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Impurity-induced virtual bound states in d-wave superconductors
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It is shown that a single, strongly scattering impurity produces a bound or a virtual-bound
quasiparticle state inside the gap in a d-wave superconductor. The explicit form of the bound-state
wave function is found to decay exponentially with angle-dependent range. These states provide
a natural explanation of the second Cu NMR rate arising from the sites close to Zn impurities in
the cuprates. Finally, for finite density of impurities in a d-wave superconductor, we re-examine the
growth of these states into an impurity band, and discuss the Mott criterion for the metal-insulator
transition in this band.

Effects of impurities on the properties of supercon-
ductors have been investigated in great detail for low-
temperature, heavy-fermion, and high-temperature
superconductors. The main reason for the interest in
the effects of impurities on the superconducting state is
the fact that the superconducting properties are qualita-
tively modified by impurity atoms, depending, for exam-
ple, whether they are magnetic or nonmagnetic. In prin-
ciple, this observation can be useful as a method of iden-
tifying the nature of the pairing state in superconductors.
For example, any magnetic impurity will be a strong pair
breaker for (s-wave, d-wave, etc.) spin-singlet supercon-
ductors, in accord with the generalized. Anderson theo-
rem. On the other hand, even scalar (nonmagnetic) im-
purities are pair breakers for "higher-orbital-momentum"
states, such as a d-wave pairing state.

The two main approaches in understanding the effects
of impurities in conventional (s-wave) superconductors
rely either on the strong- or on the weak-scattering limit.
(a) The Abrikosov-Gor'kov (AG) formalism4 treats im-
purities in the Born approximation. Any impurity prob-
lem is characterized by two physical parameters: the
phase shift So due to impurity scattering (which we as-
sume to be s wave) and the density of impurities n,
In the AG approach, the only parameter entering the for-
malism is the scattering rate, r = (2n; ~/wry) sin ho,

proportional to the product of the density and sin bo.
Here %0 is the normal-state density of states at the Fermi
energy, and bo ——%0V is the s-wave phase shift for a
weak impurity potential V. Therefore, in the limit of
dilute density of strong magnetic impurities, the AG ap-
proach will yield a small average scattering rate. On
the other hand, the local properties of the superconduc-
tor near an impurity site, such as the local density of
states and the gap amplitude, will be modified dramati-
cally. In this limit, (b) the Yu-Shiba approachs' should
be used, which treats magnetic impurities in the unitary-
scattering limit with the s-wave phase shift bo vr/2. It
was shown by Yu and Shiba that, in the unitary limit,
a localized magnetic impurity, interacting with the spin
density of conduction electrons at the impurity site, pro-
duces a true bound state inside the energy gap, ~cu~ ( Ao,
where the density of states vanishes. Note that, in gen-
eral, the overlap with the particle-hole continuum only

allows virtual states to be formed with 6nite lifetime.
The relation between this approach and the AG treat-
ment was established in Ref. 7, where it was shown that
in the Born limit one recovers the AG results, and the
bound state is indistinguishably close to the band edge.

Our work is partially motivated by the fact that non-
magnetic impurities are strong pair breakers in a nontriv-
ial superconductor. The Zn substitutions in cuprates are
one example of this. ' Although Zn ions are nominally
nonmagnetic, T is strongly suppressed by Zn substitu-
tion of Cu in the planes. Therefore, it is reasonable
to assume that Zn ions behave as nonmagnetic unitary
scatterers.

Our purpose is to address the question of virtual
impurity-bound states in a d-wave superconductor and,
within this framework, to explore possible implications
of the assumption that the pairing in cuprates is in the
d~2 y2 channel. We generalize the original Yu-Shiba '

approach to arbitrary-strength nonmagnetic impurities
in a d 2 y2 superconductor. The results, summarized be-
low, can be easily applied for any nontrivial pairing state
and may be relevant for heavy-fermion superconductors
with impurities as well.

Our main results are as follows. (i) A strongly scatter-
ing scalar impurity is a requirement for a localized, vir-
tual or marginally real, bound state to exist in a d-wave
superconductor. It is intuitively obvious that any strong
enough pair-breaking impurity magnetic or nonmag-
netic will induce such a state. Indeed, the low-lying
quasiparticle states close to the nodes in the energy gap
will be strongly inQuenced even by a nonmagnetic im-
purity potential, resulting in a well-defined bound state
in the unitary limit. This should be compared with the
fact that, in 8-wave superconductors, both magnetic and
resonant nonmagnetic impurities produce bound states
inside the energy gap. (ii) The energy 0' and the decay
rate 0" of this state are given by

mc/2 iver 1

1n(8/ere) 2 1n(8/~c)

where c = cot bo. We have assumed impuri. ty scatter-
ing to be close enough to the unitary limit so that the
result can be computed to logarithmic accuracy with
ln(8/mc) )) l. It is only in this limit that the bound
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state is well de6ned. In the unitary limit, defined as
ho -+ 7r/2 (c ~ 0), the virtual bound state becomes a
marginally bound one at 0 -+ 0 with 0"/0' m 0. In the
opposite case of weak scattering with c & 1, the energy
of the virtual bound state formally approaches 0'
and the state is ill defined because 0" 0' (see Fig. 1).
The wave function of the bound state is found to decay
exponentially, except along the directions of the vanish-
ing gap. (iii) While generally one finds that an impurity
band for quasiparticles is formed after averaging over im-
purity positions, disorder and quasiparticle correlations
can lead to qualitatively new phenomena of which one
example is a metal-insulator transition.

Single-impurity problem. Consider the single scalar im-

purity problem with II,„t = P&g, Vct cg, , where V is

the strength of the scalar impurity potential at r = 0,
resulting in 8-wave phase shift bo.

The scattering of quasiparticles from the impurity is
described by a T matrix, T(w), which is independent of
wave vector. The Green's function in the presence of an
impurity is Ggg, (cu) = G (w)h&g, +G (w)T(w)G, (w),

where both G (w) and T(w) are matrices in Nambu

space. Here [G (w)] = ur jo —Ak7i —(kws, where (g is
A:

the quasiparticle energy, A&
——Lo cos 2p is the gap func-

tion with d ~ „~ symmetry, w; (i = 1, 2, 3) are the Pauli
matrices, and wo is the unit matrix in Nambu particle-
hole-spinor space.

Prom the previous analysis, ' ' it is known that T =
T070+Tg73 for s-wave scattering and a particle-hole sym-
metric system. Therefore, the only relevant terms in the
T matrix are To(cu) = Gp((u)/[c —Go(cu) ] and Ts(w) =

—c/[c —Go(cu) ], where Go(w) =
2 ~ Pg Tr G (w)ro.

The virtual and bound states in the single-impurity prob-
lem are given by the poles of the T matrix:

c = +Go(B),

which is an implicit equation for 0 as a function of
c, the strength of impurity scattering. The two signs
in Eq. (2) are a result of the particle-hole symme-
try. Choosing the gap function at the Fermi sur-
face so that A(p) = Ao cos 2p, one finds Go(ur)

f(dp/ ir)/4[+(y)/~] 1 F r I~I (( &o, we obt»n

Go((u) = 2Ld ( 4Ao 17l
ln

7rAp ( (d 2

In principle, the solution of Eq. (2) is complex, indicating
a resonant nature of the quasiparticle state and better de-
scribed as a virtual state. This is easily seen from Eq. (1),
which solves Eq. (2) to logarithmic accuracy. However,
as c —+ 0, the resonance can be made arbitrarily sharp.
For c = 0, the virtual state becomes a marginally well-
defined state bound to the impurity. Exact numerical
solution of Eq. (2) as a function of c is shown in Fig. 2.
As c —+ 1, 0' and 0" increase without bound so that
0"/0' ~ 1, and the solution becomes unphysical. For
c ) 1, no solution has been found for O. Indeed, in the
Born limit c && 1, no resonance structure is generated
and the density of states is modified only very weakly by
the impurity potential [T = G(c )].

There are important physical implications of these
bound states in a d-wave superconductor. The most in-
teresting case is unitary impurities in the dilute limit,
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FIG. 1. The relative density of states N(u)/No for the
d-wave superconductor in the absence of impurities (thin solid
line), the impurity-induced bound state for c + 0 (thick solid
line), and the virtual bound state for c ) 0 (dashed line);
Np is the normal-state density of states at the Fermi energy.
The finite lifetime (0" g 0) of the virtual bound state in the
d-wave superconductor results from the finite density of states
N(u) oc ~ for small ~ from nodal quasiparticles, in contrast to
the true bound state in the s-wave superconductor. Exactly
at u = 0, the density of quasiparticle states is zero and the
virtual bound state becomes marginally bound on the edge of
the particle-hole continuum.

FIG. 2. The energy 0 = 0'+iO" of the virtual bound state
in the one-impurity problem, given by Eq. (2), as a function of
impurity strength c: the shown quantities are fl' (solid line),
fl" (dashed line), and fl"/0' (chain-dashed line). A spher-
ical Fermi surface and Ag ——Aocos2p have been assumed.
The width 0" of the virtual bound state is always smaller
than its energy 0' in the neighborhood of unitary scattering.
In contrast, for weak scattering c 1, 0" 0' and an im-
purity-induced virtual state does not exist. The inset shows
a comparison between the exact result and the asymptotic
approximation (dotted lines), as computed to logarithmic ac-
curacy by Eq. (1) for A.
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separated by a distance greater than the coherence length
Before averaging over impurities, these bound states

are nearly localized close to the impurity sites (see be-
low) and can substantially modify the local characteris-
tics of the superconductor: for example, the local density
of states and the local NMR relaxation rates of atoms
close to the impurities.

Consider a local density of states, defined as N(r, u) =
——Im G(r, r; u + i0+), with the total Green's func-

tion in the presence of the impurity G(r, r ', ur)

G~Pl(r —r', u) + G~ l(r, w)T(ur)Gl l( r', w—), the sec-
ond term describing the local distortion due to the
impurity. Using the eigenst ates representation of
G(r", r ', (u) = g„Q„*(r)g„(r ') /((u —E„), we find two
terms in the local density of states N(r, tu) = N(u) +
N; ~(r, u) = P„vP„*(r)g (r )b(u —E„), for well-defined
states. The erst term originates from the bulk quasi-
particles, which are described by plane-wave eigen-

states with E- = („'-+ &'„-, G (r = P, ~)
P„-[u2/(~ —E„-) + v2/(~ + E&)], where ug and vg are
the standard Bogoliubov factors. In a d-wave super-
conductor, the bulk density of states is uniform with
N(w)/Np ——u/Dp, for cu (( Ap. The second term,
N'-, (, ) = --.'Im[G"( )&( )G"(- )l
inates &om quasiparticle states created at the impu-
rity: N; p(r, (u) = P„@,' „(r)g; p„(r)8(u) —E; p„).
As an important example, consider the limit of uni-
tary scattering for which the resonant state is formed at
E; ~

= 0 ~ 0. Because Gl l(r, ~ = )0G& &P( r, ~ = 0)—
is real only the imaginary part of the T matrix con-
tributes to N; p and the bound-state probability den-
sity is found to decay as the inverse second power of the
distance &om the impurity along the nodes of the gap
function,

p(r, (u = 0) oc Re [G~ l(r, ~ = 0)]ii oc r, (4a)

and exponentially in the vicinity of the extrema of the
gap function,

N'-. (, = o) X(~)/ )e ""' ' (4b)

where ((rp) is the angle-dependent coherence length of the
superconductor, naturally defined as ((p) = hv~/ ~D(p) ~.

That the impurity state is marginally bound is refIected
in the logarithmically divergent normalization. This di-
vergence should be cut ofF at an average distance be-
tween impurities at any finite density. More gener-
ally, for an arbitrary position of the resonance, tak-
ing into account that only one state has been pro-
duced with E; p

——0' + iA", we find N; p(r, w)
—P,. Ii (r —r;) 0',.'/[(w —0,') + 0," ], where we have in-
troduced the sum over difFerent impurities, located at r, ,
and F(r r;) = @;* (r r";)—vP; ~(r r;) is —the probabi—lity
density of the ith impurity state.

The local variations of the density of states can be
probed directly, in principle, by scanning-tunneling mi-

croscopy. However the NMR experiments on Cu in Zn-

doped cuprates are quite revealing as well. From Eq. (4a)
and below, one concludes immediately that the local
NMR signal would show two distinct relaxation rates (or
even the hierarchy of rates): one coming from the Cu

sites, far away from the impurities, and another from
the sites close to the impurities. The Cu sites near the
impurities will be sensitive to the higher local density
of states and will have a higher relaxation rate at low
temperatures. i At finite impurity density ( 2'Pp), the
volume-averaged density of states will have a finite limit
at u —+ 0, as follows &om Eq. (4a). The relaxation
rates of Cu atoms close to and away from an impurity
will, therefore, have the same temperature dependence
(TiT) = const, but will be of a diff'erent magnitude.

This behavior has been observed experimentally:
Ishida et al. have measured two NMR relaxation rates
for Cu in Zn-doped YBa2Cu307 g. The second NMR
signal with higher relaxation was inferred arising from
the near-impurity Cu sites. A direct comparison of our
prediction for local quantities, as probed by NMR, will
require a specific model and is left for a future publica-
tion.

We would like to contrast our picture of the dilute limit
of strongly scattering centers to the usual approach of av-
eraging over impurities at finite density. If one considers
averaging over impurities, distinct NMR relaxation rates,
arising from unequivalent sites, cannot be resolved; the
local inhomogeneous aspect of the localized states is lost.

For practical purposes the distinction between the im-

purity bound states and the continuum in our case is not
as well defined as in 8-wave superconductors. Any finite
temperature will produce a finite lifetime for these bound
states, and they will be hybridized with the continuum
of low-energy quasiparticle states.

Finite density of impurities. Consider the growth of
the impurity band with finite density of strongly scat-
tering impurities. As was mentioned above, scalar (non-
magnetic) impurities are pair breakers for any noncon-
ventional superconductor, and they substantially change
the low-energy spectrum of superconducting quasiparti-
cles. This problem has been addressed earlier in great
detail (for example, see Refs. 2 and 3). Here we will first
repeat the usual arguments leading to the quasiparticle
scattering rate and low-energy density of states and then
point out our critique of why this approach may be
misleading.

For finite impurity density, the self-consistent Green's
function, averaged over impurity positions, obeys the

Dyson equation (Gg(w)) i = (G~ l(cu)) i —Z(w) with

Z(w) = n; ~T(w) in the single-site approximation. The
T matrix is determined self-consistently with (Gp(w)) =

Pg Tr (G&(w))rp. As above [see the remark pre-

ceding Eq. (2)], only Zp = 2 Tr Erp alld Zs = 2Ti'Ers
are nonzero. The algebra is straightforward, and for
unitary scattering yields p = gn; ~(Ap/irNp), where

—Im Zp(cv —i 0) is the scattering rate for low-

energy quasiparticles. For u & p, the density of states is
determined by impurities and is finite: N, ~(0)/Np
2p/vrAp. The characteristic width of the impurity-
dominated region is u* p oc gn,

The origin of the finite density of states is the impu-
rity band, grown from the impurity-induced bound states
(consider c = 0). Scaling of the impurity bandwidth
p oc gn; ~ has been obtained earlier for the case of para-
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magnetic impurities in an s-wave superconductor. The
fact that p oc gn; z is obeyed in the case of a d-wave su-
perconductor with scalar impurities as well supports our
claim that the low-energy states in a disordered d-wave
superconductor are indeed formed from the bound states
at finite density.

However, the self-consistent T-matrix approxima-
tion has strong limitations because it does not take
into account that the single-impurity states are highly
anisotropic and decay as a power law along diagonal di-
rections. Furthermore, the slow decay along these di-
rections will imply long-range impurity-impurity tunnel-
ing amplitudes for quasiparticles. These properties will
modify qualitatively the conventional picture of disorder-
induced localization (i.e. , the Anderson localization). is

Finally, there is an intriguing possibility to observe a
Mott-Hubbard transition in the impurity band. While
the long-range Coulomb interaction is screened on the
length scales of a mean-impurity separation, the quasi-
particles experience a strong Coulomb repulsion near
each impurity site. The strength of the Coulomb repul-
sion will be dictated by the renormalized p* (A:

v~( i) at the scale of the coherence length (, which
is the typical size of the bound state both in s-wave and
d-wave superconductors. Two limiting cases can there-
fore occur: (i) p,

* » t (strong repulsion) and (ii) p,
* (( t

(weak repulsion), where t is the average impurities over-
lap integral. For strong repulsion and at low impurity
densities, standard arguments lead to the Mott transi-
tion in the half-filled band. For weak repulsion, doubly
occupied sites will be allowed and the Mott transition
is unlikely to occur, in particular at realistic impurity
densities. The super8uid condensate, suppressed in the
vicinity of the impurity, cannot completely screen the
Coulomb interaction between quasiparticles in the bound
state. For the high-T superconductors, the coherence
length is small ( 20 A. ) and the bare Coulomb repulsion
will be substantial at this length scale, which suggests
that the high-T, superconductors belong to the first lim-
iting case and might thus exhibit the Mott transition in
the impurity band.

Assuming a strong quasiparticle-quasiparticle repul-
sion, the impurity band is half filled leading to an in-

sulating behavior. In order to derive a condition for the
formation of the impurity band with extended states—

the Mott criterion —consider first the case of a half-
filled impurity band in a (three-dimensional) s-wave su-

perconductor. A magnetic impurity at r = 0 generates a
bound state with a impurity wave function ~@; p(r ) ~

e ", n ( .s 7 For the true conduction band to be
formed, the overlap between localized states should be
large enough. This leads to the Mott criterion for the
minimum density n, n & 0.2. In practice, for con-
ventional superconductors this implies a very low critical
density n,' (a/() (a being the lattice constant), as

the coherence length ( is very large. The situation is
qualitatively difI'erent in a d-wave superconductor. The
wave function of impurities has lobes sticking out in the
directions of vanishing gap, i.e., when cos 2p = 0 [see
Eq. (4a)j, and the overlap between impurities is larger
along these directions.

'

The Mott transition in a system
of strongly anisotropic localized states is an interesting
problem and it should be expected that the Mott cri-
terion should be modified with a lower constant in the
right-hand side of n;~ ( = const. The questions of local-
ization and the Mott transition in the impurity band for
the strongly anisotropic impurity states will be addressed
in a forthcoming publication.

In conclusion, we find that a strongly scattering im-

purity potential produces a resonant or a marginally
bound state inside the gap in a d-wave superconductor.
The wave function of the impurity bound state is highly
anisotropic with 1/r decay along the nodes of the gap
and exponential with angle-dependent decay range oth-
erwise. These bound states change the local density of
states N; ~(r, u) dramatically, which could be probed
experimentally, e.g. , in NMR. We also argue that the
Anderson localization in a d-wave superconductor in the
presence of strongly anisotropic impurity states qualita-
tively divers from that in a conventional superconductor
with finite-range impurity states.
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