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High-precision, all-electron, full-potential local density-functional calculations are used to reduce the uncer-

tainty in static-lattice predictions of the high-pressure structural phase transitions in Al. These calculations
predict a static-lattice fcc~hcp transition pressure of 205~20 GPa and suggest a fairly firm upper bound of
290 GPa for the T=O K fcc—+hcp transition pressure. These results indicate that a recently reported diamond

anvil cell experiment probably came very close to achieving the fcc—+hcp phase transition in Al.

Determination of structural transition pressures in Al at
T=0 K was the topic of three density-functional-theory
(DFT), local-density-approximation (LDA) studies roughly a
decade ago. Two of these, one by McMahan and Moriarty'
and the other by Lam and Cohen (MM and LC, respec-
tively), used pseudopotentials rather than all-electron meth-
ods and obtained notably different predictions for the
fcc~hcp transition pressure (MM 360 GPa vs LC 220 GPa),
and the hcp~bcc transition (MM 560 GPa vs LC 380 GPa)
(Ref. 3). MM also treated these transitions via the all-
electron LMTO method in its spherically averaged rather
than full-potential form. The linear muffin-tin-orbital
(LMTO) predictions also differed substantially from the oth-
ers: fcc—+hcp at 120 Gpa, hcp~bcc at 200 Gpa. The
fcc~bcc value was not reported by MM; LC found 300 Gpa
at V/V0=0. 45. Given that the extreme values for the transi-
tion pressures were obtained by MM using the same LDA,
the wide variation in the results must be attributed to the
different approximations (pseudopotentials and muffin-tin
potentials) utilized.

A bit later a full-potential, all-electron, linear combination
of Gaussian-type orbitals (LCGTO) calculation using the
Kohn-Sham-Gaspar (KSG; i.e., X with ct = —,') LDA found
the fcc~bcc V/Vo= 0.446, in good agreement with LC, but
at a slightly higher transition pressure, 330 Gpa. On the basis
of that single comparison with all-electron, full-potential re-
sults, LC's ab initio pseudopotential predictions at least
proved consistent, provided that the differences in LDA
models were kept in mind. The LCGTO code used in Ref. 4
was restricted to cubic symmetries, however, so no direct
resolution among the different predictions (MM, LC) was
possible. In this admittedly restricted context, the best previ-
ously available prediction of Pf„h,p

would seem to be
LC's. Though there are several more modern calculations of
the equilibrium lattice parameter, bulk modulus, and cohe-

sive energy of Al, a priori prediction of the transition pres-
sures does not seem to have been pursued after Ref. 4.

A recent remeasurement of the equation of state (EOS) of
Al by diamond anvil cell (DAC) techniques found no evi-
dence for an fcc to hcp structural phase transition for pres-
sures through 219 GPa (V/Vo=0. 50), hence P f Q p
)220 GPa (assuming no metastability at phase transition).
This measurement reopens the issue of the disparity among
the prior calculations, as follows.

The LDA, whatever its other well-known limitations, has
yielded very reliable T=O K equations of state. If the LDA
were to turn out to fail in the case of a simple metal such as
Al that failure would be a new constraint on the limits of the
simplest approximations in density functional theory. Con-
versely, experimenters cannot exploit the supposed reliability
of LDA equations of state when the existing predictions
range over roughly 50—150 % of the most modern measure-
ment of a bound on Pf h p

If the lowest prediction,
P f h p I20 GPa (MM) were to embody the LDA accu-
rately, then there is a serious convict between experiment
and theory. If, however, the intermediate prediction (220
GPa, LC) is correct (with some reasonable error bars), the
DAC experiment came extremely close to achieving the
fcc~hcp transition, and should be pursued vigorously. If the
highest predicted pressure (360 GPa, MM) is the "best"
LDA value, one of two dilemmas results. Either the predicted
transition lies at experimentally forbiddingly high pressure
(at least for the near future) or, if the actual P f 1, p

is only
slightly above the Ref. 6 bound, once again a serious defi-
ciency in the LDA has been exposed. If possible, the issue
should be resolved on the calculations side prior to experi-
mental determination of the transition pressure; otherwise the
calculation simply becomes a confirmation and parametriza-
tion of the experiment. Clearly there is a need for high-
precision, all-electron, full-potential calculations aimed at re-
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solving the large discrepancies among the existing
predictions.

Recently, one of us (J.C.B.) has generalized the linear
combination of Gaussian-type orbitals —fitting function
(LCGTO-FF) technique used extensively for all-electron,
full-potential calculations in thin films and molecules ' to
a code which treats systems with three-dimensional (3D),
2D, or 1D Block periodicity. Up to limits of computer re-
sources, this code "GTOFF" can treat arbitrary unit cell
symmetries and complexity.

For the present purpose, the key point of comparison with
the LC and MM calculations (and the meaning of "all-
electron, full-potential" ) is that neither pseudopotentials nor
muffin-tin approximations are imposed. Other than trunca-
tion of basis set expansions and approximate evaluation of
functions, all of which are subject to careful determination of
error limits by varying the relevant cutoffs, there are no ap-
proximations built into GTOFF which are not in the under-

lying LDA. Further, the code is structured to facilitate esti-
mating the limits on precision by tuning various cutoff
parameters, convergence tolerances, etc. For this study, those
limits are tighter than the presumed accuracy of the LDA.
GTOFF also allows comparison of distinct LDA models

there chosen to be Hedin-Lundqvist" (HL) and KSG], hence
provides a reasonably sensitive test for DFT model depen-
dencies without having to choose among the various cur-
rently competing generalized gradient approximations
(whose relative reliability is still a matter of investigation).

Here we report an application of GTOFF to a 3D periodic
system: calculation of the T=O K static-lattice EOS for bcc,
fcc, and hcp Al. We focus on the high-pressure transitions
and, with two exceptions, defer detailed discussion of the
low-pressure properties. The exceptions are the equilibrium
lattice parameter and bulk modulus for the fcc phase. These
provide a sense of the overall quality of this calculation by
comparison with previous results. Using the HL LDA, we
find ap p =7.596 a.u. ' Bpg =79.7 GPa in good agreement
with Moruzzi, Janak, and Williams who reported all-
electron, muffin-tin, HL values of 7.59 a.u. and 80 GPa, re-
spectively and LC's pseudopotential, Wigner LDA values of
7.58 a.u. and 71.5 GPa, respectively. Khein, Singh, and
Umrigar report 7.52 a.u. and 83.9 GPa (Perdew-Wang
LDA); the reduced lattice constant in the latter calculation
appears to be a consequence of the use of relativistic correc-
tions. The equilibrium lattice constant we calculate also is in
good agreement with the extrapolated low-temperature lat-
tice constant for Al reported by LC, 7.60 a.u.

Details of basis set selection and tabulation of exponents
and contraction coefficients are left to a full paper. In sum-
mary, calculations ranged over volumes corresponding to fcc
lattice constants between 5.35 and 7.80 a.u. The basis sets
used were the "interior layer" basis sets developed and
tested thoroughly during a recent study of Al ultrathin
films. In the small lattice constant range, the most diffuse
exponents were increased slightly when needed to avoid ap-
proximate linear dependencies. The fitting function basis sets
were restricted to s-type functions since p- and d-type func-
tions lack the correct rotational symmetry for the cubic sys-
tems.

The Brillouin zone (BZ) integrations employed uniform
meshes which preserve the lattice symmetry with 72 and 76

points in the irreducible wedges of the cubic and hcp BZ's,
respectively. The BZ integrations were performed via a
broadened histogram technique (with the DOS for each cal-
culated state approximated by a normalized Gaussian with a
width of 20 mRy). The accuracy of the histogram integra-
tions was tested in a series of calculations using the linear
tetrahedral method with the integrations performed over the
full BZ to ensure that the correct star weights for the irre-
ducible k points were generated. ' Fully converged results
were then estimated by the extrapolation technique of Jansen
and Freeman using BZ meshes with up to about 400 points
in the irreducible wedge. Those authors had found Al to be a
particularly slowly converging system with respect to BZ
scan density. These calculations confirm that behavior and
suggest that the linear tetrahedral integration used in the pre-
vious LCGTO work (with less than 150 irreducible k points
for each structure) was not as precise as the current BZ in-

tegrations.
The EOS's for the various phases, up to about 500 GPa,

were obtained by fitting a "universal" EOS form to cohe-
sive energies calculated at eight (bcc and hcp) and ten (fcc)
volumes, corresponding to fcc lattice constants between 5.6
and 7.8 a.u. (The specific choice of model EOS was for
reasons of utility and is not intended as a statement about the
best-fit low-P EOS.) In each case, the standard deviation of
the fit was less than 0.1 mRy. The transition volumes and
pressures for the fcc—+hcp and fcc—+bcc transitions were de-
termined from crossings of the resulting enthalpy vs pressure
curves for the various structures. We find the fcc~hcp tran-
sition at 205~20 GPa (V/VD

——0.521, with V the average
volume for the transition) and the fcc~bcc transition at
340~15 GPa (V/V0=0. 446). The error bars on the pres-
sures are consistent with a 0.5 mRy uncertainty in the struc-
tural energy difference including both EOS fitting and BZ
integration errors.

Because the calculated hcp~bcc transition lay outside the
range of volumes considered in the first fit, cohesive energies
were calculated at one additional volume, corresponding to
an fcc lattice constant of 5.35 a.u. Repetition of the fitting
procedure with this additional point included produced
an hcp~ bcc transition pressure of 565 ~ 60 GPa
(V/V0=0. 376). The larger error margin for this transition
pressure reAects an increased standard deviation for the EOS
fits, and assumes an overall uncertainty of 1.0 mRy in the
relevant structural energy difference.

Comparison of the present calculated static-lattice transi-
tion pressures with the earlier predictions reveals two inter-
esting results; see Table I. First, it is quite reassuring that the
only previous all-electron, full-potential prediction for the
fcc~bcc transition pressure lies within the current error
bars. More importantly, the current fcc~hcp transition pres-
sure is in good agreement with the previous intermediate
prediction, namely LC s; see the discussion above. This
means that there is no obvious inconsistency between the
"best" LDA prediction and the new experimental lower
bound for the fcc~hcp transition pressure. In addition, the
"best" LDA prediction places the transition pressure within
the reach of DAC experiments.

Since the upper limit of the calculated static-lattice
fcc~hcp transition pressure is barely above the lower bound
determined in the recent DAC experiment, caution suggests a
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TABLE I. Comparison of the present calculated static-lattice transition pressures with earlier predic-
tions.

Quantity This Work LC;
Refs. 2, 13

MJ%';

Ref. 12
MM-

LMTO;
Ref. 1

MM-

GPT;
Ref. 1

Expt.

ao

fthm

a u

80 GPa

I'g„h, p
GPa

V/V,

&h.p-bee G»
V/Vo

Pg„b„GPa
V/Vo

7.596
79.7

205 ~ 20
0.521

565~ 60
0.376

340~ 15
0.445'

7.58
71.5
220

0.50
380
0.40
300
0.45

7.59
80

120

200

360

560

7.60'
72.7"
~220'
(0.50'

'As cited in Lam and Cohen, Refs. 2 and 13.
Greene, Luo, and Ruoff, Ref. 6.

'For comparison, the previous LCGTO, X (KSG) calculation of Ref. 4 found Pt„b„=330 GPa at

V/V0=0. 446; see introductory text.

careful analysis of the current prediction. First, consider the
uncertainty due to the choice of LDA model. To test for
sensitivity to that choice, we recalculated E&„—Eb„at
az„=7.60 a.u. using the KSG LDA. This modification in the
LDA produced a shift of only 0.05 mRy in E&„—E b„at
P=O. This shift should decrease rapidly as the pressure is
increased, since the behavior of LDA models differs prima-
rily in regions of low electron densities. Thus, the uncer-
tainty in the transition pressure due to the choice of the LDA
model should be negligible compared to other effects.

An important distinction between the present calculation
and experiment is the neglect of phonon contributions, both
zero point and thermal, in the calculation. At P = 0, the zero
point energy for fcc Al is about 3 mRy. Assuming that the
zero-point energy scales as (Vi Vo) ~, with y=2.2, the zero
point energy of fcc Al near the fcc—+hcp transition would be
on the order of 18 mRy. Even if the zero point energies for
the two close-packed structures were to differ by as much as
10%, the uncertainty in the fcc-hcp structural energy differ-

ence due to neglect of the zero point motion would be no
more than 1.8 mRy.

The estimated combined uncertainty in the T=0 K fcc-
hcp structural energy difference near the transition therefore
is 2.3 mRy, 0.5 mRy from computational imprecision and 1.8
mRy from neglect of zero point motion. If the calculated
enthalpy vs pressure curve for the hcp structure were to be
shifted upward by a constant 2.3 mRy relative to the fcc
curve, the transition pressure would be about 290 Gpa. That
value should represent a reasonable upper bound estimate for
the 0 K fcc~hcp transition pressure. Since this theoretical
upper bound is only 70 Gpa above the reported experimental
lower bound, it is very likely that the recent DAC experi-
ments came quite close to (but just short of) observing the
fcc—+hcp transition. Certainly the current prediction should
provide incentive for further Al EOS measurements.

One of us (J.C.B.) thanks Duane Wallace for helpful dis-
cussions. J.C.B. was supported in part by the U.S. Depart-
ment of Energy.
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