
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 21 1 JUNE 1995-I

Escape4ield distribution for escape from a metastable potential well subject
to a steadily increasing bias field
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The first two moments of the escape-field distribution are evaluated for a particle in a steadily ramped
potential. Implications for macroscopic quantum tunneling are discussed.

If a system with a one-dimensional degree of freedom
x, described by a potential V(x) of the general shape
drawn in Fig. 1, is initially prepared in a suitable state or
distribution in the potential well, it will escape out of this
well, either by thermal activation over the barrier at high
temperatures, or by quantum tunneling at low tempera-
tures. If in addition, the potential includes a term —Fx,
where F is a bias Geld which can be experimentally
varied, then a convenient way to study the escape process
is to steadily ramp up the field and monitor the value of F
at which escape occurs. Since the escape process is sto-
chastic, the escape field will diQ'er from run to run of the
experiment, and one must consider the entire distribution
P (F) of escape field.

The above procedure seems to have been first used to
study thermal phase-slip events in current or Aux-biased
Josephson junctions and superconducting quantum in-
terference devices. ' These systems were later studied '

at lower temperatures with a view to seeing macroscopic
quantum tunneling (MQT). In these systems, the distri-
bution P (F) can be very well sampled, and following Ref.
3, the data can be converted directly into an F-dependent
escape rate I"(F). Recently, Giordano and co-workers
have examined the depinning of a magnetic domain wall
in very thin Ni wires subject to a biasing magnetic field as
another candidate system for MQT. Sampling the distri-
bution appears to be harder in this system, and only the
mean escape field has been measured yet.

The purpose of this short and technical note is to find
analytic formulas for the mean and width of the escape-
field distribution, in the hope that these will be useful in

analyzing experiments such as those of Ref. 7, when the
full P (F) cannot be studied, and only its mean and width
can be adequately measured. The essential dependence
on temperature and parameters of the potential have pre-
viously been found semiempirically by Kurkijarvi' when
the escape is by overdamped thermal activation. It nev-
ertheless seems worthwhile to present our analysis as it
reGnes and gives a firm basis to Kukijarvi s answers, and
can be extended to the cases when the escape is by quan-
tum tunneling or by thermal activation with moderate
damping.

The escape-field distribution is related to I (F) by the
following argument. ' Let the field F =0 at time t =0,
and let it be ramped up at a steady rate F. The probabili-
ty 8'(F ( t) ) that the system will persist in the metastable
state up to time t is given by

W'(F(t)) =exp —I I (F(t'))dt'
0

Changing the variable of integration from t' to F(t'), we
have

P (F)= — IV(F) = . exp —f . dF' . (2)
0

We shall refer to Eq. (2) as the Kurkijarvi-Fulton-
Dunkelberger (KFD) formula. ' Note that P(F)~0 as
F~O because of the pre-exponential factor I (F), and
also as F~F, because of the exponential factor.

Since escape (quantum or thermal) is improbable if the
potential barrier is large, we focus on values of F close to
the critical field F, at which the barrier disappears com-
pletely. It is then a good approximation to use a cubic
potential for V(x), in which case, the barrier height
U„(F) and the small oscillation frequency to(F) are given
by

where U, and e, are characteristic parameters of the un-
b1ased poteIltlal, and

FIG. 1. Metastable potential wells for three difterent bias
fields, F3 )F2 & F&. The curves are displaced vertically for clar-
ity. The barrier height Up is shown foI F F].

is a reduced bias field. We shall only examine cases
where the escape rate can be written as
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I (e)= A e'+ 'exp( B—e ) . (6)

This form is broad enough to cover a large variety of in-
teresting cases. The quantities A, B, a, and b depend on
whether the escape is quantal or thermal, and the degree
and type of damping. In Table I, we give illustrative for-
mulas for various cases involving Ohmic damping, by
which we mean that the classical equation of motion for
x includes a frictional force —qx, with the "mass" taken
as unity. The results for thermal activation are from the

celebrated paper by Kramers, " and those for quantum
tunneling from Refs. 6 and 12. It should be noted that
the most important feature of I is the exponent, so our
results should hold to good approximation even when the
prefactor has corrections (possibly e dependent) or a
somewhat different form. ' We refer the reader to Ref.
14 for a comprehensive discussion of these points, and of
the domain of validity of the formulas in Table I.

We find that for small ramp rates, the mean (e) and
the variance o, (which are trivially related to (F) and
o F ) are given asymptotically by

( )
lnX
B

1 a1+ —ln lnX+y +
b lnX b

l~ 2+ 2/b— 2

CT q— B''b 6b'
+ [2a [U +U+~ /6] (b —1—)[n. U /3 —p"(1)]I+ (8)

a
U =—lnlnX+y,

b
(9)

where y=0. 5772. . . is the Euler-Mascheroni constant,
g"(1)= —2.404. . . is a particular value of the tetragam-
ma function, ' and

cF
gB ]+a/b (10)

The details are given in the Appendix. ' The ramp rate F
must clearly be small, as otherwise the system will not be
able to maintain an equilibrium form in the initial state.
A proper criterion for how small F must be will be ob-
tained below, but we note here that in the experiments, X
is often as large as 10, and even larger values may be
desirable as the true expansion parameter in Eqs. (7) and
(8) is 1/lnX. For thermally activated escape with large
damping —the case considered in Ref. 1—a =0, b =3/2,
the X's in Eq. (10) above and Eq. (11) in Ref. 1 are identi-
cal, and our answers for (e }and o, agree precisely with
the numerical results of Ref. 1 for X ~ 10 and X ~ 10, re-
spectively. For X = 10, our result for cr, is alternately too
small or too large by about 10%, depending on whether
the correction to the leading term is or is not included.
This comparison gives some measure of the importance
of the correction terms and the range of X over which the
expansions (7) and (8) can be trusted.

Let us now see how small F must be. The validity of
Eq. (6) for the escape rate (either thermal or quantal) re-
quires Be &&1. The maximum of the KFD distribution
should clearly be located inside this region of validity.
This maximum is found by solving the equation
d lnI /de = I /i, which can be reduced to

exp(Be )

(B~b)a lb

Taking Be &15 as an operational criterion, we obtain
X ~ O(10 ) for all cases listed in Table I. For both the
Josephson-junction-based and magnetic MQT candidate
systems, one has co, /2m-1 GHz, which combined with
X~10 yields I -10 sec ', and ~e~ 510 sec

In summary, we have found [Eqs. (7) and (8}]the mean
and width of the escape-field distribution. As discussed
in Ref. 5, a convincing demonstration that one is observ-
ing MQT requires measuring the parameters U„cu„and
F, accurately. The last quantity must be measured to
particularly high precision. This is best done at high
temperatures when the escape is thermally activated. In
that regime, Eqs. (7) and (8) show, as expected, that the
dominant behavior is governed by the exponent B in the
rate, the prefactor A being much less important. A plot

TABLE I. Parameters of the thermal and quantal escape rate for various degrees of Ohmic damping.
See Refs. 6 and 11—14 for a discussion of corrections and domain of validity of the various limits.

Escape
mechanism

Thermal
Thermal
Thermal
Qua ntal
Qua nta1

Damping

Low
Moderate
High
None
High

18qU, /s~k, T
co, /2m-

COc /27T'l7

(216U,co, /M)'
(3U,.'/~-', )'"

U, /kg T
U, /kg T
U,'/k', T
36U, /5Aco,
3m' U, /Ac@,

1
—1/4

0
5/8
0

3/2
3/2
3/2
5/4
1
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of ( F ) versus rr~ should therefore essentially be a
straight line with y intercept F, and a very weakly
temperature-dependent slope 2m. /(3+6 lnX). This ap-
proach may provide another means of determining F,
and 1nX and thus at least some of the system parameters.

Note added in proof. After submitting this paper, the
author learned of an approximately similar analysis' for
the case of thermal escape, and of extensive measure-
ments' of the escape-field distribution for magnetization
reversal in small particles. I thank B. Barbara and W.
Wernsdorfer for this information.
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APPENDIX

The controlling factor in the integrals for (F) and
(F ) is clearly the exponent $(F) [or equivalently $ (e)]
in the persistence probability W(F). It is therefore desir-
able to make a change of variables from e to s. This
would be quite straightforward if a vanished, and the
analysis that follows is tedious largely because this is not
so.

The first step is therefore to ~rite e as a function of s.
We have

where

Z =ln, =ln(X/$) .
A

bg1+ IbIeI$
(A4)

a a 2 a a a
ln Z+2 — 1 ——lnZ+ 2 —3—

2bz' b

+0(Z ' lnZ) (A5)

This is almost in the desired form, and raising it to the
1/bth power would give us e, but let us first make the $
dependence explicit, treating s formally as a quantity of
order unity. Writing Zo =lnX, we have

a a a
q =Z +—lnZ —lns+ —lnZ —lns+10 b 0 bZo b

T

a a 2 a a2

ln Zo+2 — 1 ——lnZo+ 2 —3—a
2bZ b b

a 2 a ' a a
ln s+ —lnZD ——+ 1 + . (A6)

2hZ o2 bZ' b b

It pays to introduce the combination

The important values of s are around unity, so we will
solve Eq. (A3) for q when Z » 1. This can be done as an
expansion in powers of 1/Z and (lnZ)/Z, and we get

r

q =Z+ —lnZ+ —lnZ+1a a a
b bZ b

~ I F'
$(e)=f . dF= f I (e')de' .

0 F
Repeated integration by parts gives

u ($)=—lnZO —ln$,
b

in terms of which we can rewrite Eq. (A6) as

(A7)

$(e)= e ' 1+ e + e + .
baal'I bB b2B2

(A2)

Defining q =Be, and taking logs, we get after a little
rearrangement,

q=ZO+v+ (u+1)
bZo

[u +2(1—a/b)u +(2—3a/b)]+
2bZo

(AS)

q =Z+ —lnq+ ——+ +O(q ),a a 1 o(a —2b) 1 —3

b b q 2b2 q2
(A3) To evaluate ( e ) and ( e ) we need q

' and q . For a
general exponent r, one more expansion gives

q"=Zo+rZ& ' v+ (u+1)— [v +2(1—a/b)u+(2 —3a/b)]
bZo 2bZ

r(r —1) „2 2 2a 2 r(r —1)(r —2)
(A9)

The second step is to rewrite ( e") as an integral over $.
We have

(&")= f e" de=a " f q "~I'($)(de
O dE @=0

(A10)

Substituting Eq. (6) in Eq. (Al) we get $(~ )=0, andz$(0)=e I'(1+a/b) »1. The error made by replacing
the lower limit in the integral (A10) by $ = ~ is of order
e ' '-e, which is clearly negligible. Thus,

(6")=g —"ibf q" Ib($)e ~dS (Al 1)
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The final step is to substitute Eq. (A9) in (All) and
evaluate the integrals. Regarding e ' as a distribution
for s, and writing u" =(v"), we obtain'

ft=rU

2 2 6

(A16)

(A17)
Q

U =—lnZO+y,

'Il' 2

U =V +
6

2

u =u + u —1b"(I) .
2

Using these, we obtain

(q") =Zo 1+ g Zo Jf (r, ZO)
j=1

where

(A12)

(A13)

(A14)

(A15)

a 2

f3= —r u +2(1—a/b)V+ +2—3—
2b 6 5

2

+r(r —1)—v +u+
b 6

+ r(r —1)(r —2)
6 2

Putting r =1/b, multiplying by B ', and recalling that
Zo =lnX, we obtain Eq. (7) of the text. Likewise, putting
r =2 lb gives ( q ), and Eq. (8) follows from
g2/b 2 —( 2/b) ( 1/b)2
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