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Nonmagnetic impurity in the spin-gap state
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The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are
studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories
with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory
in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to
the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field

theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge in-

teraction. However, in both theories, localization of spinon does not appear in the resistivity, which

shows the classical value for the holon.

Substitutions in high-T, cuprates offer an important
means to study the strongly correlated metallic state of
these compounds. Especially the effects of the nonmag-
netic impurities, i.e., Zn, replacing Cu in the conducting
planes show unexpected features in the underdoped re-
gion. '

The formation of the magnetic moments due to Zn has
been revealed by magnetic susceptibility, ' NMR,
pSR, and electron-paramagnetic resonance. Recent de-
tailed study has shown that the moment is sitting on the
nearest-neighbor Cu orbitals. The magnetic susceptibil-
ity shows Curie law and the Curie constant is roughly
proportional to the Zn concentration and an almost full
moment appears in the underdoped region, i.e., 0.8p~ in
La, ssSro»Cu, ,Zn, 04 (Ref. 8) and 0.86pz in

YBa2(Cu&, Zn, )306 64 (Ref. 5) per Zn ion. The magni-
tude of the induced local moments is strongly dependent
on the hole concentration x and becomes smaller or even
vanishes as x increases. '

At an early stage Finkelstein et al. discussed the
mechanism of this local moment formation, and put re-
strictions on the microscopic theories. The magnetic
properties near the vacant site have been studied for the
antiferromagnetically ordered state" and for the cluster
of t-J model, ' but the local moments were not found.

Another important aspect of the impurity effects is the
residual resistivity. ' ' ' It should be noted that the re-
sidual resistivity p„, in the Boltzmann transport theory is
independent of the effective mass of the carriers and is
determined only by the phase shift 60, the impurity con-
centration n;, and the carrier density n, i.e.,
p„,=4(A'le )(n;

&
In )sin 5o. In the Fermi-liquid theory

the carrier number is that of the conduction electrons
1 —x (x: hole concentration). However, experiments in
La2 „Sr„Cu& Zno and YBa2(Cu&, Zn, )30 have re-

4

vealed that X-=x and 6O —=~/2 in the underdoped re-
gion. For example for x =0.15, z =0.01 in
La2 Sr„Cu, ,Zn, 04 the localization effect does not
show up down to the superconducting transition temper-
ature T„and the temperature-independent increase of
the resistivity is regarded as the residual resistivity p„,.

The obtained value p„,-=1300 Q should be compared
with the unitary limit value p„„;„,~= 1150 Q for n =x and

punitary
=200 Q for n = 1 —x, and the carrier density n

should be identified with that of the doped hole x. As
the hole concentration x increases with fixed z, the resid-
ual resistivity decreases and eventually n is identified with
1 —x as in the usual Fermi liquid.

In this paper we shall explain these two aspects, i.e.,
transport and magnetic properties of the underdoped
samples, in a unified way from the standpoint of the
resonating-valence-band theories. In the framework of
the slave-boson mean-field theory, the local-spin mo-
ments are due to the Anderson localization of the spinons
in the d-wave pairing state whereas in the slave-fermion
mean-field theory, they appear because of the strong
(staggered) gauge interaction which binds spinons to the
nonmagnetic impurities. In both theories the resistivity
is determined by the residual resistivity of the holons by
the Boltzmann transport theory.

First let us consider the local moment induced by the
nonmagnetic impurities. We have two examples in 1D
where the local moment is induced by the nonmagnetic
impurity. An example is the double-chain Heisenberg
antiferromagnet, where the gap for the triplet excitations
is opened. In this system a nonmagnetic impurity gives
rise to a spin- —,'. However the local-spin moment does not
appear near the edge of the sample as will be described
below. Another well-known example with the gap is the
Haldane system with 5 =1.' If one introduces a non-
magnetic impurity and cuts the chain, the local spin- —,

'

appears near the edge of the chain within the extent of
the order of J/EH times the lattice constant (J exchange
coupling, EH Haldane gap). Although these are one-
dimensional (1D) examples, we shall embody below the
analogy between one and two dimensions.

We start with the purely spin model

H=J g g S;~. S;+,,
J = $~ L l = oo

~
oo

+J' g g S; S +, ,
j= 1., L —1 i = —oo, oo
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where J is the intrachain exchange and positive (antifer-
romagnetic) and J' is the interchain exchange coupling.
We take the open boundary condition along the y direc-
tion. L =2 and J' —+ —~ corresponds to the S =1 anti-
ferromagnetic chain (Haldane system), while L =2, J'=J
to the double-chain Heisenberg antiferromagnet. Let us
start with the antiferromagnetic J'( )0). In this case the
slave-boson theory' ' is more convenient because the
order parameter for the singlet formation can be more
easily identified. In this scheme the spin operator S;.
with spin —, is expressed in terms of the fermion (spinon)
operators as S, =(1/2)f; oiif; Pw. ith .the constraint

t if; Q/ =1 for each site. Using these fermion
operators, the Hamiltonian Eq. (1) is expressed in terms
of these fermion (spinon) operators, and we employ the
mean-field theory with the order parameters
y„(ij)=(gQ, +, , ) "and y (ij )=(+QtIJ", , ).
Then we obtain

HMp J y y y~(&j)y f/~+ i)pf jp+H. c.
ij a p

J'g gy»(ij ) g f +ii3f~)p +H. c. (2)
ij a p

We take here the ~-Aux state where each plaquette en-
closes m Aux, i.e., y (ij )=g, =const, g»(ij)=( —1)'g», '

because it reproduces the qualitatively correct features in
finite width (L) systems. (Qne can choose another solu-
tion which is equivalent to that above by the gauge trans-

it,
formation f; ~f, e".) Then w. e obtain the two bands
for the spinons whose dispersions are given by

E+ (k) =++(J cosk, ) + (J'cosk„) (3)

Because of the open boundary condition, k is discretized
as k» =un» /(L + 1) (n: integer) and it is easily seen that
k can take m/2 and there is no gap for L =odd, while
there appears a gap for L =even. This even-odd effect
has been already discussed theoretically' and confirmed
experimentally. ' Both even and odd series converge to
the ~-Aux state in 2D as I —+ ~. Now let us put one non-
magnetic impurity, i.e., an inert site where the fermion is
excluded. It is convenient to express this situation by in-
troducing the potential Vo at the impurity site and take
the limit Vo~ ~ afterward. This is solved by the Slater-
Koster method' and the advanced Green's function
6 (oi) for the impurity site is obtained as
6 (co)=Go(co)/[1 —VoGo(o»)], where Go(co) is the
Green's function in the absence of the impurity and is
given by Go(o~)= JdED(E)l(o» —i5 —E) with D(E) be-

ing the density of the one-particle states per one lattice
site. In the present case there is the particle-hole symme-
try, and D (E)=D ( E). The L depen—dence of the densi-
ty of state is as follows. For odd I there is the finite den-
sity of states for E =0 but its weight is -L '. For even
L there opens a gap around E=O which decreases as
-L . In the limit L ~~ both of these series converges
to that of the 2D flux state where D(E) ~ ~E~ for small
~Et If one takes the even L series, Go(co) can be expand-
ed around co=0 as Go(co) = —ace+0 (o» ) with
a= JdED(E)/E . Putting this Go into the expression
for 6, we obtain 6(co)—= —ac@/(1+a Voce), which has a
pole at co= 1/o. VO~O as Vo~ ~ ~ One can calculate

the change of the density of states b,D (co) as

b,D (co)=— Im in[1 —VoGo(co)]=5(co),1

7T Bco
(4)

which means the appearance of a localized state in the
middle of the gap. The extent of this localized state is es-
timated to be of the order of (band width)/(gap) X(lattice
constant) as in the case of impurity state in semiconduc-
tors. When one takes into aeeount the repulsive interac-
tion between the fermions which is neglected in the
mean-field approach but actually exists, only one fermion
can occupy this mid-gap as in the case of the spin soliton
in polyacetylene which leads to the localized spin mo-
ment.

Now we consider the edge effect in this even-width spin
system with a gap. We take the ladder (L =2) case for
simplicity, and put two nonmagnetic impurities on the
neighboring sites along the y axis which cut the ladder.
The analysis above can be generalized to the present case
by introducing 6 (co) of 2X2 matrix, and it can be easily
seen that there appear no localized states in the spin gap.
This is because the antiferromagnetic J' along the y axis
make the singlet even near the edge, which is in contrast
to the ferromagnetic J', i.e., Haldane system, which will
be discussed shortly.

As L increases, also the extent of the localized state in-
creases and finally the interference of the scattered wave
from the different scatterers becomes important for finite
concentration of the impurities. This is exactly the prob-
lem of the Anderson localization and we now study it in
the two-dimensional limit. Actually the same problem
has been already studied by Lee ' in the context of the lo-
calized states in d-wave superconduetors. As has been
discussed by Aleck et al. ' there is the SU(2) symmetry
corresponding to the particle-hole transformation in the
fermion representation, and the ~-Aux state is equivalent
to the d-wave pairing state for the spin model. (When the
holes are doped this SU(2) symmetry disappears, which
will be discussed later. ) Therefore we can apply his re-
sults to the m-Aux state with a slight modificatio. The
strong scatterer considered in this paper corresponds to
his model II. ' In this model the self-energy X(co) is
determined self-consistently by X(co)= —I /go(co) where
I =n; „/(npo), go(co)=4/(vapo)gi, G(k, o»). (n; ~ is the
density of the nonmagnetic impurities per area, and po is
the density of states in the normal state in the absence of
the d-wave pairing. ) The imaginary part yo of the self-

energy near the Fermi level is obtained by solving
yo= —I /go(yo). In the scaling theory of localization,
the localization length l», is estimated to be
li„-I exp(kF l ) with l being the elastic mean free path. l
is estimated from the classical conductance and hence the
imaginary part of the self-energy y(co), which behaves as
yo=—yo «r l~~&yo w»ie y(~)= yo/~ «r —Io~l)yo
Therefore it can be considered that the states within the
region ~co~ &yo are strongly localized. The density of
these strongly 1ocalized states n„, per area is estimated as
the density of states for this energy region —~pogo(yo)
times the energy interval yo, and we obtain
n„,-=—myopogo(yo)=npol =n; . Now we have shown
that the number of strongly localized states roughly coin-
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cides with the number of nonmagnetic impurities. When
the repulsive interaction between the fermions are again
taken into account, it is expected that only these states
near the Fermi level are singly occupied and give rise to
the Curie moments proportional to the impurity density.

In the slave-fermion mean-field theory (SFMFT) for
Heisenberg antiferromagnets with nonmagnetic impuri-
ties, the fermion spin operators fj are replaced
by bosonic spin operators Z; with constraint

g Z;j Z;j =2S(1 n;—
~ ) for each site (i,j), where n; =1

if site (i,j) is occupied by a nonmagnetic impurity and is
zero otherwise. S is the spin magnitude. The Hamiltoni-
an is then decoupled in the Cooper channel by introduc-
ing order parameters

a'. . ' —(Z„,Z, +,j,—Z„,Z, +„,)

~ij {Zij t ij+li, ij LZij+it )

The mean-field Hamiltonian is

HMF J g 5i. (Zi &Z;+i'& Z;.&Z; +i&)+H. c.
(~j)

—J' g 6'~'"(Z~tZJ+ii Z; iZJ+—, t)+H. c .
(ij )

+gkj[Z~ Z; +2S(n; —1)] . (5)

In the pure case when nonmagnetic impurities are ab-
sent, 6's and k's are independent of position and HM&
can be diagonalized easily. We obtain dispersion for the
(bosonic) spinon eigenstates yk with

~MF X Ek Yko Vko +EG
ko.

where

E„=~A, —(Jb, '"'cosk +J'b, ' 'cosk )

and EG is the ground-state energy. Notice that spin-gap
phases are obtained if A, ) (Jb, '"'+J'b, '~')2. Such a spin-
gap phase exists for all value of S in one dimension in
SFMFT. This SFMFT together with the gauge field
shortly introduced give an adequate description of
S= integer spin chains, while it fails to describe the mass-
less state of S =half-integer spin chains. This is because
the topological Berry phase term which plays a crucial
role in the latter case is not taken into account correctly
in SFMFT. Therefore the following arguments can be
applied only to the S=integer case in 1D. In 2D, the to-
pological term is canceled between neighboring chains in
the effective Lagrangian and SFMFT is more reliable. In
2D and in the isotropic case J =J', spin-gap phase exists
in SFMFT only when S (S„where S, -O. 19. Never-
theless, in the problem of high-T, superconductors con-
sidered here, we shall assume that the normal-state mag-
netic properties in the underdoped region can be de-
scribed by the spin-gap phase of SFMFT and shall exam-
ine the effect of nonmagnetic impurities under this as-
sumption.

In the spin-gap phase, it has been shown that the low-
energy dynamics of the spin system can be described by

an effective Lagrangian of charged S =
—,
' bosons (spinons)

coupled to U(1) gauge field,

+2SAoe; n,", (7)

where Z t = (Z t, Z i ) is a two-component S=
—,
' spinor

field carrying unit gauge charge, E„=B„A —8 A„ is
the usual U(1) gauge field, and Ao is the scalar potential
in the Coulomb gauge. Moreover, it can be shown that
e -m in 1D and e -m in 2D.

It is important to distinguish between the "uniform"
and "staggered" gauge fields in the slave-fermion ap-
proach. In SFMFT, the bosons (spinons) are naturally di-
vided into two classes according to their sublattices be-
cause of the underlying antiferromagnetic correlation.
The "uniform" gauge field is a phase field which couples
to bosons on both sublattices with same gauge charge,
whereas the "staggered" gauge field couples to them with
opposite gauge charge. In terms of the phase 8' '

(where a =x,y) of the order parameter b.;. '

=D
J 'exp(i8', j '), (D =

~
b

~ ), the uniform and staggered
gauge fields A' '(k) and M' '(k) in Fourier space are
equal to (1/2)[8' '(k)+( —)8' '(k)], respectively,
whereas M' '(k) are given by 1/s[k (k)+( —)A, (k)],
where A, B are sublattice indices. In SFMFT, the uni-
form gauge symmetry is broken because of the existence
of nonzero order parameter 6, whereas the "staggered"
gauge symmetry remains unbroken. The low-energy dy-
namics of the system is dominated by the staggered gauge
field, described by the effective Lagrangian, Eq. (7). For
this reason e;j=+(—)1 for impurities living on A (B)
sublattices.

In 1D, introduction of a single nonmagnetic impurity
in a quantum spin chain effectively breaks the spin chain
into two disjoint pieces. For integer S spin chains where
spin gap exists, it is known that S'=S/2 edge states are
being generated at the edge of the broken chain. The
existence of edge states around a nonmagnetic impurity
can be explained using the effective Lagrangian in
SFMFT approach. Notice that in L,z, impurities appear
as external (staggered) gauge charges of magnitude 2S lo-
calized at the impurity sites. In 1D, U(l ) gauge field is
confining and it is always energetically favorable to nu-
cleate charged bosons (spinons) from vacuum to screen
the electric field. For integer spin chains, S bosons are
nucleated at each side of the impurity site forming
S=S/2 edge states at each side of the impurity site ( re-
call that each boson carries spin 1/2). In 2D, a similar
phenomenon occurs except that the corresponding elec-
trostatic potential V(r) -e ln(r/g') (g-m ' is the
coherence length) is much weaker than the linear
confining potential in 1D. Nevertheless 2S bosons or lo-
cal moment of magnitude S is still expected to be
confined around a nonmagnetic impurity giving rise to
Curie-Weiss behavior in spin susceptibility.

For finite concentration of impurities the discussion
has to be more careful. Notice that a finite amount of en-
ergy -m is needed to nucleate one boson. Thus for finite
concentration of impurities 5, the total energy of the sys-
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Cija=fij abij (8)

In this case the SU(2) symmetry discussed above is bro-
ken and we have to distinguish between the bond order
y=g (fQ ) and the singlet pairing h=(ft fi

f&ft).—Including also the bond order yh and Bose
condensation 8 of the holons, the mean-field phase dia-
gram has been discussed. In the spin-gap phase which we
are now interested in, the bond order parameters y, g& as
well as the spinon pairing 5 is nonzero, while the holon
condensation does not occur (8 =0). In this phase, the
spinon is superconducting, and the physically observable
resistivity is determined by that of the holons thermally
distributed near the zero momentum. The effects of the
nonmagnetic impurities are essentially unaltered from
those discussed above, but the localization does not
suppress completely the spinon pairing, i.e., the quasipar-
ticles are localized and the spinon conductivity remains
infinite. Even when the gauge field is taken into account
and the superconductivity of the spinons is in the Auc-
tuating phase, the conductivity of spinons is expected to
be still very large. Thus the localized moment and the
metallic transport can coexist when the spin-charge sepa-
ration occurs. As for the holons, the density of states

tern has to be considered to see whether it is energetically
favorable to bind bosons to impurities. The electrostatic
energy gained by nucleating bosons to screen the impuri-
ties is of order (2Se) 5[in(1/g) —ln(10/g')] where
l -5 ' is the average distance between nonmagnetic
impurities and lo-g is the typical size of a spinon. Thus
the total energy required to nucleate bosons to screen the
impurities is of order 2S5[m —2Se ln(l/g) j. Notice that
in 2D, e -m. Thus for S=

—,
' the two terms are of com-

parable magnitude when l-g, implying that local mo-
ments are formed only when the concentration of non-
magnetic impurities is small, and will be quenched when
density of impurities is large enough, in general agree-
ment with experimental observation.

We now turn to the doped case. In the slave-boson ap-
proach the electron operators are expressed in terms of
those of spinons f,f and holons bt, b as

near the bottom of the band is not small in 2D, and the
criterion of the localization is the resistivity observed in
experiments. It is also noted that the strong inelastic
scattering suppresses the localization effect down to T„
and the residual resistivity can be estimated by the classi-
cal Boltzmann transport theory. Because the carriers are
the holons and not the spinons, the carrier number n ap-
pearing in the expression for p„, should be x in agree-
ment with experiment.

In the slave-fermion approach the electron operators
are expressed in a similar way as in Eq. (8), except that
the statistics are inverted, i.e., C," =Z; Q;., where now
Z's are Schwinger bosons and f's are slave fermions. In
the t'-J model where spiral phases do not occur, the
mean-field theory describes gases of bosonic spinons and
fermionic holons interacting through gauge Auctua-
tions. In the spin-gap phase, the spinons are supercon-
ducting with respect to the uniform gauge field. Thus the
physically observable resistivity is determined by that of
the holons which describe a spinless Fermi gas with den-
sity of holes 5, giving rise naturally to p„, of form dis-
cussed in the introduction.

In summary we have studied the effect of the nonmag-
netic impurities on the magnetic and transport properties
in the spin-gap state. In the slave-boson approach, the
induced local-spin moment is explained by the localiza-
tion effect together with the repulsive interaction whereas
in the slave-fermion approach, local-spin moment ap-
pears as a result of staggered gauge interaction. It is not-
ed that the number of localized moments are roughly that
of the impurities in the unitary scattering limit. This lo-
calization effect of magnetic moment, however, does not
appear in the resistivity, which is determined by the
holons and the carrier number n is the hole number x in
contrast to the Fermi-liquid case where n = 1 —X.
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