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The dynamic behavior of atoms in the more regular and more disordered regions in a molecular
dynamics model of glassy argon is investigated. Partial velocity autocorrelation functions and their
Fourier transforms are calculated for both types of regions. It is found that the more disordered
regions are responsible for an excess density of low-frequency motions. The relation of this low-
frequency excess to the so-called boson peak in the vibrational spectra of glasses is discussed.

Recently some experimental results have appeared in
the physics of the amorphous state which could be in-
terpreted as a manifestation of medium-range structure
correlations! on the nanometer scale. Experiments on in-
elastic neutron scattering,? % low-frequency Raman scat-
tering (see, for example, Refs. 5 and 6), far-infrared
absorption,”® and data on the low-temperature specific
heat®1% show that in the low-frequency (10-100 cm™1)
vibrational spectra of glasses there exists an excess den-
sity of vibrational states in comparison with the Debye
one. This excess density of states forms the so-called bo-
son peak which is a characterisic feature of the glassy
state.® It is generally accepted that the excitations re-
sponsible for the boson peak are quasilocalized modes in
which 10-100 atoms participate, i.e., their characteristic
length is of the order of nanometers. This is verified by
the soft potential model''™*® and computer simulation
analysis of the normal modes of a glass made up of soft
spheres.'® This is also in agreement with models in which
the localization length is directly determined by the ra-
dius of the structural correlations or by the size of the
glass structural inhomogeneity.141%

Structural inhomogeneity on the medium-range scale
seems to be of a general nature and is caused by the ten-
dency of atoms to combine into configurations with the
lowest local energy, on the one hand, and by the necessity
to realize the energy minimum for the whole system, on
the other hand. These two tendencies can come into con-
flict with one another, the result of which is a compromise
structure. For example, it is known that packing in the
form of a regular tetrahedron is the most efficient for four
spherical atoms in three-dimensional (3D) space. How-
ever, it is impossible to fill up the whole space by such
tetrahedra without gaps and overlaps. As a result, the
most dense crystalline packings of spherical particles con-
tain not only tetrahedra but also looser configurations—
octahedra. On fast freezing of a glass-forming liquid no
crystalline structure appears but both tendencies have to
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take place.

To study structural inhomogeneities of medium-range
order it is convenient to use the geometrical approach of
Voronoi-Delaunay.'”>!8 In our recent paper!® we investi-
gated the form and mutual arrangements of the Delau-
nay simplexes in a molecular dynamics model of glassy
argon and introduced the quantitative measure S for the
description of the simplex shape. This parameter was
defined as S = min(T, O), where T (tetrahedricity) and
O (octahedricity) are the sums of the squared deviations
of the edge lengths of a given simplex from those of the
regular tetrahedra and quartoctahedra (a quarter of an
octahedron) (see, e.g., Refs. 17, 18, and 20). The param-
eter S characterizes the “perfectness” of the Delaunay
simplex shape. The lower the value of the parameter
S the closer the shape of the Delaunay simplex to the
shapes of these regular crystal types. It was shown that
Delaunay simplexes which are close in shape to regular
tetrahedra and quartoctahedra have a tendency to com-
bine, forming regions of a perfect structure.'® Between
these perfect regions the packing of atoms is imperfect,
i.e., the shape of the Delaunay simplexes there is far from
the regular structures metioned above.

It is interesting to find out if there is a difference in
the dynamic behavior of atoms in the given regions. In
particular, where are the vibrations responsible for the
boson peak localized? This question is reasonable be-
cause the localization length of the vibrations is of the
order of the characteristic size of the structural inhomo-
geneity. In this paper we show that the low-frequency
density of vibrational states is higher in the regions of
imperfect structure. Other characteristics such as mean
squared displacements of atoms and local density also
demonstrate a correlation with the local order parame-
ter S.

A molecular dynamics (MD) model of amorphous ar-
gon (500 atoms in a cube with periodic boundary con-
ditions, interacting via a Lennard-Jones potential trun-
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cated at half the size of the cube) has been obtained from
a model of a supercooled liquid (T* = 0.4, p* = 0.818) by
relaxation in the NPT ensemble at constant temperature
T* = 0.2 and constant pressure P = 0. The relaxation
process had 10 000 steps, each of 2x 1073 ps, and resulted
in p* = 0.999. The state obtained turned out to be a sta-
ble amorphous phase and just this state was used for our
analysis. The MD evolution of this model during 20 000
steps did not lead to any statistically significant changes,
so the structural inhomogeneities observed in the present
model are not due to an incomplete relaxation process.
This model has typical features of an amorphous phase:
a negligibly small diffusion coefficient and a doublet split-
ting of the second peak of the pair correlation function.
For more details, see Ref. 19.

Delaunay simplexes are very convenient for the descrip-
tion of structure patterns in noncrystalline systems.2®
However, in order to study physical properties we have
to work with individual atoms, estimating their veloc-
ity or potential energy. The transition from simplexes to
atoms is rather ambiguous because each simplex is de-
termined by four atoms. On the other hand, each atom
participates, on the average, in 24 simplexes!” among
which there can be both perfect and imperfect ones. In
order to estimate the degree of perfectness for a given
atom quantitatively, we propose to use the value of the
parameter S averaged over all Delaunay simplexes which
include this atom. Let us denote this new parameter as
Sa:

1 N
sazﬁk};sk. (1)

Here N is the number of Delaunay simplexes which share
the given atom and Sj is the measure of perfectness of
the kth simplex. If all Delaunay simplexes containing
the given atom were regular tetrahedra or quartoctahe-
dra, the value of S, would be equal to zero. Small values
of S, mean that all simplexes surrounding the atom re-
semble in their shapes regular polyhedra, or only a small
number of simplexes have pronounced distortions. Thus
smaller values of S, testify to a higher perfectness of the
surrounding structure.

For analysis of the spatial arrangement of atoms with
various structural environments it is convenient to use the
Delaunay network, which is a set of edges and vertices of
all Delaunay simplexes of the given atomic system. The
network vertices are the atom centers and the edges con-
nect atoms participating in the same Delaunay simplex.
To consider aggregates of atoms with the most perfect
surroundings it is convenient to show (color) on the De-
launay network only those vertices (atoms) which have
the S, value less than some boundary value. Similarly,
in order to study the regions with the most imperfect
structure one can mark only those atoms for which S, is
greater than some boundary value.

To reduce the thermal noise, i.e., small displacements
of atoms relative to their local equilibrium positions, we
averaged the value of S, for each atom over eight succes-
sive configurations separated by 0.4 ps along the time in-
terval at which the autocorrelators were calculated. Such
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FIG. 1. Clusters of atoms with more regular (perfect)
structural surroundings. 33% of all atoms with the smallest
values of the characteristic S, are shown. Circles represent
the centers of atoms and bonds connect atoms belonging to
the same Delaunay simplex.

averaging of S, decreases the influence of atoms located
in the intermediate structure randomly fluctuating be-
tween perfect and imperfect states.

In Fig. 1 vertices of the Delaunay network (and bonds
connecting contiguous colored vertices) which have the
value of S, < 0.61 are colored. The number of such ver-
tices corresponds to 33% of all atoms of the system. In
such a manner we display aggregates of atoms with the
most perfect structural surroundings. Similary, Fig. 2
shows the vertices of the network with S, > 0.75. This
boundary value has been chosen to provide the same per-
centage of atoms (33%) with the most imperfect struc-
ture. Figures 1 and 2 demonstrate a substantial inho-

o,/ \

N
~J
—~—
AN
X
A

/ \
FIG. 2. Clusters of atoms with more disordered (imperfect)

structural surroundings. 33% of all atoms with the greatest
values of S, are shown.
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mogeneity in the spatial locations of the regions with
definite types of structural order. There is a pronounced
tendency for both types of atoms to group together. Lo-
calization regions are separated in the space but they
are not compact “blobs,”!® rather they are branched,
mutually interwoven infinite clusters. The characteris-
tic length for the regions of both types can be estimated
as 3-5 interatomic distances, i.e., about 1-2 nm. This
value determines the correlation length of structural in-
homogeneities in the model.

As a characteristic of the dynamic behavior of the
atoms let us consider the velocity autocorrelation func-
tion

K(1) = (v)v(t + 7)), (2)

where the averaging is performed/calculated convention-
ally over all atoms of the system. However, this function
can also be calculated for an individual atom or for any
group of atoms. We calculated K () for 20 000 time steps
of 2x1072 ps. In Fig. 3 we present an average function
K(7) for all atoms and partial autocorrelators for the
perfect and imperfect atoms determined in Figs. 1 and 2.
The behavior of K(7) is typical for an amorphous phase
of spherical atoms.?! For atoms of a perfect structure one
can see the deep first minimum and an excess over the
average value at times 0.6-1.2 ps. In contrast, for atoms
belonging to imperfect regions this function demonstrates
a relatively shallow first minimum and then goes lower
than the average function. Such behavior of the partial
velocity autocorrelators implies relatively rigid surround-
ings for perfect atoms and softer ones for the imperfect.

The velocity autocorrelation function is connected by
Fourier transformation with the spectrum of the vibra-
tional density of states:

1 oo

Z(w) = —/ cos(wt) K (7)dr. 3)
T Jo

A total spectrum for our model is shown in Fig. 4. It

is a bump-shaped curve, typical for glasses, modulated

by small oscillations. These oscillations are intrinsic fea-
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FIG. 3. Velocity autocorrelation functions. The solid line
relates to the total system; the long-dashed line to atoms in
regions of perfect structure; the short-dashed line to atoms in
regions of imperfect structure.
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FIG. 4. Fourier transforms of the velocity autocorrela-
tion functions. The solid line represents the total system,
the long-dashed line atoms of the perfect structure, and the
short-dashed line atoms of the imperfect structure.

tures of the model. The analysis shows that they are not
the cutoff effect: some fluctuations of K (7) outside the
upper integration limit in (3), which was 4 ps, provide
rather small deviations from zero in Z(0) but do not in-
fluence the overall spectrum shape. The most interesting
peculiarity of the spectrum is a pronounced shoulder at
low frequencies, 3 ps~!. This shoulder is absent in the
spectrum of crystalline argon whose MD model of 500
atoms with periodic boundary conditions has also been
created and analyzed. The shoulder looks just like an ex-
cess density of vibrational states in the neutron spectra
of glasses. One can see something like this feature in the
spectra of model glasses in Fig. 4 of Ref. 21 and in Fig.
7 of Ref. 16.

The structural meaning of this shoulder can be re-
vealed by the partial spectra of the vibrational density
of states calculated as a Fourier transform of the partial
velocity autocorrelation functions. We see that the low-
frequency shoulder increases in the partial spectrum of
the imperfect structure (Fig. 4). This means that the
low-frequency modes are distributed preferably on the
atoms with imperfect surroundings and are less charac-
teristic of atoms with perfect surroundings. Note that
atoms with an undetermined structure (the remaining
33% of atoms which are not attributed either to perfect
or to imperfect regions) demonstrate a partial spectrum
similar to the averaged one.

It is significant that the given low-frequency peak in
the partial Z(w) cannot be considered as an element of
the spectrum oscillations which one observes in Fig. 4.
When a subsystem of 33% of atoms was chosen at ran-
dom, the partial spectra Z(w) had similar oscillations as
well. However, the mean of these oscillations for random
subsystems strictly coincides with the average spectrum.
On the other hand, for an imperfect structure (Fig. 4) the
mean of oscillations in the partial spectrum goes above
the average curve in the low-frequency range. We think
the oscillations reflect some real peculiarities of the par-
tial density of vibrational states of the clusters caused by
their complicated geometry.

We have chosen one third of the total number of atoms
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to represent the regions of perfect structure (and an equal
number for imperfect ones) in order to demonstrate more
clearly their spatial arrangement (Figs. 1 and 2). Also
carried out were calculations with other boundary val-
ues of S, to select from 10% to 50% of atoms for both
structural groups. In all cases the dynamical behavior is
similar to that shown in Figs. 3 and 4. It is worth noting
only that the “boson” peak seems more pronounced for
an imperfect structure at lower percentages.

The development of the geometrical description of a
disordered structure based on Voronoi and Delaunay
tesselations makes it possible to investigate structural
peculiarities quantitatively by computer simulations of
an amorphous phase. The regions of perfect struc-
ture revealed by the analysis are noncrystalline although
they are made up of elementary configurations inherent
in crystals.!® Their arrangement shows no translational
symmetry and they are realized only on a nanometer
scale. Aggregates of atoms with imperfect surroundings
are made up of simplicial atomic configurations which
are far from perfect. However, these regions of imperfect
structure cannot be considered as defects of the struc-
ture in the usual sense. There is no pronounced physical
boundary between these two types of regions and they
have nearly the same local atomic density. Indeed, the
average Voronoi polyhedron volume for atoms with im-
perfect surroundings exceeds the volume for atoms with
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perfect surroundings only by 4%. We found also that
mean square atomic displacements in the imperfect re-
gions are twice those in perfect regions.

In conclusion, the analysis of partial velocity autocor-
relation functions calculated for atoms in the perfect and
imperfect surroundings shows that there is inhomogene-
ity in the spatial distribution of low-frequency vibrations:
they are localized preferably in the regions with more dis-
ordered structure. This result supports the soft potential
model'?!3 in which the soft modes arise due to fluctua-
tions of microscopical structural parameters of the glass.
The regions of imperfect structure are places where soft
modes may be realized. However, more analysis is needed
to discuss the relation between the boson peak and the
revealed tendency of atoms in more disordered configu-
rations to contribute to lower-frequency motions.

The authors are grateful to Professor U. Buchenau,
Professor H.R. Schober, and Professor A. Geiger for use-
ful discussion and thankful to the Alexander von Hum-
boldt Foundation for support. This work was also sup-
ported by the Russian Foundation of Fundamental Re-
search, Grants No. 93-03-5011 and No. 93-02-2171,
by the International Science Foundation, Grants No.
RCBO000 and No. RC8000, and by INTAS, Grant No.
93-2185.

! S.R. Elliott, Nature 354, 445 (1991).

2 U. Buchenau, M. Prager, N. Niicker, A.J. Dianoux, N. Ah-
mad, and W.A. Phillips, Phys. Rev. B 34, 5665 (1986).

3 A.J. Dianoux, Philos. Mag. B 59, 17 (1989).

4 V.K. Malinovsky, V.N. Novikov, P.P. Parshin, A.P. Soko-
lov, and M.G. Zemlyanov, Europhys. Lett. 11, 43 (1990).

5 J. Jickle, Amorphous Solids: Low- Temperature Properties
(Springer, New York, 1981).

8 V.K. Malinovsky, V.N. Novikov, and A.P. Sokolov, in Ad-
vanced Solid State Chemistry, edited by M. Frumar, V.
Cherny, and L. Tichy (Elsevier, Amsterdam, 1989).

7 U. Storm and P.C. Taylor, Phys. Rev. B 16, 5512 (1977).

8 L. Ghivelder and W.A. Phillips, J. Non-Cryst. Solids 109,
280 (1989).

9 N. Ahmad, H.-W. Hutt, and W.A. Phillips, J. Phys. C 19,
3765 (1986).

10 A.P. Sokolov, A. Kisliuk, D. Quitmann, and E. Duval,
Phys. Rev. B 48, 7692 (1993).

' Yu.M. Galperin, V.G. Karpov, and V.I. Kozub, Adv. Phys.
38, 770 (1989).

2. Buchenau, Yu.M. Galperin, V.L. Gurevich, and H.R.
Schober, Phys. Rev. B 43, 5039 (1991).

3 M.L. Klinger, Phys. Rep. 165, 275 (1988).

14 v K. Malinovsky, V.N. Novikov, and A.P. Sokolov, J. Non-
Cryst. Solids 90, 485 (1987).

15 E. Duval, A. Boukenter, and T. Achibat, J. Phys. Condens.
Matter 2, 10 227 (1990).

' H.R. Schober and B.B. Laird, Phys. Rev. B 44, 6746
(1991).

! N.N. Medvedev and Yu.l. Naberukhin, J. Struct. Chem.
28, 117 (1987).

8 Yu.I. Naberukhin, V.P Voloshin, and N.N. Medvedev, Mol.
Phys. 73, 917 (1991).

!® N.N. Medvedev, Yu.l. Naberukhin, and V.A. Luchnikov,
Zh. Strukt. Khim. 35, 53 (1994).

20 N.N. Medvedev, V.P. Voloshin, and Yu.I. Naberukhin, J.
Phys. A 21, L247 (1988).

?! A. Rahman, M.J. Mandell, and J.P. McTague, J. Chem.
Phys. 64, 1564 (1976).



