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Riser fluctuations and vortices at Shapiro steps in Josephson-junction arrays
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Numerical simulations of the giant Shapiro steps on two-dimensional arrays of resistively shunted Josephson

junctions were performed at nonzero but low temperatures. When an ac current at frequency ao is applied, large

phase fluctuations occur just at the risers of the Shapiro steps where the system is making the transition to the

next harmonic of the applied ac current. These phase fluctuations lead to the creation of large numbers of
vortices just on the risers and a large increase in noise output.

Anomalous noise-rise phenomena which cannot be ex-
plained as ordinary thermal noise have been reported in a
number of experiments on Josephson-junction oscillators. '
Explanations of this noise rise for single junctions have been
given by Huberman et al. , Kautz, and Pedersen and
Davidson. These explanations involved the numerical calcu-
lations of the solutions to the Josephson equation of motion
for a single junction in the Stewart-McCumber model,
namely,

d P drt
p 2 + + sin(p) = iq, + i„sin(rot),

dt dt

where P is the superconducting phase difference across the
junctions, p=2eJR C/fi, with J being the critical current, R
is the normal resistance, C is the capacitance of the Joseph-
son junction, i&, is the dc bias current, and i„ is the ampli-
tude of the ac applied current across the junction. These cur-
rents are measured in units of J. Here the time t is measured
in units of fi(2eRJ) and the applied frequency ro in units of
(2CRJ/Ii). The voltage across the junction is given in these
units by dP/dt Huberman . et al. and others found that
when the capacitative term was present chaotic solutions ap-
peared at the risers of the Shapiro steps as the junction was
making the transition between the different harmonics or os-
cillatory states represented by the Shapiro steps. A clear ana-
lytic calculation of the origin of these effects is given by
Chiao et al. who consider the small perturbations about the
limit-cycle, phase-locked solutions of Eq. (1).They consider
solutions of the form

next, A must cross through zero to get to the next stable
solution. When A crosses through zero, there are ac induced
nulls in the supercurrent and a great increase in the noise
produced, which leads to the chaotic solutions, reported by
Huberman et al. We note that the presence of the capacitive
term in Eq. (1) was essential for the existence of the chaotic
solutions otherwise the system goes sharply from one har-
monic to the next.

We report here results for NXN arrays of resistively
shunted Josephson junctions (RSJ) at finite temperatures.
The capacitance of the junction is zero but temperature Auc-
tuations and their coupling into an array are sufficient to
create a great increase in the noise on the risers of the giant
Shapiro steps coupled with the emission of large numbers of
vortex-antivortex pairs on each Shapiro-step riser.

The model that is used for the numerical calculations is
essentially the same as that in our previous report on the
below-gap photoresponse of RSJ arrays. We consider an
NXN array of RSJ junctions as illustrated in Fig. 1 for N = 6
[the grains in the left column are connected by junctions (not
shown) to those on the right column]. The external current is
applied to the array by injecting it at a single superconduct-
ing grain at the top of the sample (which acts as a busbar)
and removing it from a similar grain at the bottom. At each
node of the NXN square array four junctions come together
so that the equations of motion for each of the single junc-
tions are added to conserve total current at the node. The
resulting set of coupled equations at node K is

4'(t) = 4p(t)+ 4't(t) (2)

where Pp(t+nT)=cbp is a phase-locked solution, with
T= 2m/ raond where the small perturbation Pt(t) is given
by

with

Pt(nT) =It(0)e ""', (3)

1 t'T
A cosgp(t)dt=(cosfp).Tj0 (4)

For stable limit-cycle solutions —1~A ~1 must be posi-
tive, as it is on the Shapiro steps. But on the riser, as the
system is shifting from one limit cycle or harmonic to the

FIG. 1. A perfect 6X6 array of resistively shunted Josephson
junctions connected to single superconducting grains at the top and
bottom of the array, which acts as busbars. With the periodic bound-

ary conditions the grains on the left are connected (by junctions not
shown) to those on the right.
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M = C(P), (9)
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where C(P) is the nonlinear term which includes the
sin(Pt. —

P&) terms of Eq. (5). These equations are solved
numerically by inverting M to the right-hand side of Eq. (9)
and integrating numerically, while randomly applying a
different white-noise current i j,t(t) to each junction in each
time step. The numerical results for a single junction and
16' 16 arrays of identical RSJ junctions are shown in Fig. 2.
Figure 2(a) shows the Shapiro steps for both the voltage
across a single junction and for the voltage across each junc-
tion in an array which coincides at T=O and the voltage
steps sharply between the various harmonics. On the first
step the entire NXN array is phase locked to the applied ac
driving current. On the nth step the system is phase locked to
the (n —1)th harmonic of the driving current. In Fig. 2(b),
temperature fluctuations have been introduced (as current

t= 28oao t = 28&vo
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FIG. 2. The average voltage per bond (U) vs id, for a 16X 16
array with i„=0.5, co=0.2 and (a) T=O and (b) T=0.001. The
more rounded curve in (b) is for a single junction.

d

dr (0'k 0't) = ip' —X [sin(4k —A) + ikt(t) j, (5)
I I

t = 28110 250

where Pz is the superconducting phase at node k, where the

capacitative terms have been ignored, where ik"' is the exter-
nal applied current

i'"'=id, + i„sin(tot),

which is zero everywhere except at the top and bottom bus-
bar, where the external current is inserted and withdrawn,
and where ikt(t) is the randomly fluctuating noise current
across the junction connecting nodes k and I which repre-
sents the thermal fluctuations, and is approximated by the
white-noise form of Ambegaokar and Halperin with the fol-
lowing characteristics:

28130

t= zaiso

t = 2826O

2827o

and

where ( ) denotes an ensemble average. The noise currents
in the different shunt resistances are uncorrelated, and the
noise current in a single junction is uncorrelated in time cor-
responding to white noise (Johnson noise). These equations
of motion (4) can be collectively written in the generalized
matrix form

FIG. 3. Snapshots of the creation and annihilation of a vortex-
antivortex pair in a perfect 16X16 array at T=0.25, id, =0.7,
i „=0.25, and f= 0.2. The Monte Carlo time steps are indicated on
each picture as the temperature fluctuations produce a barrier to the

supercurrent flow which causes the vortex and antivortex to be pro-
duced on each end of the fluctuation, to depin, and to travel across
the sample annihilating at the periodic boundary conditions. The
actual plot is of the magnitude of the supercurrent flowing in the

bonds perpendicular to the external current.
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FIG. 4. A plot of the number of vortex-antivortex pairs
(X100) per lattice plaquette, averaged over 40000 snapshots
(taken at different times) for each value of the current vs id, for

id, =0.5, co=0.2, and T=0.001 in a 16X16 array.

fluctuations) at T=0.001 in units of 6J/eke. (For example,
in these units the Kosterlitz-Thouless transition occurs at
about TKT=0.45.) The (V I) curves -for the single junction
and for the junctions in the N XN array are now rounded by
the temperature fluctuations although the steps for the N XN
array are less rounded than those for the single junction.

In the numerical simulations, in the array we can observe
and count the antivortex-vortex pairs present at any given
time. An example of a snapshot of the creation of an

antivortex-vortex pair in a 16' 16 array is shown in Fig. 3.
This numerical process was discussed in more detail in Cai
et aI. where it was observed that the vortices were created
numerically by the random temperature (current) fluctua-
tions. Essentially a hot fluctuation region acts momentarily
as a local defect diverting the supercurrent around each side
of it, with the resulting vortex and antivortex being created
and depinned from the edge of this fluctuation. Using this
technique it is easy to observe, for example, the antivortex-
vortex pairs created at the Kosterlitz-Thouless transition. So
here, these vortices were easily identified and counted by the
computer where they were identified as singularities in the
superconducting phase field. Specifically, we searched each
square plaquette of nearest-neighbor sites for phase change
of ~2m as one transverses the sites around the plaquette.
The results of this vortex count are shown in Fig. 4 superim-
posed upon the (V I) curve-for the array, where the vertical
axis is the number of vortices (X 100) counted in the array
averaged over 40000 snapshots taken at each value of the
bias current id, . The random samples were generated inde-
pendently at each value of the current id, so the results at
each value of id, are not correlated. From Fig. 4 it is clear
that the peaks in the number of vortices in the array occur
just at the risers of the Shapiro steps when the system is
making the transition to the next harmonic. The vortex-
number peaks have long tails on the high-current side. A
four-parameter fit of the first peak to a power law of the form

n„=a+ b(idc 1)
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FIG. 5. The power spectrum (Fourier compo-
nents of the voltage squared vs frequency) of a
5 X5 RSJ array for id, =0.62—0.67. The peak in

the number of vortices occur at the step riser at

id, =0.64. The right-hand column is for T= 0, the
central column is T=0.001, and the left-hand
column is also at T=0.001, but with the har-

monic peaks removed.
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FIG. 6. The power spectrum of Fig. 5, for the case of the peak
number of vortices, at T= 0.001 and id, =0.64 redrawn as a log-log
plot, with the harmonic peaks removed. The solid-state straight
lines with slopes of —1 and —4 are merely guides to the eye.

gives X=0.46~0.05, i&
———0.639~0.001, b=0.0255, and

a=0.0563. So these upper tails are approximately square-
root singularities.

It also seems that these vortex peaks are responsible for a
substantial rise in the noise produced at the step risers. In
Figs. 5 and 6 we show the power spectrum as one goes
through the first peak in the vortex numbers. For Fig. 5,
right-hand column, we show the power spectrum at T= 0 for
the six values of the bias current in the range

id, =0.62—0.67. Clearly there are only the harmonics pro-
duced at T=0 at multiples of the applied frequency
co=0.2. When the temperature is raised to T= 0.001, center
column, there is a reduction in the amplitudes of the harmon-
ics coupled with a dramatic increase in the noise produced as
one passes through the peak in the number of vortices at
about i d, =0.64. It is an easy matter to subtract out the har-

monics which occur at m = 0.2n and one is left with the noise
spectrum shown in the left-hand. The power spectrum is re-
plotted at the vortex peak id, =0.64 in a log-log plot in Fig.
6. The background noise in these units for T= 0.001 is about

110 so the noise power at its peak increases by about 3—4
orders of magnitude over this value. The suggestive straight
lines drawn in Fig. 6 have slopes of —1 and —4. The region
of —1 slope may represent 1/f-noise, although we were able
to observe this behavior only over a rather small frequency

range. It may also be that thermal-fluctuation-driven vortex-
pair creation is an important contributor to the anomalous
noise temperature seen experimentally in some single Jo-
sephson junctions. ' It would be useful to have similar mea-1,2

surements on real RSJ arrays to see the effect simulated here.
Finally, as one test of the variation of the supercurrent

induced by the ac field predicted by the single junction
~ ]calculation we attempted to calculate the single-time

voltage-voltage correlation function within a 19' 19 sample.
The results had rather large fluctuations in the data but nev-
ertheless the correlation function on the step riser died much
more rapidly with distance and there were some indications
that the correlation function was changing from a power-law
behavior within the superconducting phases on the steps to
an exponential decay on the riser which would be character-
istic of the normal state. It would seem that, perhaps the
system is going normal briefly on the risers of the Shapiro
steps.

In conclusion, we believe that we have seen evidence for
a large increase in the number of unbound vortex pairs on the
Shapiro-step risers as the bias current passes through the
critical values. This is like a kind of Kosterlitz-Thouless tran-
sition in the sense that the vortex pairs created on and bound
to the edges of the thermal fluctuations depin when the
locked state becomes unstable on the Shapiro-step risers.
Nevertheless, the cooperative effects of the coupled nonlin-
ear Josephson junctions at the Shapiro-step risers in this ar-

ray keep the fluctuations sufficiently low compared to those
for a single junction that the step rounding is reduced. It
would be interesting to see experimental verification of the
noise results seen here and analytic calculations that would
study the transition phenomena between the Shapiro steps.
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