a dif-
fuse peak at h (1.63, 0, 0) (the position of the superlat-
tice spot at low temperatures) and second, two subsidiary
peaks which appear at h = (2.2, +0.4, 0). Apparently,
the defects in the equilibrium high-temperature phase
produce a markedly, qualitative difFerent scattering pic-
ture compared to the room temperature data. In corn-
parison to the long-range-ordered phase no diffuse peaks
were found at the other superlattice positions, which is
contrary to the earlier expectations resulting from x-
ray measurements. The 6rst x-ray in situ measurements
of Koch and Cohens showing the raw data along a (100)
direction are consistent with the observed asymmetry of
the intensities at h = (2 + b, 0, 0) found here. With in-
creasing deviation from stoichiometry, x, these disuse
peak intensities grow fairly linearly to x. However, look-
ing closer to changes in the shape of the difFuse peak,

TABLE II. Neutron scattering lengths, incoherent scatter-
ing, and thermal neutron absorption cross sections (Ref. 37).

Fe
0
V

b

yP ~~ cm
0.9450(20)
0.5803 (4)

~inc
1O '4 cm'
0.40 (11)
0.00 (8)
5.08 (6)

yp

2.56(3)
0.00(2)
5.08(4)

III. ANALYSIS OF THE DEFECT STRUCTURE
AND DISORDER IN FeQ,9QO AT T=1423 K

A. Scattering formulation

In order to facilitate the interpretation of the diffuse-
scattering data, we begin by describing the relation-
ship between this scattering and the real-space struc-
ture of the material. The diffuse scattering of binary
solid solutions on multiple sublattices has been treated
by Hayakawa. For the Fourier analysis described below
we follow his approach closely. Here we give also a for-
mulation as required for the Kanzaki model calculations
presented in the next section, and give a brief discussion
of various formulations used in the literature.

The diffuse scattering in Fez 0 is likely due to the fol-

one notices at lowest nonstoichioreetr, x = 0.054, that
the diffuse intensity around h = 0.82 (2, 0, 0) appears
more like a shoulder, while with increasing concentration
of defects the relative intensity maximum becomes more
pronounced, and also extended perpendicular to the [100]
axis. It is noteworthy that close to the Bragg peaks no
significant indications of any Huang scattering can be
seen, which are expected to be caused by long-range dis-
placement fields of the defects.

In Fig. 5(d) the diffuse scattering in the (110) plane
at 1423 K and x = 0.08, is shown. An additional diffuse
peak was found at h = 0.82 (1, 1, 1). Together with
the data of the (100) plane [cf. Fig. 5(f)] these were
analyzed in terms of three-dimensional short-range order
and displacement parameters, as it is discussed below.
All neutron scattering properties required for the data
analysis, such as the cross sections for the coherent and
incoherent scattering and also for the absorption, were
taken from the compilation of Sears (see Table II).

Regarding the temperature dependence of the difFuse
scattering in the (100) plane as measured for T =973,
1273, and 1423 K [see Figs. 5(b), 5(c), and 5(f)] at a con-
stant ratio of CO/CO2 ——1, which means also a similar
nonstoichiometry x, one notices only a slight variation of
the diffuse intensities.

The Brillouin zones of the fcc cation sublattice are also
shown in Fig. 5. At least one point becomes immedi-
ately obvious: only short-range ordering of cation va-
cancies cannot explain the scattering pattern, since then
one should observe exactly the translational symmetry
properties of the Brillouin zones. Taking interstitials into
regard as well, it is possible to explain parts of the differ-
ences for instance between the diffuse scattering around
the origin and around the 200 Bragg peak. I"urthermore,
lattice displacements ought to be important to describe
the asymmetry across the 200 Bragg peak, as it is dis-
cussed later.
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lowing defects, relative to the ideal NaCl structure, along
with the correlations of these defects. We assume that
the anion sublattice (fcc) is always completely filled by
oxygen, c,„b——1, and no interstitial oxygen exists, c,„t=
0. The cation sublattice (fcc) may contain vacancies,
with a concentration c,„b——c,„b——1 —x

&
——1 —c,„b,

and iron ions may be found on the tetrahedral interstitial
sites; c;„g——c;„',= 2 i = 1 —c",„,') where p = S„~,/N;„g
is the ratio of vacancies to interstitials. The tetrahedral
interstitial sites form an Be sublattice, which has twice
as many sites as the cation sublattice. For simplicity of
notation, we 6nd it convenient to separate the intersti-
tial sublattice into two distinct fcc sublattices, identical
to the cation sublattice. For this reason, the sums below
over sublattices should be thought of as sums over three
sublat tices.

In order to describe the defect correlations, we intro-
duce an occupation variable c, (R) = 1 or 0, if a lattice
cell at the site R of the sublattice s is occupied by Fe
or not. The correlations of the occupational fiuctuations
are de6ned by

g, . (R —R') = (c.(R)c. (R')) —c,c, .

The self-correlation function for R = R' is

o = ) g (0) = c b(1 —c b) + 2c;„'i;(1—c;„'e). (2)

We de6ne the difference vector R~ = R —R'. The
Cowley-% arren short-range-order parameters n for
binary solutions on one (sub-)lattice are then expressed
by

where N is the number of unit cells in the system,

A(Q) = ) ) 6'(r)e e'1',
F

W* is the Debye-Wailer factor, and 6'(r) denotes the
scattering amplitudes at the particle positions. For crys-
talline material it is convenient to use c, (R) if an atom
of type i is in a unit cell around the mean lattice site
R„where s labels the sublattices. Since the atoms
may be displaced &om the mean lattice sites R we have
r, = R, + u(R, ). The elastic difFuse-scattering mea-
surements, with an energy resolution of 1 meV, obtain a
quasistatic picture of the short-range order and static
lattice displacements (equivalent to x-ray diffraction),
which is appropriate for the formalism described here.
The phonon contributions were separated experimen-
tally. Therefore thermal displacements are not treated
here.

The difFuse-scattering amplitude, due to the disorder
in the crystal, is obtained with respect to the scattering
of the mean lattice:

Ag(Q) = A(Q) —(A(Q)).

However, in model calculations within the single de-
fect approximation one typically refers to the ideal lat-
tice instead. The Fourier analysis is based on a Tay-

We also use the indices lmn, rn = (l, m, n), for conve-
nience, where the length unit is a/4 and a is the lattice
constant. It is further useful to distinguish three types of
correlations (adopting the notation of Hayakawa etal. ss,
and Gartstein et aLii): The first type (220), for which
all L, m, n are even and Mod(l+m+ n, 4) = 0. This con-
dition applies to all site separations on the cation sub-
lattice, and to some of the separations on the interstitial
sublattice. The second type (200), for which again all
l, m, n are even but Mod(l + m+ n, 4) g 0. This applies
to those separations on the interstitial sublattice which
do not correspond to fcc lattice separations. The third
type (ill), for which all l, m, n are odd. This condition
applies to intersublattice correlations only. The result-
ing collection of separations has bcc symmetry proper-
ties. Because of the symmetry properties corresponding
to these di8'erent types of correlations, it is possible to
distinguish most but not all of them by a Fourier anal-
ysis of the disuse scattering. In the following, we shall
also use the indices in braces (220), (200), and (ill),
respectively, in order to denote these three types of cor-
relations. The Brillouin zones for these three types of
correlations describe the translational symmetry proper-
ties of the short-range order are shown for the (100) plane
in Fig. 6.

The total (elastic) difFerential scattering cross section
per unit cell is written in the kinematic approximation

FIG. 6. Zone boundaries in the (100) and (110) planes for
three types of correlations (i) on the fcc cation sublattice, (ii)
on the sc interstitial sublattice of tetrahedral sites (dotted),
(iii) between these two sublattices (dashed).
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—2W'

d+ d dO Laue

x ) (n +i+ p ...)e'+ (7)

where

dO Laue
pbFe ~

2

lor expansion of the phase factors [see Eq. (5)] assuming
that Q u(R, ) « 1. One then obtains for the difFuse-
scattering cross section

lowing Fourier analysis based on Eq. (7) we neglect the
second-order displacement terms. Here, in view of the
investigated Q range, these are expected to become im-
portant only for the Huang scattering close to the Bragg
peaks. However, a real-space approach to the Huang
scattering would demand an infinite number of param-
eters for both linear and quadratic displacement terms.
On the other hand, the reciprocal space approach in Sec.
IV allows for the inclusion of the entire long-range dis-
placement fields and also a consistent treatment of these
second-order terms.

a =) g, . (R )/gp,
8,8'

(9)
B. Fourier analysis

= ) 2 ) b'b'(c', (R) ',c, (R'))u
88I Fe tjgpb2

(10)

and

(c', (K)c.', (K') [u(R.) —xx(R'. )])
(c'.(R)~ (R'))

is the mean displacement (averaged over both positions
and sublattices) between atoxns of type i and j at a dis-
tance R~, and 6 and g are Fourier coefficients for
short-range order and displacements, normalized with re-
spect to the Laue scattering of both interstitials and va-
cancies (as done by the authors of Refs. 38 and 11). Thus
6p = 1. We have used. the same Debye-Wailer factors lV
for Fe and 0 atoms, W = R(P)2, where the tempera-

2
ture factor B = 3 A was chosen for Fei O, x=0.08,
and T=1423 K (see Radler et aLx5).

The usual Cowley-Warren short-range-order parame-
ters for the intrasublattice correlations can be obtained
by comparing Eqs. (3) and (9). However, for the intersub-
lattice correlations it appears to be more obvious to in-
terpret those 6 by the correlation function g, , (K—K')
as defined by Eq. (1).

Alternatively, and conveniently for our model calcu-
lations, we may decompose the actual scattering am-
plitude into an average and (only) one fluctuating
part: g,. b;c', (K) = b, + Ab, Ec,(R), where b,

(g; b'c', (R))xt and bb, bc, (R) = (bi —b2)(c, (R)—c, ).
If one assumes, for convenience, that Q u(R, ) « ]., one
has for the disuse-scattering amplitude

A(Q)g = ) ((Kb, bc, (R) + b, ) e '+' ( ') —b, }e

= ) (b,b.Ac. (R) —i Q u(R. )
8iR

x [b, + bb, &c,(R)])e (12)

Equation (12) is identical to known expressions, as given
for instance by Khachaturyan, apart &om labeling var-
ious sublattices. It yields intensity expressions [using
Eq. (4)] which include the first- and second-order dis-
placement terms and is used for the model calculations
in Sec. IV. This formulation is coxnpatible with Eq. (7)
or similar expressions used more &equently. For the fol-

TABLE III. Fourier coefficients of short-range-order n~

for Fep.g20 at T=1423 K. The n& are distinguished by the
types of possible correlations between tetrahedral interstitial
sites (int) and substitutional cation sites (sub). Furthermore,
the limiting intervals (Miner~, Maxn~ ) due to 2: and p
are given. ctppp = 1.02 + 0.09.

&lmn
int-int4(lmn) iut-sub 4(lmn) sub-sub 4(lmn)

int-int
(-0.095,1) (-0.003,

0.216)
200 -0.025(18)
222 0.001(20)
420 -0.005(16)
600 0.011(26)
442 0.021(12)
622 0.006( 8)
640 0.004( 6)
644 0.006( 3)
820 0.010(10)
662 0.004( 5)
842 0.000( 5)
1000 -0.003( 5)
666 0.003( 5)

(-0.197,
0.023)

-0.174(15)
-0.065(14)
-0.031( 8)
0.000( 3)
0.001( 5)
0.003( 2)

-0.007( 5)
o.ooo( 4)

-0.008( 8)
0.010( 6)

-0.002( 4)
o.ooo( 4)

-o.oo6( 3)

220 0.215(13)
400 0.003(19)
422 0.016( 6)
440 0.013( 7)
620 -0.014( 8)
444 -0.030(35)
642 -0.015(10)
800 -0.002( 3)
660 -0.013( 8)
822 0.000( 6)
840 0.008( 4)
664 -0.005( 2)
844 0.000( 2)

111
311
331
333
511
531
533
551
711
553
731
733
555

The data for Fep 920 have been analyzed in terms of
short-range-order parameters and linear size efFect pa-
rameters by a linear least squares 6tting procedure.
We have used the measured data of the (001) and (110)
planes.

The level of the Laue scattering is determined by the
vacancy and interstitial &actions, or equivalently by the
nonstoichiometry x and the vacancy to interstitial ratio
p. The value x = 0.079 + 0.003 is obtained &om ther-
mogravimetry. p has been measured for various composi-
tions and temperatures by Radler et al. Extrapolating
his data we expect p to be 4.5+ 0.5. The absolute cal-
ibration of the scattering data by a vanadium reference
enables us also to determine this ratio. Values of o.p close
to one were found to be consistent with p = 4.0 + 0.5 in
agreement with the results of Radler.

The results for the Fourier coefficients of short-range
order 6~ and of the lattice displacements ~& are
listed in the Tables III and IV, respectively.

The difFuse scattering as xneasured in the (100) and
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TABL
Feo.920

E IV. Fourier coeKcients for linear displacements of
at 1423 K.

&.~A
0.009(13) 0.009

-0.009(11) 0.002
-0.031(13) -o.oo7( 9)
0.035(14) 0.035
0.012( 9) 0.000

-0.007(11) -0.010(10)
-o.o15( s) -0.015
-0.009(13) 0.000( 8)
0.012(10) 0.010
0.006( 8) 0.000( 8)

-0.004( 8) o.oo4( s)
o.ooo( 7) -0.002

-0.002( 7) -0.002

&„yA.
0.044(11) 0.044
0.033(11) 0
0.026(12) 0.017(10)
0.032( 9) 0.032

-0.004(10) -0.004(10)
0.024(15) 0.024
0.000( 7) 0.000( 7)

-0.015(ll) 0
0.009(10) 0.009

-0.002( 9) 0.000( 9)
-0.009( 9) -0.004( 7)
0.001( 8) 0.001
o.ooo( 6) o.ooo( 6)

&.yA &„yA. &.yA
-o.o57(2o) 0 0
0.022(20) 0.022 0.022

-0.037(17) -0.026(17) 0
o.oo9(37) 0 0

-O.O16(12) -O.O16 0.010(10)
-0.025(13) 0.004(10) 0.004
0.009(12) -0.002(11) 0
0.002( 9) 0.000(10) 0.000

-0.005(10) -0.001( 9) 0
0.000( 6) 0.000 0.000( 6)
0.000( 5) 0.000( 5) 0.000( 5)
o.ooo( 6) 0 0
o.oo6( 6) 0.006 0.006

&„~A.
0.009
o.oo2(1o)
0.031
0.035
o.ooo( 8)

-0.010(10)
-0.015( 8)
-0.009
0.010(10)
0.006

-0.006( 8)
-0.002( 7)
-0.002

4(lmn)
111
311
331
333
511
531
533
551
711
553
731
733
555

4{lmn)
220
400
422
440
620
444
642
800
660
822
840
664
844

0
0

0.017
0
0

0.024
0.000( 7)

0
0

0.000
0

0.002( 6)
0.000

4(bnn)
200
222
420
600
442
622
640
644
820
662
842
1000
666

(Oll) planes can be quite well reproduced in nearly all
details by the Fourier coefFicients o. and ~ as shown
by the comparison of Figs. 7(a), 7(b), 5(f), and 5(d). The
typical error for a data point is 0.2 I aue units, whereas
the difFuse data fall into the range of 0.1 up to about 10
I aue units. In principle, it should be possible to improve
the description of the measured disuse intensities by us-
ing even more Fourier coeKcients to more distant sites
and taking further into regard terms which are quadratic
in the displacements. This should have only a minor
effect on the parameters for the short-range order and
displacements as shown in Tables III and IV. However,
the present data base is not sufFicient for including con-
siderably more Fourier coefBcients and therefore, such
solutions would become numerically instable.

C. Shert-range order

Before discussing the short-range-order results it is
worthwhile to state the lower and upper bounds for
n for the given defect concentrations for the case of
x = 0.08 + 0.001 and p = 4 + 0.5. For simplicity we
consider first the correlations of the type n(2pp) (int-int):
The two extremes occur if each interstitial has either no
or only interstitials as neighbors at a distance R . Since

int/ int + (2oo) int int (2oo) &o (2oo) &

the upper and lower bounds for m~200~ are given in the
present case by —0.003 + 0.0015 & n(200) ( 0.216 + 0.03
Similarly, one obtains the bounds for the correlations of
the type Q!(22p) (Fe-Fe and izit-int): —0.096 + 0.005
6~220~ & 1 and for the correlations of the type o,'~qqqy

(int-Fe): —0.196 + 0.02 ( n(iii) ( 0.023*0.003.
The short-range-order parameters and also their up-

per and lower bounds are shown in Fig. 8. The most
important result is that o.~qq is close to its lower bound,
which means that nearly all interstitials are completely
surrounded by Fe vacancies in their nearest neighbor-
hood. Consistently, a large positive value is found for
0!22O indicating a clustering tendency of the vacancies,
which is mediated by the interstitials. Prom these two pa-
rameters alone one could deduce a strong support for the
4:1 vacancy-interstitial cluster and maybe also for some
of its variants as proposed in the literature. However,
the subsequent correlations, in particular of the type 3,

LI L

FIG. 7. Contour plots of the recalculated diffuse intensities
using the Fourier coeKcients cubi and p, , (a) for the (100)
plane and (b) for the (110) plane, while (c) and (d) are only
the short-range-order contributions due to ct for the (100)
and the (110) planes, respectively. (Contours are also given
in steps of 0.1 b/sr. )
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interstitials to vacancies, refine this picture as will be dis-
cussed in more detail below. As seen in Fig. 8, there is an
enhanced probability to find vacancies around an inter-
stitial, not only at nearest-neighbor distances but even
up to the third-neighbor shell. One should note that the
coeKcients 6(2pp) are rather insensitive to any unlike-
neighbor ordering tendency of the interstitials, since the
low interstitial concentration renders their lower bound
close to zero. The parameter 62pp even falls below this
bound. It is, however, within less than two standard devi-
ations still in agreement with a realistic solution. On the
contrary, any strong clustering tendency among the in-
terstitials should clearly show up in large positive values,
which are not found. Thus the present results suggest
that the interstitials are almost randomly dispersed on
their sublattice.

Among other difFuse-scattering studies of Feq 0, the
in situ x-ray study of Gartstein et al. certainly de-
serves particular attention. Although the nonstoichiom-
etry x = 0.070 + 0.012 as well as the temperature,
T = 1173 K, in his work are similar to the present case,
the vacancy-interstitial ratio, p = 2.5, is quite difFerent,
and therefore also the appropriate bounds will be dif-
ferent as well. The values for the correlations of types
o,'(22p) and 0!

~ qq q ~ agree at least qualitatively with the
results here, whereas in this previous work a strong clus-
tering tendency among the interstitials was found in con-

a)

0.2
vac-vac

int —int

0.0 + &&0 ~ g %

b)

0.2

0.0

int —int

—,'(2oo)
n I J I aa a aa

l7l

0.0

e)
-(111)4

—0.2

II
Q W M Q W g

int —vac

FIG. 8. Short-range-order coefBcients n for Feo.920 at
T=1423 K: results of the Fourier analysis (filled squares)
and simulation (open circles, only one can be seen separately
and all others coincide). Dotted lines denote lower or upper
bounds. (a) Correlations on fcc sublattices; these are domi-
nated by those among vacancies, while a minor contribution
comes from those among interstitials at the same distances.
For example, vacancy neighbors are favored; (b) the part of
correlations on the sc sublattice which is purely among inter-
stitials, showing only random correlations; (c) interstitial to
vacancy correlations: e.g. , a very strong attraction for close
interstitial vacancy neighbors is found.

trast to the present investigation ( nqoo ——0.4 + 0.65,
whereas the upper bound is 0.32 as given for a complete
interstitial clustering and segregation). Further differ-
ences can be revealed by considering the bounds for the
other type of short-range-order parameters: For instance,
aqqq ———0.17 (nearly the same value as found here) is,
however, not quite as close to its limit of —0.28, which
refers to the case that each interstitial is completely sur-
rounded by only substitutional vacancies. We note that
there are indeed significant quantitative and qualitative
difFerences in comparison to the present results. To some
extent these differences may result from the difFerent sys-
tematic error sources of the two measurements.

The short-range-order intensity [Figs. 7(c) and 7(d)]
constitutes of even functions [see Eq. (7)] and can of
course not reproduce the asymmetries which can be seen
in the measured intensity [Figs. 5(f) and 5(d)] and which
are due to displacement terms and due to the interfer-
ence of short-range-order and displacement modulations.
This is also true for the position of the dift'use peak at
h = 1.63(2, 0, 0), which does not shift with the defect
content. Nevertheless, it is interesting to trace back
parts of the short-range order. While the global max-
imum around the 200 Bragg peak is mainly due to cor-
relations between nearest interstitials and vacancies de-
scribed by o.qqq, the relative minimum inside results &om
correlations between interstitials to iron as well as from
vacancy-iron correlations at further distances. However,
in this case further distances mean those beyond the next
two shells for the int-vac correlations because of the neg-
ative sign of 63]g and 633/ The consequence of the latter
two values is that the difFuse maximum is closer confined
around the 200. It indicates also that larger aggregates
than only randomly distributed 4:1 clusters should exist.
The change to a positive sign for n(R) at further dis-
tances can be interpreted as the tendency of the charged
defects to order and to circumvent themselves with op-
positely charged species at further distances, i.e. , a self-
screerung of the defects by short-range ordering (SRO).

For sake of clearness, one should also point out
that there is a strong ordering tendency of the defects
rather than a clustering tendency among the same defect
species. This is consistent for instance with the negative
sign of o;qqq, the low intensity around the origin, the large
solubility range of the wustite phase, and the necessity of
avoiding large charge Huctuations. There are two mecha-
nisms to reduce the charge fluctuations due to particular
defect configurations.

(a) Negatively charged defects (relative to the ideal
structure) like Fe vacancies or for instance the (4:1)
cluster maybe less charged because of electron holes or
maybe surrounded preferentially by divalent and triva-
lent Fe ions. This would favor the tendency to small
vac-int clusters.

(b) A vacancy sharing of for instance two or more 4:1
clusters reduces the fluctuation of the charge density (and
also of the scattering density) and may lead to larger
defect aggregates.

Both situations are likely to occur. While (a) should
be typical for high temperatures and low x, it should
be reverse for (b). In view of the balance between large
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and small defect aggregates in thermal equilibrium, one
may note that the vacancy sharing process (b) releases
free vacancies to the matrix. Therefore the clustering
tendency among the interstitials according to Gartsteins
data appears to be plausible rather than obscure.

D. Displacements

In view of the lattice displacements, the actual case
of binary solid solutions involving vacancies, though on
more than one sublattice, can be analyzed in a straight-
forward manner, because the vacancies themselves do not
contribute directly to the displacement scattering [see
Eqs. (7) or (10)]. On the other hand it is still possible to
obtain information about the displacements around va-
cancies. For this purpose, one can use the cond. ition that
a mean lattice as well as mean sublattices exist:

) (c', (R)c', , (R'))u '~ = 0
~ ~

~)2

(13)

&i22o) &o
——(c,„b(R)c,„b(R ))u,„b,„b

+2(c,'.a(R) c,'.~(R'))u,'.e-';.~ (14)

where the second term is negligible since (c; 't)
(c,„'b) . For instance, from ~22o we thus obtain rather
small positive displacements between closest substitu-
tional iron neighbors, u,„b,'„b——0.0093 A.. The sub-

for any inter- or intrasublattice vector K = K, —K', ~.

lf one could expect that the displacements u'~(R )
result from a mere size effect, this would permit one
to estimate the effective radii of the cation as well as
of the vacancy (using for instance u 'F' = 2uF' and
cF,u ' + c„,u" ' = 0). However, such an approxima-
tion must fail even at a qualitative level if the origins
of the displacements are for instance Coulomb forces be-
tween the charged ions and vacancies. In this case, and
likely it is the present one, u' (R ) should be positive
for i = j and negative for i g j.

For the displacements involving oxygen atoms and
using Eq. (13), we have u,„b,„b = 0, and further

c;„t'u,.„~',~b ——0, where "sub" denotes "substitutional. "
(Interstitials may also exert displacements of the fully
occupied 0 sublattice, which was ignored by Hayakawa
et al.s and Gartstein. ~~)

We wish to make one observation about the use of
parameters such as p in the present context. In case of
x-ray scattering, the parameters ~ are not true Fourier
coeKcients and require an appropriate correction d.ue to
the Q dependence of the Fe and 0 form factors; this
is not necessary for neutron scattering because of the
Q independence of the scattering lengths. However, a
similar correction would be necessary if one wished to
account for the different Q dependences of the Debye-
Waller factors of the two species.

We can thus deduce the following results from the three
types of Fourier coefBcients.

Type (220) (Fe-Fe and int-int), for which

stitutional cations are charged either 2+ or 3+. Their
mean charge for the present case is +2.15Ie] and the small
positive displacements agree with the expected Coulomb
repulsion due to the net charges +0.15 of the cations.
Similarly one expects u,"„b",„b& 0. Using Eq. (13) yields
an estimate for u",„b,„'b= —0.06 A.

Type (200j (Fe-0 and int-int), for which

50 Fe Fe-0
V(2PP)QP '

z Csub sub-sub

(15)

where again the second term can be neglected. Although
according to Eq. (10) displacements between vacancies
and other sites are not visible, we may use Eq. (13) to

for ~-,-o b. From p, pp it follows that the Fe
vacancies rePel their nearest oxygen neighbors, u2op
(0.10 + 0.035) A. , which is again to be expected because
this defect has a negative net charge with respect to the
ideal structure.

Type (111) (int-sub), for which

( bO Fe Fe-0
+(111jgp 2 I

& Cj~t~j~t-sub
&Fe

+(c;„'a(R)c,„'b(R'))u;„,.'„b
I

~ (16)

To a good approximation this provides an estimate of
the displacements between interstitials and nearest oxy-
gen neighbors, since in this case there are almost only
interstitial-oxygen pairs to be found (n is close to the
lower bound): u; ~ o„b ——(0.2 + 0.3) A.. Therefore it
is likely that these displacements are positive, despite
having an attractive Coulomb part of their interaction.
However, one must also take into regard the repulsive
core of the potential, in particular at this closest ion-ion
distance. In addition, the average displacement u;„t,„b
is strongly affected by the other vacancies typically sur-
rounding the interstitial, which repel the oxygens. The
positive sign of the interstitial-oxygen displacement thus
seems to be reasonable.

Therefore, if we consider a 4:1 cluster for instance, we
have to expect its volume to be slightly larger compared
to the mean lattice, although there is a general decrease
of the lattice parameter per net vacancy. The lattice con-
traction, however, results from the attraction between
cation vacancies and nearest cations. This further agrees
with the oxygen parameter u = 0.2548 for the neigh-
boring spinel phase Fe304 being larger than the value
0.25 for an ideal spinel structure. As u increases oxy-
gens around the tetrahedral site displace along a [ill]
direction. In order to summarize our results on the dis-
placements in Fep ggO the values we have found agree in
magnitude and sign to what can be expected from ion
interactions.



51 DEFECT STRUCTURE OF FERROUS OXIDE Fe& „0 15 781

E. Modeling of the equilibrium defect structure

The defect correlations were simulated in a computer
model of the Fep 920 structure. All measured SRO pa-
rameters were used for this purpose. The mpdel crys-
tal contained 16 simple cubic sublattices each of 9600
sites, four sublattices for the oxygen atoms, four for the
iron, and eight for the interstitial sites. Periodic bound-
ary conditions of helical type were applied. The sim-
ulation procedure used here (as previously as well4s'4s)
is in principle the same as the so-called reverse Monte
Carlo method, which has been typically applied to sim-
ulate liquid and amorphous structures. The exchange
of two atoms is accepted or not with a transition prob-
ability given by the sum of the squares of the difFer-
ences between modeled and measured SRO parameters
(instead of an energy difFerence as in the usual inetropo-
lis Monte Carlo method), while in the standard Gehlen-
Cohen procedure any exchange is accepted which im-
proves the simulated SRO parameters towards the mea-
sured ones. It is found in practice that for the simula-
tion of disordered (or only short-range-ordered) configu-
rations the Gehlen-Cohen procedure also gives represen-
tative configurations close to equilibrium if the size of
the model crystal is sufBciently large. In the present case
corresponding to Fep 920 our models contained 1024 in-
terstitials and 4096 vacancies which certainly provided a
sufFicient statistical accuracy in view of the uncertainties
in the SRO parameters.

Here we have simulated these difFerent inter- and in-
trasublattice correlations. This is important for the char-
acterization of the total defect structure. For instance,
if one were to leave only the correlations among the in-
terstitials unconstrained in such a simulation, the other
types of correlations would induce correlations among the
interstitials. (In this case a clustering tendency among
the interstitials would be found. ) The SRO parameters
of the type (220) were assumed to stem from correlations
on the Fe sublattice only, since no significant nonrandom
values of a are found for the pure interstitial correlations,
type (200}.

It is noteworthy to state that according to our previous
work such a modeling procedure yields the disordered
equilibrium structure which is in principle unique if the
knowledge of the pair correlations is complete.

The resulting modeled structure may be analyzed in
various ways. Here, our particular interest is to describe
the formation of interstitial-vacancy clusters. For this
we need to analyze the connectivity of interstitial and
vacancy defects. It is straightforward and simple to ob-
tain the distribution of vacancies having 0—8 nearest in-
terstitial neighbors, or, vice versa, the distribution of
interstitials having 0—4 nearest possible vacancy neigh-
bors (Fig. 9). A comparison to the distributions for ran-
dom configurations (with the same defect content) re-
veals the strong interaction between interstitials and va-
cancies. Therefore, most interstitials, namely 64%, are
surrounded by the maximum of four vacancies and a fur-
ther &action of about 30Po interstitials still has three va-
cancy neighbors.
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FIG. 9. Results for the modeled defect structure of Feo.920
at 1423 K (filled squares) in comparison to those for the ran-
dom configuration. (a) Fraction of vacancies P„,having n;„t
interstitial neighbors. (b) Fraction of interstitials P;„thavingn, vacancy neighbors. (Lines are only guides for the eye. )

Not as easy to obtain, however, is the cluster size dis-
tribution shown in Fig. 10. The algorithm applied here to
identify all defect aggregates which are interconnected by
vacancy-interstitial "bonds" is similar to the one which
has been used in percolation-type problems. One may
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~
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FIG. 10. Size distribution of vacancy-interstitial defect
clusters (filled squares) in comparison with the random case
(open circles). The size m equals to the total number of va-
cancies and interstitials in a single isolated cluster, which is in-
terconnected by nearest interstitial to vacancy bonds. 1V,(rn)
equals the number of speci6c clusters found in the model crys-
tal; Ng, f equals the total number of vacancies and interstitials.
(Lines are only guides for the eye. )
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further justify the choice of this type of "bond" to define
the "clusters" because @iraq is the parameter that is clos-
est to its (lower) bound, indicating that the interaction
energies here are particularly important.

There are a few noteworthy results of this type of anal-
ysis.

(a) In spite of the strong interstitial-vacancy correla-
tion there is a large &action of unbound defects. Since
the number of unbound (to vacancies) interstitials is van-
ishingly small (previous Fig. 9) about 40'% of the vacan-
cies must be &ee. This is interesting for the transport
properties of this material as will be discussed below.

(b) The particular stability of the 4:1 cluster as pre-
dicted theoretically is verified. Note the logarithmic scale
and the variation of the distribution density around the
cluster size 5. Prom clusters of size two, a vacancy-
interstitial pair, to clusters of size 5, which are nearly
all 4:1 clusters, there is an exponential increase in their
stability to be found. This is qualitatively in agreement
with theoretical predictions. " We found that about 3%
of the defect clusters are isolated 4:1 defect clusters, or
in other words, multiplying with the number of point de-
fects in the cluster, it means that 15% of all point
defects, vacancies and. interstitials, are bound in isolated
4:1 defect agglomerates.

(c) Larger aggregates exist. They, however, typically
incorporate the 4:1 motif as well. Their existence is prob-
ably not due to an energetic clustering tendency towards
large and compact aggregates; their presence is simply
more likely because of the high defect content. Note the
discontinuity of the distribution just beyond the size 5,
which indicates that it is not energetically favorable to
add only one more interstitial to a 4:1 d.efect cluster.

This analysis does not, however, con6rm any particu-
lar stability of other clusters, which have been proposed
in the literature. The likelihood of the 2:1 cluster as
proposed by Roths for instance is less than 0.3%. Fur-
thermore, there is no significance found for the so-called
Koch-Cohen cluster 13:4, and also the proposed 5:2 clus-
ter by Gartstein, which should consist of two incomplete
corner-sharing vacancy tetrahedra aligned along (110) di-
rections, could not be identified as typical at all of the
defect structure. These defect clusters have been pro-
posed upon earlier difFuse-scattering experiments. Other
even more unlikely defect clusters, like for instance spe-
cific 10:4 or even 40:14 clusters have been proposed
from the interstitial to vacancy ratio as measured &om
the Bragg intensities (powder Rietveld technique). How-
ever, there is no sound basis to deduce the defect arrange-
ments and correlations &om only the occupation proba-
bilities of the octahedral (substitutional) and tetrahedral
(interstitial) cation sites. Diffuse-scattering experiments,
and preferentially elastic difFuse neutron scattering ex-
periments as used in the present case, enable such de-
tailed analyses of defect arrangements.

In particular, this defect cluster distribution offers
an explanation of why the cation mobility is so high,
D 10~ cm2/sec at 1000 C, despite of the strong cor-
relation and binding between interstitials and vacancies.
There is a peculiar behavior of the diffusion coefIicient
since it does not increase with increasing nonstoichiome-

try, at least for temperatures up to 1000 C. Because of
this, Monty already anticipated that "the diffusion co-
efIicient could be proportional to the concentration of &ee
vacancies in equilibrium with these aggregates of larger
cluster following a complex law. " In fact and in particu-
lar in view of the present results, this view seems to be
more realistic than for instance the diffusion mechanisms
which have been discussed for the 4:1 clusters.

F. Inverse Monte Carlo results for interaction
parameters

A determination of the interaction energies by the in-
verse Monte Carlo method has been attempted. How-
ever, the uncertainties in the experimental measure-
ments, together with strong sensitivities of the interac-
tion energies to some of the short-range-order parame-
ters, have been the reasons why we obtained only rough
estimates for the interaction energies.

First, the measurements are not suKciently sensitive
to detect any ordering tendency of the interstitials. This
is apparent in view of the lower bounds and error bars for
these correlations. Therefore only an upper limit can be
estimated for the corresponding interactions. Second, the
correlations between vacancies and interstitials are very
strong indicating a strong interaction. However, &om the
error bars for o.iraq, and in particular those of its lower
bound, a coincidence cannot be excluded, which would
correspond to an in6nite value of the interaction param-
eter. Results show that the binding energy for a vacancy
interstitial pair is at least & —0.2 eV and most likely in
the order of —1 eV. The result obtained for a nearest
neighbor vacancy pair is about —G.l eV. However, there
is some doubt about the negative sign, since it is con-
trary to what could be expected &om a direct Coulomb
interaction. It might indicate, however, that a simple
pair wise interaction model is not able to describe the
configurational statistics of the defects in such an oxide.

IV. KANZAKI MODEL CALCULATIONS

This section describes how we have calculated the scat-
tering of our defect cluster models, and compares the
model results with the experimental ones. Our emphasis
is on 4:1 clusters, with a modification made to "deco-
rate" them so as to reduce the long-ranged part of the
strain field. We first discuss some general aspects of the
calculation of difFuse-scattering intensities from the de-
fect models. Then, we d.escribe the calculation of the
displacexnent Belds around. defects and their clusters, as-
suming linear response to the specified forces due to the
atoms or defects. Finally, we compare the model results
to the experimental data.

A. Calculation of difFuse-scattering intensities

To calculate the diffuse intensities we take the actual
displacement at a particular lattice site to result &om the
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displacements fields of all surrounding atoms or defects.
(These displacement fields are calculated below in linear
response to the defect forces. ) In particular, we assume
that these fields can be linearly superimposed:

u(R. ) = ) Ac, (R')u, (R. —R', ) .
8',B

(i7)

Inserting Eq. (17) in Eq. (12) gives

A (Q) = ) b.b, Ac, (q) —iQ . b, ) b.c, (q)u, , (q)
8 8'

iQ Ab—,) ) Ec, (R')u, (R, —R', )
R 8',R'

xac. (R)e-*&~.

b.c, (q)u, , (q) = ) Ac, (R')u, (R, —R', )e

Here, the first term describes the short-range-order scat-
tering amplitude. The second term describes the part
of the scattering amplitude due to displacement fields
around an occupational fiuctuation Ac, (R), using a
mean occupation b, for the surrounding sites. The third
term accounts for the Quctuating part Ec,(R)b,b of the
displaced atoms, which contributes for distances within
the range of the short-range order. We have found this
term to be of minor importance for our semiquantitative
model approach. Therefore, we have finally decided to
ignore this third term in the results presented here.

It is useful to note that the Fourier transforms of the
displacement fields due to a particular occupation [as
used in Eq. (18)]

by known parameters and a few physically motivated
approximations. The displacement field in response to
these forces is calculated using the linear response of the
atomic positions. This approach has been applied mainly
to dilute alloys, but also to concentrated alloys.
Furthermore, in most applications either only the long-
wavelength limit and/or only main symmetry directions
are discussed, where one can simply refer to the mea-
sured phonon &equencies. Here the overall description of
the disuse scattering requires the calculation of the full
dynamical matrix, which was performed using a program
of Eckhold. 4

The major assumption is the following:

(20)

Here we write u~, r(q) as a six-component vector con-
taining the (vector) displacement fields of the Fe and 0
atoms due to the defect, which may be an interstitial,
a vacancy, an empty interstitial site, or a substitutional
Fe atom, so that uJ, f(q) (lid f(q ) lid f(q ')} siiill
larly, P~,f(q) is defined as a six-component vector of the
Fourier transforms of the forces exerted by the defects,
so that

Fd, f(q) = ) Ac, (q)F, (q) .

F,(q) is the Fourier transform of the force associated
with a single defect on sublattice s, relative to the perfect
lattice. Since Lc has opposite sign for vacancies and host
atoms, the forces around vacancy and host atoms are of
opposite sign. We note further that within a single-defect
approximation, where the ideal lattice is the reference
medium, it is sufEcient to consider only the forces exerted
by the defect, because those of the host atoms vanish.

The force-constant matrix 4 is related to the usual
dynamical matrix by

@(q) = M / D(q)M / . (22)
have translational symmetry properties similar to the oc-
cupational waves. For simplicity of notation, we will de-
note (the Fourier transform of) the displacement field of
a particular defect by u~, f(q) instead of Ac, ~(q)u, ~ (q).

B. Kansaki approach to displacement BeMs

In the present case of nonstoichiometric Fei 0, we
have to consider the e6'ects of cation vacancies and inter-
stitials exerting displacements on the surrounding oxygen
and iron ions. However, in a concentrated solid solution
not only the "defects, " vacancies, and interstitials, but
also the host atoms need to be regarded as sources of dis-
placement fields, since they also deviate from the "mean
lattice. " This will be important for the discussion below,
when host atoms are included in the cluster models as
well.

As is well known, the displacement fields are of infinite
range because of the elastic properties of the crystal. The
basic idea of Kanzaki-force models is to reproduce the
long-range displacement fields by using forces on only
a few shells of neighbors, whose magnitudes are fixed

It is composed of four 3 x 3 blocks corresponding to Fe-Fe,
Fe-0, O-Fe, and 0-0 interactions, where, for example,

4 " (q) = ) V " (R, R') exp( —iQ. (R —R')}.
R/

{23)
Here V' " (R, R') is the force-constant matrix corre-
sponding to relative motions of Fe and 0 atoms at K
and K'; R is any Fe site, and K' are the 0 sites. Simi-
lar expressions are obtained for the other three blocks of
4. One should note that this force-constant matrix 4
contains no information about the lattice couplings be-
tween the substitutional and interstitial sites. Therefore
we cannot include the scattering contribution due to dis-
placed interstitials in this approach. However, because of
the comparatively small &action of occupied interstitial
sites this contribution is of minor importance and will be
neglected here.

C. Force constants

To obtain the force-constant matrix 4(q) for FeO, we
use the "shell model" of the interactions. The underly-
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TABLE V. Shell-model parameters used to calculate the force constant Inatrix 4. The data are
close to the values of model IV of Kugel et aL (Ref. 65) and describe their experimental data of
the phonon dispersion of FeO at room temperature.

Fe
0

Shell-shell force constant

Atomic masses

55.85
16.00

Longitudinal
Transverse

1.587e
—1.587e

2.46e
—2.81e

131.14
—21.69

Ion charges Shell charges Polarizabilities

1.0790 A

1.3283 A'

Nm
Nm

ing picture is that of charged ions, each of which has an
electronic shell that can be displaced relative to the ion
core. The ionic polarizability comes &om such displace-
ments. The types of interactions that are included, and
whose values are specified in Table V, are the following:
(1) direct Coulomb interactions between nuclei and shells
on one atom, with those on other atoms; (2) intra-atomic
core-shell interactions, which give a restoring force that is
linear in the relative displacement of core and shell; and
(3) repulsive overlap interactions between nearest neigh-
bor shells, speci6ed by longitudinal and transverse force
constants.

In view of the charged defects in the nonstoichiomet-
ric Fe~ 0 such as electron holes, vacancies in probably
difFerent charged states and interstitials, in principle one
should better use a screened rather than an unscreened
Coulomb interaction. However, one should regard the
above model just as an approximate and convenient de-
scription of the dynamical matrix, which is consistent
with the phonon data found in the literature.

D. Choice of Kanzaki forces

We disregard the direct contribution &om long-ranged
Coulomb interactions to the Huang scattering, which was
discussed by Gillan. 6 This would be important for very
dilute systems, but in the present case of a highly concen-
trated defect system, it is likely that the Coulomb inter-
actions will be screened, and this contribution will tend
to vanish. We use short-ranged Kanzaki forces, which
cannot yield a quantitative 6t to the data, but do explain
the major features of the observed scattering intensities.

We use three considerations in determining the force
parameters.

(1) The separation between an Fe interstitial atom and
the neighboring 0 atoms, which we obtain in the absence
of relaxations, is very close to the measured value of this
separation in the spinel phase. Thus we ignore direct
forces kom the interstitials. This is plausible in view of
their charge of +3, and therefore being smaller than the
NaCl sublattice Fe atoms.

(2) The observed vacancy relaxation volume b.V pro-
vides a constraint on the atomic forces around a vacancy.
To explain the implementation of this constraint, we erst
ignore the efFects of interstitials. We have, in linear
order, '7 that

P = ) K F,(K) = 3@V = 3HAV = 22.1 eV, (24)
R,

where we have used the measured bulk modulus B=1.94
Mbar (Ref. 65) and the known lattice parameter change~s
yielding the relaxation volume per net vacancy LV =

p 36.2 A. . However, because the elastic constants of our
model do not precisely match the experimental ones,
we modify P to improve the value of the Huang scat-
tering intensity at small q. This intensity is propor-
tional to (P/Cqq), where Cqq is the longitudinal elas-
tic constant. Therefore, if we assumed only vacancies,
the correct Huang scattering would be obtained by tak-
ing Pmodel P(Cmodel/C ) P(2.85/3. 0 Mbar) =
0.95P = 21.0 eV, where the experimental Cqq value is
taken from. ss (Note that we ignore temperature-induced
changes in the elastic constants. If we assume that the
factional changes in B and Cq~ are equal, then they will
not affect the the ratio P/Cqq entering the Huang scat-
tering, since P is proportional to B.)

The efFects of interstitials complicate the situation, be-
cause the measured relaxation volume per vacancy is
given in terms of the net vacancy count, where the in-
terstitial count is subtracted oK Since we set intersti-
tial forces equal to zero, this eKect can be taken into
account by, for each cluster, reducing P by a factor
N„";/N„,. So, for a model based on 4:1 clusters, we
use P = 21.0 eV x [(4 —1)/4] = 15.8 eV.

(3) The rough magnitudes of the forces are estimated
on the basis of Coulomb interactions to be on the order
of 1 eV/A. , which lead to nearest neighbor displacements
in the order of 0.1 A. . Furthermore, Coulomb interactions
suggest that vacancy forces on oxygen atoms should be
repulsive, and those on iron atoms attractive.

With these considerations in mind, we have chosen the
following set of nearest-neighbor force parameters:

I"o, = —1.6 eV/A. x (—c,„b) repulsive,

I'„;= 1.0 eV/A. x (—c,„b) attractive,
~O ~Fe 0int int (25)

Note that with respect to the mean lattice of a solid solu-
tion, not only vacancies or interstitials but also occupied
Fe sites have to be considered as defects. In the case of
occupied Fe sites, the forces FF, are obtained by multi-
plying the ideal-lattice forces by the occupational Quctu-
ation Acp, = 1 —c,„b[instead of by (—c,„b)].These force
parameters will be applied for all defect models treated,
using the appropriate superposition for each model. A
schematic picture, cf. Fig. 11, shows the Kanzaki forces
which a cation vacancy exerts upon the neighboring oxy-
gen and iron ions.
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FIG. 11. Schematic representation of the Kanzaki-force
model of a cation vacancy defect. Nearest oxygen ions are
repelled and the next nearest iron ions are attracted. The
displacement field around the defect, which is calculated in
linear response to these forces, is of long range due to the
lattice couplings, described by the force-constant matrix 4
consistent with independent phonon data.

the mean lattice. This model is motivated by the above
results for 1150'C, in which the overall intensities have
a substantial nonlinear component in the concentration
dependence. In particular, the Huang scattering does
not increase with the defect concentration but seems to
disappear instead. We attribute the (relatively) reduced
Huang scattering to mutual screening of the long-ranged
parts of the strain and electrostatic fields of the defects.
The decoration of the 4:1 cluster is a simple way of mod-
eling this screening.

The decorated cluster model is treated by the above
formalism, where each of the surrounding irons has a
force proportional to 1 —c,„b,with a sign opposite to the
vacancy force. Note that this gives a nonlinear concen-
tration dependence of the scattering, both through the
concentration dependence of the vacancy forces and that
of the Fe forces. However, any further correlations in the
spatial distribution of these clusters are neglected in the
model calculations.

F. Results and comparison with experiment

E. Defect cluster models

The defect clusters that we shall consider are simple
vacancies and 4:1 clusters as defined above. As discussed
in the Introduction, the 4:1 cluster is supported by a
substantial body of experimental evidence and theoret-
ical evidence, although in many cases only as a basic
element of more complex defect arrangements. We note
that the approximation of using defect clusters is only a
crude approximation to the real correlations in a system.
It is appealing because it provides a simple visualization
of coherently scattering-defect arrangements. However,
the assumed cutoff of correlations is not very realistic.
In addition, we expect some af the clusters to split up
partially at higher temperatures. One could, in princi-
ple, use the measured correlation functions, together with
the formalism developed above, to calculate the diffuse
scattering. However, we have found this approach to be
impractical and have not implexnented it.

We consider two variants of the 4:1 cluster. In the
6rst, the "isolated 4:1 cluster" only the correlations in-
side the cluster are retained, and the scattering is mea-
sured relative to the ideal lattice. This model gives a con-
centration dependence of the diffuse-scattering intensity
that is rigorously linear. We also consider a "decorated
cluster" model in which a 4:1 cluster is definitely sur-
rounded by two shells of iron instead of possibly having
vacancy neighbors in these sites. (Note that this sim-
plifying choice is, however, not quantitatively consistent
with the observed short-range-order parameters. A more
realistic but also then much mare complicated model
should be able for instance to reproduce also precisely
the wave vectors of the observed diffuse peaks. ) We thus
take into account Fe occupations in the second and third
cation shells 1j4(3, 1,1) and 1/4(3, 3, 1) around the cen-
tral interstitial. The scattering is measured relative to

Before we present our model results and compare them
with the experimental data, we give a short qualitative
discussion of the measured diffuse scattering to point out
the characteristic features, which can be related to spe-
ci6c defect arrangements and associated displacements.
For simplicity, we assume the ideal lattice to be the ref-
erence, i.e., c, = 1 and 0 for the substitutional and for
the interstitial lattices, respectively. One then 6nds that
at the scattering vector Q = 0 the amplitude A(0) is
proportional to the difference of the numbers of vacan-
cies and interstitials of coherently scattering objects like
clusters, wbjle for instance at Q = —(2, 0, 0) for the
present structure (NaCl) it is the sum of vacancies and
interstitials which matters. While the symmetry proper-
ties of the fcc cation sublattice, relevant for the vacancy
correlations, are indicated in Fig. 9 and in all contour
plots shown by the Brillouin zones of the bcc reciprocal
sublattice with zone centers at Ggi, ~ with 6, k, l all even
or odd, the correlations between interstitials and cation
vacancies (on a real-space bcc sublattice) refer to a larger
fcc unit cell in reciprocal space with all 6, k, l even and
Mod(h + k + /, 4) = 0 (h, k, l are used throughout with
respect to the FeO unit cell).

These considerations enable us to draw a few conclu-
sions from the observed diffuse intensities.

(1) Large densely packed clusters of vacancies and in-
terstitials, having a vacancy to interstitial ratio signif-
icantly larger than one, are not present in large num-
bers. Such clusters would produce a significant scattering
around Q = 0 which is not observed.

(2) Correlated tetrahedral interstitials and substitu-
tional vacancies exist, since the diffuse scattering is
stronger around h = (2, 0, 0) than around h = (0, 0, 0) or
h = (2, 2, 0).

(3) Displacement effects are very important. The lack
of symmetry of the diffuse scattering, for instance across
the mirror plane perpendicular to h = (2, 0, 0), cannot
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be described by any short-range ordering, but must stem
from the scattering due to the displacements in the sys-
tem, and in particular due to the displacements around
the cation vacancies. Displacements around the intersti-
tials create the observed more complex asymmetry of the
scattering across the Brillouin zones for the correlations
between interstitials and the ions on the regular fcc sub-
lattices. These lines of high symmetry are nodes for the
odd functions of the linear size eKect scattering.

We now turn to the calculated dift'use-scattering inten-
sities, and comparison with the experiment. Since the
defect concentrations are very large in Feq 0, we ex-
pect the use of the mean lattice rather than the ideal
lattice to have a substantial impact. We first consider
results from a model containing only vacancies (no inter-
stitials), to illustrate further the necessity of interstitials
in explaining the observed scattering. Figures 12(a) and
12(b) show results for the vacancy model and for the 4:1
cluster, respectively. The intensities are calculated for
x = 0.08. However, they scale linearly with x within
the single-defect approximation (ideal lattice reference).
It can be seen that the calculated disuse intensities are
rather weak for the vacancy-only model and that also the
pattern is not consistent with the shape of the observed
intensities. On the other hand, since the scattering is
comparatively weak this result does not exclude the ex-
istance of f'ree vacancies as found in the analysis of Sec.
IIIE.

Figure 12(b) shows model results for the 4:1 cluster.
By comparison with Fig. 5(f), we see that the agreement
is much better than for the vacancy case. The distri-
bution of overall intensities between the (0, 0, 0), (2, 0, 0),
and (2, 2, 0) is consistent with the observations. In ad-
dition, the shape of the scattering around the (2, 0, 0)
and (2, 2, 0) peaks is well obtained, with characteristic
features emerging diagonally out &om the (2, 0, 0) peak.
The main feature that is not obtained by these results is
the diffuse peak at the low Q side of the (2, 0, 0) Bragg
peak that is seen in Figs. 5(d) —5(h); rather, in the model
calculations, the intensity diverges smoothly near the
Bragg peak, as is expected from Huang scattering.

As mentioned above, the reduced Huang scattering
in the experimental data is likely due to short-range-
order effects screening the strain and electrostatic fields
of the defects. For an appropriate treatment it requires
to use a Kanzaki model valid for solid solutions and to
renounce on the single-defect approximation. In order to
Inimic qualitatively the short-range-order eEects, we thus
now turn to the "decorated" 4:1 cluster model discussed
above. Results for all four measured concentrations are
shown in Figs. 13(a)—13(d). Comparison of the x = 0.08
results with those of the previous model approach shows
that the Huang scattering effects are indeed substantially
reduced. A strong nonlinearity in the concentration de-
pendence is also observed, with the shape of the scatter-
ing changing substantially as one goes from x = 0.054
to x = 0.13. Comparison [of Figs. 13(a)—13(d) with the
corresponding Figs. 5(e)—5(h)] shows that the agreement
with experiment is markedly improved. The results for
the (110) plane, indicated in Fig. 13(e), also show good
agreement with the experimental results of Fig. 5(d).

0

(b) /g

(d) /

FIG. 12. Diffuse-scattering intensities for FeI 0 as cal-
culated by a Kanzaki model approach to the long-range dis-
placement fields (a) of only random cation vacancies for the
largest nonstoichiometry x = 0.13, and (b) of the 4:1 defect
cluster at x = 0.08, both within the single-defect approxima-
tion. Contours in steps of 0.1 b/sr. Brillouin zones are also
shown for the fcc sublattice, and (dashed line) for the corre-
lations between interstitials and ions on the fcc sublattices.

FIG. 13. DifFuse scattering intensities for Feq O as calcu-
lated by a Kanzaki model approach to the long-range displace-
ment 6elds of the 4:1 defect cluster, whose next two cation
shells are fully occupied, w'hile the mean lattice was taken as
the reference. Results for the (100) plane at (a) x = 0.054,
(b) x = 0.08, (c) x = 0.104, (d) x = 0.13, and (e) for the
(110) plane at x = 0.08. (Contours and' Brillouin zones as in
Fig. 12.)
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V'. SUMMARY AND CONCLUSION

In summary, we have measured in situ the diffuse neu-
tron scattering &om Feq 0, over a range of defect con-
centrations and temperatures. By Fourier analysis of
one particular data set, for x = 0.08 and T = 1423 K,
short-range order and displacement parameters were ob-
tained. A simulation of the equilibrium defect structure
was performed using all of the measured short-range-
order parameters. A proper statistical analysis of the
modeled structure yielded a detailed size distribution of
the vacancy-interstitial clusters. We have demonstrated
a pronounced tendency toward the formation of 4:1-type
clusters, although a substantial concentration of &ee va-
cancies is present as well. This particular noteworthy
result shows that at thermal equilibrium the predicted
high stability of defect clusters based on the 4:1 motif
is not controversial to the existence of a large &action
of &ee vacancies, being necessary to explain for the high
cation mobility. In fact, about 40%%up of the defects are
bound in even larger clusters than the 4:1 cluster. How-
ever, as can be seen also &om the rather low scattering
intensities at small angles, such larger aggregates should
not have a compact shape and their appearance should
be mainly a consequence of the high defect concentration.
In the present study, we have not attempted to analyze
the growth mechanism of such clusters. Such questions
may be a good subject for similar studies in particular at
even higher nonstoichiometries, where we have collected
up to now only data in the (100)-scattering plane, which
are insuKcient for this purpose.

In view of a possible consistent modeling of the phase
stabilities of wiistite and magnetite, our results by the
inverse Monte Carlo simulation for the interatomic inter-
actions are certainly not of sufBcient quantitative preci-
sion. However, the large solubility of defects in wustite
and the high stability of the 4:1 cluster, a structural mo-
tif not only of the, defect structure of wiistite but also of
the ideal xnagnetite structure, should be consistent with
an interaction model which is dominated by strong short-
range interactions of ordering type.

The observed asymmetry of the disuse-scattering in-
tensities around the Bragg peaks was shown to arise
mainly &om the displacement Gelds around the cation
vacancies, which due to the missing charges at those sites
repel the nearest oxygen ions and attract the next neigh-
bored cations. In analogy to the description of phonon

modes, one could say these static displacements have an
optical character with inversion symmetry. Hence, the
displacements around the cation vacancies turned out to
be at least qualitatively as expected &om Coulomb in-
teractions. In contrast to this, the displacements of the
oxygens around the interstitials seem to be more deter-
mined by hard core repulsion of the ions.

In order to include the entire long-range displacement
Gelds of the defects and to understand in particular the
surprising1y low Huang scattering, we have performed
Kanzaki-force calculations of the difI'use scattering based
and motivated on the above-mentioned results of the
short-range order. We considered both "isolated" 4:1
clusters in a usual Kanzaki model as typically applied
to the dilute defect case, as well as "decorated" 4:1 clus-
ters, surrounding the 4:1 cluster with two shells of regu-
lar cations, where we applied a more general formalism
being valid also for the concentrated defect case. The
isolated-cluster results obtain most of the major features
of the experimental results. However, using a compara-
tively simple model with a least number of parameters
the decorated-cluster results well describe the observed
changes in the scattering pattern with increasing nonsto-
ichiometries x. These are the apparent decrease of the
Huang scattering with increasing x and the development
of diffuse peaks at h = 0.82(2, 0, 0) and h = 0.82(l, 1, 1),
which lack of symmetry properties valid for short-range
order only. The decrease of the Huang scattering with
x can be understood to result &om the mutual screen-
ing of the defects by short-range ordering, which also
means a screening of their charges and their strain Gelds.
Finally, the similarity of the observed diffuse scattering
for the investigated part of the wustite phase Geld and
the consistent results of the model calculations based on
an invariant model verify the homogeneity of this phase,
which has sometimes been suspected.
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