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Magnetism and pairing in Hubbard bilayers

Raimundo R. dos Santos'
Instituto de Fisica, Universidade Federal Fluminense, 2$210 9-40 Niteroi, Rio de Janeiro, Brazil

(Received 3 January 1995)

We study the Hubbard model on a bilayer with repulsive on-site interactions U in which fermions
undergo both intraplane (t) and interplane (t ) hopping. This situation is what one would expect
in high-temperature superconductors such as YBa&Cu307 —y with two adjacent CuO& planes. Mag-
netic and pairing properties of the system are investigated through quantum Monte Carlo simulations
for both half- and quarter-filled bands. We find that in all cases interplanar pairing with d 2

symmetry is dominant over planar pairing with d 2 „2 symmetry, and that for a large enough t
pair formation is possible through antiferromagnetic correlations. However, another mechanism
is needed to make these pairs condense into a superconducting state at lower temperatures. We
identify the temperature for pair formation with the spin-gap crossover temperature.

I. INTR.QDUCTION

The normal state of the high-temperature supercon-
ductors unveils interesting features, especially in the
YBa2Cus07 v (YBCO) compounds. First, the in-
plane resistivity of optimally doped (i.e. , hole fraction
x = x, corresponding to a maximum T,) samples of
YBa2Cu307 —y with y = 0.10 displays linear behavior
in a wide range of temperatures, from just above T,
90 K to nearly 1000 K; ' this is to be contrasted with
the T behavior at low temperatures, which would be
expected for a usual Fermi liquid. For underdoped sam-
ples (i.e. , x ( x ), the linear-temperature behavior of
the resistivity crosses over to T, with o. 2.5, below a
characteristic temperature Tx(x). Overdoped samples,
on the other hand, behave like usual metals, in the sense
that the resistivity crosses over &om a linear-T depen-
dence (at high temperatures) to Fermi-liquid behavior at
lower temperatures. Second, the magnetic response—
probed by the nuclear relaxation rate (1/TqT) on the
Cu(2) sites ' and by the NMR Knight shift at the Y
sites —also shows diferent behavior in the underdoped
and overdoped regimes. For overdoped samples, the re-
laxation rate, which is proportional to the staggered sus-
ceptibility [y(vr)], increases monotonically as the temper-
ature is lowered, in a Curie-like fashion; ' this is indica-
tive of gapless spin excitations from a state with strong
antiferromagnetic correlations. At T, one expects the
simultaneous formation and condensation of pairs, lead-
ing, respectively, to spin and superconducting gaps. The
situation is similar for the NMR Knight shift, which is
proportional to the uniform susceptibility [y(0)]: One ob-
serves a Pauli-like behavior, in the sense that it is roughly
temperature independent. For underdoped samples both
y(vr) and y(0) show a marked deviation from their respec-
tive Curie and Pauli behaviors as the temperature is low-
ered; i.e. , they start to decrease as T decreases below cer-
tain temperature scales T (x) and To(x). While one can-
not be precise to the point of identifying all temperature
scales, the general expectation is that T T~ Tp.
Thus, one may interpret the behavior in the underdoped

region as due to the formation of pairs (without conden-
sation) at a temperature T", which is accompanied by
the opening of a spin gap. As the temperature is lowered
further, a superconducting gap opens at T, giving rise
to a superconducting instability. Further, Ito et al. have
stressed that the temperature dependence of their in-
plane resistivity data, p(T), is such that y(0) p(T)/T
and y(7r) p(T)/T2. Similar conclusions may be drawn
from the analysis of transport properties of YBa2Cu408,
corresponding to the underdoped regime. The interpre-
tation of these data is still a matter of debate. On the
one hand, the above mentioned transport (charge) prop-
erties of the underdoped materials are strongly influenced
by the opening of a spin gap, suggesting inseparability
of spin and charge behaviors. On the other hand, one
could also assume spin and charge separation in the sense
that the spin-gap opening would indicate formation of
pairs, which would Bose condense (superconduct) at a
lower temperature; ' the overdoped regime would then
be described as an ordinary Fermi liquid, with both spin
and superconducting gaps opening at the same critical
temperature, T, .

In order to gain insight into these issues, one works
with simplified models which may highlight the main
physical mechanisms at work. For instance, one possi-
bility is to treat the planar spin excitations as those of a
nearly antiferromagnetic Fermi liquid (NAFL). ' This
approach has been used to discuss several properties of
overdoped compounds, though it is not clear at the
moment how to incorporate the spin gap in the treat-
ment of the unde@doped regime. An alternative explana-
tion for the experimental data is based on the presence
of a double Cu02 layer in YBCO compounds, as opposed
to the single layered structure of the La2 Sr Cu04
materials. While the spin-gap behavior in underdoped
La compounds was attributed to a spin-density-wave
(SDW) instability, it was suggested that antiferromag-
netic correlations between fermions in adjacent planes
in bilayer materials lead to singlet pairing with each
member of the pair lying on each plane; this, in turn,
would be responsible for the non-Fermi-liquid behavior.
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These ideasi~ have been tested on models (e.g. , the t J-
model) with antiferromagnetic Heisenberg-like coupling
between spins on different layers, ' ' ' and they in-
deed lead to pairing between fermions in different planes.
Unfortunately, interplane couplings of the order of (and,
in some cases, even larger than) intraplane couplings are
generally needed to achieve pairing, which seems rather
unrealistic. The Hubbard model on a bilayer, with on-
site repulsion and both intraplane and interplane hop-
ping, can be considered as a weaker-coupling version of
the models mentioned above, and should therefore pro-
vide a more realistic description of the actual physical
situation. The Hamiltonian is

'R = —) 4j c; cj + H.c.)

where the sums run over sites of two square lattice lay-
ers, (i, j) denotes nearest-neighbor sites, and the hopping
integral is given by

t if i and j are within the same plane,
t if i and j lie in different planes . (2)

II. MAGNETIC PROPERTIES

In a grand-canonical quantum Monte Carlo (MC)
simulation the imaginary time is discretized through
the introduction of M "time" slices, with M oc 1/T. The
"Boltzmann weight" is given by a product of fermion de-

c; (c; ) creates (annihilates) a fermion at site i with spin
o, H.c. stands for Hermitian conjugate, U ) 0 is the on-
site repulsion, and p is the chemical potential controlling
the band filling, (n). This model has been studied pre-
viously by Bulut et a/. , who found evidence for node-
less singlet pairing, from random-phase-approximation-
Eliashberg calculations based on the exchange of spin
fiuctuations, for (n) = 1 and 0.85; their results for half-
filling were compared with those from Monte Carlo sim-
ulations on a 2x(4x4) lattice. In view of the impor-
tant role interlayer pairing may play as a mechanism for
high-temperature superconductivity, independent checks
should be made in order to assure that the effect is in-
dependent of model details and of the approximations
used. With this in mind, here we report the results of
extensive Monte Carlo simulations, in which both mag-
netic and pairing properties of the model are examined
for larger lattices [up to 2x(8x8)] and for the cases of
half- and quarter-filled bands.

The layout of the paper is as follows. In Sec. II we
mention the diKculties posed by the "minus sign prob-
lem" and present the results for magnetic susceptibili-
ties and correlation functions. Similarly, Sec. III deals
with the superconducting susceptibilities and correlation
functions. Finally, Sec. IV summarizes our findings and
presents the conclusions.

with

m;(7) = e [n,t —n;g]e (4)

and the magnetic structure factor

where m; = m, (0).
Figure 1 shows the uniform (q = 0) and staggered

(q = a) susceptibilities for the half-filled band case, with
tg = 0.7 and U = 4 (from now on, energies will be ex-
pressed in units of t, the nearest-neighbor planar hopping
integral, and temperatures in units of t/k~, k~ being the
Boltzmann constant); the system sizes are 2 x (L x L),
with L = 4, 6, and 8. The uniform susceptibility [see Fig.
l(a)] decreases as the temperature decreases, in a non-
Pauli fashion; this should be contrasted with the behav-
ior of the staggered susceptibility [see Fig. 1(b); notice
the difFerence in scales], which shows a Curie-like behav-
ior and scaling with lattice size L. By analogy with the
single-layer Hubbard model, ' one associates an insu-
lating antiferromagnetic state also for the bilayer at half
filling.

As mentioned before, the minus sign problem prevents

terminants, and is only positive definite for the repulsive
model at half-filling and for the attractive model at any
filling; ' ' otherwise& sonle configurations will give a
negative contribution. This "minus sign problem" is cir-
cumvented by redefining the averages in such a way that
an average sign appears in the denominator. The aver-
age sign (e) behaves generically as follows:s For a fixed
temperature, it drops dramatically from 1 very near half-
filling, reaching a minimum for some band filling, and
eventually increasing to (e) 1 for some occupation near
(n) = 1/2; the value of (n) for which this happens is not
very sensitive to details such as the values of U, of t,
and so on. As one dopes further away, the average sign
drops again. Moreover, as the temperature decreases,
the dip in (e) becomes more pronounced, reaching a very
small value; this introduces uncontrollable noise in the
calculation of average values. In view of this, we restrict
our discussion to half- and quarter-filled bands (i.e. , to
(n) = 1 and 1/2, respectively).

The clusters used here have K, = 2 x (L x L) sites,
with periodic boundary conditions (PBC s); that is, each
site is connected with its six nearest neighbors through
a hopping term. Due to the PBC's along a direction of
finite size J = 2, the effective hopping along the z direc-
tion becomes t~ ——2t . The simulations were performed
on Sun and IBM RISC 6000/525 workstations, and on a
CRAY Y-MP/2E; a single datum point involves between
500 and 2000 MC sweeps over all time slices and we took
Ar—:P/M = 0.125.

Magnetic properties are examined through both the
magnetic susceptibility
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FIG. 1. Uniform (a) and staggered (b) magnetic suscepti-
bilities as functions of temperature, for the repulsive Hubbard
bilayer at half-filling, with U = 4 and k& ——0.7. System sizes
are 2 x (L x L), with L = 4 (triangles), L = 6 (squares), and
L = 8 (circles). The lines are guides to the eye.

FIG. 2. Wave vector dependence of the structure factor for
a fixed inverse temperature, P = 8, for the repulsive Hubbard
bilayer at quarter-filling, with U = 4 and t~ = 0.2 (a) and
tz = 0.7 (b). System sizes are 2 x (L x L), with I = 6

(squares), and I = 8 (circles). The error bars are smaller
than the data points, and the lines are guides to the eye.

us from going to very low temperatures away from half-
filling; the optimum choice for the bilayers, i.e., the one
that allows us to reach the lowest temperatures with an
acceptable (e) & 0.6, is (n) = 0.5. In order to discuss the
magnetic correlations for this filling, in Fig. 2 we display
the structure factor, Eq. (5), at fixed temperature; since
the data are syinmetric under the exchange (q, q„) +

(q&, q ), the Brillouin zone is only shown partially. In
each of the q sectors the behavior is similar for t~ ——0.2
[Fig. 2(a)] and for t~ = 0.7 [Fig. 2(b)], with very broad
maxima and roughly the same heights, though one may
argue that as t~ increases, the maximum in the q = 0
sector narrows slightly, while that in the q = m sector
flattens out also slightly. The important point is that
antiferromagnetic correlations are always dominant, at
least in one (planar) direction, signaled by S(g) being
roughly the same, as long as q = 7r.

It is also instructive to discuss the q dependence of the
susceptibility. For t~ = 0.2 [see Fig. 3(a)], two peaks with
approximately the same height appear in both q = 0 and
q = 7t sectors, indicating that the magnetic response is
the same whether the field is uniform or staggered along
the z direction (perpendicular to the two layers). As
one increases the interlayer hopping to t~ = 0.7 [see
Fig. 3(b)], only one peak is found, corresponding to a field
staggered in the z direction. These peaks come about as

a result of correlations adding up coherently; we shall
return to this point below.

Figure 4(a) shows the temperature dependence of the
uniform susceptibility at quarter-filled band for t~ ——0.2,
and for L = 6 and 8. From the data for L = 6 alone,
one might be tempted to infer a spin-gap behavior, sig-
naled by the downturn of y(0), together with the absence
of long-range magnetic order. This behavior, however,
does not seem to persist for the I = 8 system; on the
contrary, the weak temperature dependence of y(0) sug-
gests a Pauli-like —and therefore metallic behavior
for the whole temperature range examined. The data
for t~ = 0.7, shown in Fig. 4(b), can be interpreted dif-
ferently. As the temperature decreases, a downturn in
y(0) is followed by an increase at lower temperatures;
unlike what was observed in Fig. 4(a), this feature is
independent of system size. While this is not the proto-
typical spin-gap behavior, the diferent temperature de-
pendences found for the two values of t~ can hardly be
regarded as fortuitous. This, together with the above
analysis of y(g), suggests that the nature of spin excita-
tions changes as one increases t~. In the following section
we discuss the possible bearings of the magnetic proper-
ties on pairing.
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FIG. 3. Wave vector dependence of the susceptibility for a
fixed inverse temperature, P = 8, for the repulsive Hubbard
bilayer at quarter-filling, with U = 4 and tz = 0.2 (a) and
tz = 0.7 (b). System sizes are 2 x (L x L), with L = 6
(squares), and I = 8 (circles). The lines are guides to the
eye.

FIG. 4. Uniform susceptibility as a function of tempera-
ture, for the repulsive Hubbard bilayer at quarter-filling, with
U = 4 and t~ = 0.2 (a) and t~ = 0.7 (b). System sizes are
2 x (L x I), with L = 6 (squares), and L = 8 (circles). The
lines are guides to the eye.

III. SUPERCONDUCTING PROPERTIES

Superconducting properties are probed by the uniform

(q = 0) zero-&equency pair susceptibilities

Pp —— dr Lp ~ Dqt 0

and by equal-time uniform (q = 0) correlation functions

fg (k) = cos k, ,

fg, , (k) = cos k —cos k, ,

f,.(k) = cosk + cask, ,

(1o)

c =— (~t ~, + a„at),
where the pair-fieM operator is given by

(7)

) fg(k) c„gc
1

8

f~, , (k) = cos k —cos k„.

Our strategy here is to compare this dominant planar
pairing with interplanar correlations of different symme-
tries, such as

with fp(k) defining its symmetry. It is by now well
established that the dominant pairing correlations
in the p/anar Hubbard model have d & y2-symmetry, for
which

fg. , (k) = sink sink, ,

as well as with other combinations of longer range.
As it turned out, the dominant susceptibility corre-

sponding to interplanar pairing has d 2 2 symmetry;
that is, it is larger than any other in all situations (i.e. ,
different temperatures, interlayer hoppings, and band fill-

ings) examined, especially the one corresponding to d,
(the so-called nodeless d wave2 ). We have also checked
that the largest planar pairing susceptibility has d ~

symmetry even in the case of a bilayer. In what follows,
we therefore concentrate our discussion in terms of the
dominant ones.

Figure 5 shows the temperature dependence of Pg,
and Pg. .. for the interacting (U = 4) and free (U = 0)
cases, for different system sizes, at quarter filling, and
with t~ ——0.2. In all cases, the susceptibilities are sup-
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pressed by the presence of a repulsive on-site interac-
tion; this means that the fermions are less likely to pair
in the presence of the on-site repulsion, similarly to the
single-layer Hubbard model. Nevertheless, it is impor-
tant to note that interplanar pairing always dominates
the planar one. As one increases the interlayer hopping,

an interesting feature emerges. In Fig. 6, for t~ ——0.7,
the susceptibilities in the interacting case grow faster at
lower temperatures than those corresponding to the free
case, for the largest system examined. One therefore ex-
pects that there is a temperature T* 0.1 below which
the interacting susceptibility is larger than the free one,
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indicating a tendency towards pairing arising from repul-
sion. In view of the analysis of Sec. II, one concludes that
pairing is favored when "time" correlations along the z
direction are predominantly of antiferromagnetic nature,
that is, when the degeneracy between uniform and stag-
gered correlations is broken.

In order to verify whether the system could be close
to an actual phase transition, we have also examined the
dependence of the pairing correlation function, Eq. (7),
with the system size. If an infinite two-dimensional sys-
tem (or bilayer) undergoes a superconducting transition,
it belongs to the Kosterlitz-Thouless XY-model uni-
versality class. Accordingly, pairing correlations should
become critical at a critical temperature T, and decay
algebrically,

with g = 0.25 for T -+ T+. From finite-size scaling (FSS)
theory, one then infers that for a system of linear size
I, its associated uniform Fourier transform becomes

L
d2 —'g L 2 —'g

Above criticality, the apropriate scaling variable ~ is I /(,
where ( exp(A/gT —T,), with A being of order unity,
is the correlation length for the infinite system. There-
fore, one can assume the following FSS ansatz:

where E(z) is a scaling function such that I" (z) -+ const
when L (( (, recovering Eq. (15). At T„(= oo, so that
L~ Cp(T„L) is a constant independent of lattice size.
By plotting L" C~(T, L) as a function of T for systems
of different sizes, a phase transition would. be signaled by
a crossing of curves corresponding to systems of difFerent
sizes. Figure 7 shows the size-scaled pairing correlation
function with d 2 2 symmetry, as a function of the in-
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FIG. 7. Inverse-temperature dependence of the size-scaled
uniform d 2 2 pairing correlation function at quarter-filling,
for tz = 0.7 and difFerent system sizes: 2 x (L x L), with
L = 4 (triangles), L = 6 (squares), and I = 8 (circles). Solid
lines are guides to the eye.

verse temperature. For all sizes studied I / C stabilizes
to a constant value at large P, without any indication of
crossing. The possibility of a phase transition is therefore
ruled out, and the behavior of the pairing susceptibility
should be attributed to pair formation. These preformed
pairs should then condense through a mechanism ab-
sent in the present model —at a lower temperature into
a superconducting state.

IV. CONCLUSIONS

We have examined the interplay between magnetism
and pairing in the Hubbard model on a bilayer. We have
found that, even though the magnetic structure factor is
not sharply peaked at any particular wave vector, some
correlations add up coherently, giving rise to peaks in the
q-dependent susceptibility. For smaller interlayer hop-
ping, the system's response is similar whether the field
is staggered or uniform along the direction perpendicular
(z) to the bilayer. For larger interlayer hopping this de-
generacy is broken, and the system is only distinctively
responsive to a z-staggered field.

With respect to pairing, we have found that inter-
layer correlations with d 2 2 symmetry are the dom-
inant ones, in the sense that their associated suscep-
tibilty is larger than any other, including planar ones.
Thus, the suggestion by Milllis and Monien has been
confirmed away from the strong-coupling regime. We
have also found evidence that larger interlayer hopping
(i.e. , t~ = 0.7) may lead to pairing at low temperatures,
and associate this with the dominant antiferromagnetic
("time") correlations between the two layers. On the
other hand, a finite-size scaling analysis of the pairing
correlations indicates the absence of a phase transition
into a state with long-range (or quasi-long-range) order.
Upon completion of this work, we became aware of two
recent studies. Hetzel et al. discussed Hubbard bilay-
ers at zero temperature, and have also found no evidence
for ofI'-diagonal long-range order in the model. Scalettar
et al. have considered. the half-filled case at finite tem-
peratures, including diferent chemical potentials on each
plane, and have also ruled out o6'-diagonal long-range or-
der.

The picture that emerges is that pair formation in Hub-
bard bilayers is possible through antiferromagnetic cor-
relations, though another mechanism is needed to make
these pairs condense into a superconducting state at
lower temperatures. In this respect, the situation is sim-
ilar to what happens in the underdoped regime of YBCO
compounds, as mentioned in the Introduction. The tem-
perature T*, at which the interacting susceptibility be-
comes larger than the noninteracting one should be as-
sociated with T, the spin-gap crossover temperature.
Indeed, if one takes T* = 0.05t and typical values for
the Hubbard model parameters (t 0.5 eV, U 4t
2 eV), we obtain the estimate T* 250 K, which is
of the correct order of magnitude for T in YBCO. Fi-
nally, we should mention that this picture has appealing
similarities with the results obtained from the attractive
Hubbard model; see e.g. , Ref. 41.
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