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Analysis of ionized-impurity-scattering relaxation time and mobility by the phase-shift method
for two interacting valence bands
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We present a theoretical method to calculate the phase shifts of the carrier wave function resulting
from intraband and interband scattering in the two valence bands of p-type semiconductors. Using the
phase-shift method, it is possible to calculate separate ionized-impurity-scattering relaxation times for
carriers in the heavy- and light-hole bands and, thereby, obtain a new computation for the mobility of
holes in heavily doped materials. Numerical computations of the ionized-impurity™scattering mobility
are performed for p-type GaAs over the hole density range p = 10' —10 cm . It is found that the use

of the Born approximation results in a small overestimation of the scattering rates at low-carrier densi-

ties, but in a significant underestimation for degenerate-carrier densities. For p ) 10' cm the mobility
calculated at 300 K by the phase-shift method is approximately 40% lower than the value obtained from
the Born approximation.

I. INTRODUCTION

The Born approximation has been used extensively to
calculate ionized-impurity-scattering mobilities in semi-
conductors. Although one obtains simple analytic ex-
pressions for the scattering cross section, the Born ap-
proximation is only valid in certain limited cir-
cumstances. ' For this reason, the partial-wave phase-
shift method has been used as an excellent alternative.
On the other hand, the multichannel scattering theory,
which is based on the use of wave packets, provides a
general formalism to treat scattering problems. Howev-
er, it is difficult to apply this theory directly to a multi-
band system, such as the valence bands of semiconduc-
tors, as detailed procedures are not available to obtain the
phase shifts resulting from interband scattering events.
Even though a number of phase-shift treatments for ion-
ized impurity scattering have been reported, the phase-
shift method has been developed and applied only to
single-band systems. As the valence band of semicon-
ductors is made up of heavy- and light-hole bands, there
is an intrinsic difficulty in using the single-band phase-
shift method for multiband systems because of the change
in the effective mass of the scattered particle during an
interband scattering event. In order to overcome this
difficulty, the heavy- and light-hole bands were combined
into an equivalent single band, and the variational tech-
nique was used to analyze the hole mobility in p-type ma-
terials. ' Although this procedure produces reasonable
results, it has the drawback that interband scattering
cannot be evaluated explicitly; thus one of the main
features of multiband scattering processes is hidden in the
analysis.

During the last few years, high-quality heavily doped
epitaxial GaAs was developed by different growth tech-
niques employing .C for p-type doping, ' " and used to
improve the high-frequency characteristics of the hetero-
junction bipolar transistor. ' Therefore, it is timely to de-
velop the theoretical framework for an improved analysis

and computation of the transport properties of holes in
heavily doped materials. To this end it becomes neces-
sary to develop detailed procedures to obtain phase shifts
of the wave function resulting from both intraband and
interband scattering events in a multiband p-type semi-
conductor.

This paper presents a comprehensive derivation of the
phase-shift method to treat an interacting two-band sys-
tem within the domain of the effective-mass formalism
for crystals, which makes it possible to calculate sepa-
rately the relaxation time for each band. It then becomes
possible to calculate the true Hall factor and hole Hall
mobility by taking into account the multiband structure
of the valence band of semiconductors. This is particu-
larly important for heavily doped semiconductors, as the
hole densities are highly degenerate and the Born approx-
imation is not valid. Also, in this case, the ionized-
impurity-scattering mechanism dominates over all the
other scattering mechanisms. We follow the traditional
development' of the phase-shift method. We assume
that both energy bands are isotropic and parabolic. Fi-
nally, in order to compare the method presented in this
paper with the Born approximation, we obtain numerical
computations of the relaxation times and hole mobilities
due to ionized impurity scattering over the range of hole
densities p = 10' —10 cm

II. THEORY

If we consider only one-body interactions, the most
general Hamiltonian for an interacting two-band system
may be written, in the second quantization representa-
tion, as

V, pt( l)Vial i(1) 3 V&$2(1)V1112(1)(t)= d r, + d T1
2m 1 2Pll 2

+ g Jd r20;"(2), (1
ij =1,2

0163-1829/95/51(3)/1553(9)/$06. 00 51 1553 1995 The American Physical Society



1554 B. W. KIM AND A. MAJERFELD 51

where we use the four-variable notation, 1=(r,t) and1

2=(rz, t ), g, is the field operator for band i (i = 1,2), g,. is
the Hermitian conjugate of g, , and the one-body interac-
tion potential operator 0;.(2)[=0,. (rz)] is given by

~~j(2) = —,'y;(2) U~j(2)qj(2) . (2)

(3)

and the commutation relations for f;(t) and g;(t), ' and
are given, in the first quantization representation, by

H» lg) &+ Ulp if/ &
= @I&)&,

H„y, )+U„Iq, )=e q, ),
where

f2+2

1

(4)

The indices i and j indicate that the scattering potential
U; causes a transition of a particle from an initial band j
to a final band i, where band indices i,j=1,2 for an in-
teracting two-band system. The corresponding equations
of motion can be obtained using

iaaf, (t) = [p, (t ),P(t ) ]

The presence of Iy;) in Eq. (6) is reasonable, because

I P,. ) must reduce to
I y; ) as the interband scattering po-

tential, U;;, vanishes. The boundary condition for the
outgoing wave, which can be chosen, is incorporated by
making the energy 6 slightly complex' in Eq. (6), which
in the position representation reads

(r~P,. }=(r~q;)+Jd r'(r r'1

H;; ——U;;+ig

x(r IU, ,'Iq,'&, (8)

with g being an infinitesimal positive constant. Equation
(8) may be regarded as the Lippmann-Schwinger (LS)
equation for the interacting two-band system. The kernel
of this integral equation is the Green s function, which
satisfies the equation of motion

[H;;+ U„.(r) —6" ]G;(r, r') = —5(r —r') . (9)

where i%i' (hereafter we shall use this convention; for
example, for band I, = 1, the band index i' designates band
2, and vice versa), and Iqr;) is the intraband interaction
eigenket of H;;, which satisfies

(H, ,
—a)lq, ) =o.

and m; and A are the effective mass in band i and the
Planck constant, respectively. The solutions to Eqs. (4)
can be written as

Thus Eq. (8) can be rewritten as

f, (r) =y;(r) + f d r'6, (r, r') U;, (r')g, (r') . (lo)

Ig, &= q, &+
11

(6)
Also, the Green's function in Eq. (9) can be expanded as

G;= 1

H,; U;;+i—rt. —

1 1 1 1

H;;+i' —8 H, , +ig —8 H;;+iq 6—H,;+iq —6 H;;+iri-Q
+

Q ii Q
+

Q . ii Q . +

=G, +G;X;;G;,

g2p2
G;(r, r')= —5(r —r') .

2m.
(12)

where X;;=—U... and the unperturbed Careen's function

G; [=6;(r, r')=G (k, , r, r')] satisfies the equation of
motion

I

weak scattering potential U; .. For ionized impurity
scattering and a dilute impurity concentration, Eq. (14)
can be approximated by keeping only terms up to first or-
der in the scattering potential. In this case, Eq. (14) in
the position representation reads

g,.(r) —=p,.(r)+ f dr'G; (r r') U„,(r')q&, (r')— .

Thus from Eqs. (7) and (12), y;(r) can be written as

p;(r) =e ' + fdr'6;(r —r') U„(r')y,.(r') .

Using Eq. (11), I g; ) can be written as

(13)
=e ' + fdr'6; (r —r')U;;(r')y, (r')

+ fdr'6; (r —r')U„,(r')y; (r') . (15)

IP;&= g IG;U;;6; U;;]"[Iq; &+G;U;; Iq; &]
n=0

[Iq, &+6;U;;,Ig, , &],
1 —G; U;;.G;.U;.;

(14)

The unperturbed Green's function G; and its asymptotic
form at large distance are given, respectively, by

6; (r —r')

where for the second equality we assume that
I 6;U„G; U, ; I

( 1, which is a reasonable assumption for a

ik,. )r —r'/
mi

2m'

ik,.rmi e ' ik'. .r'
e2' (16)
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where k,'=rk, . Thus, by substituting Eq. (16) into Eq. (15), the asymptotic form of the scattered wave function at large
distance is obtained as

ik,.r ik,.r

(2m) i r " r

where the normalization constant 1/(2n. )
~ is introduced and the scattering amplitude fJ is defined as'

f;, —=f«,' k, )

1 2 li e'
(2~) fdr' U, (r')(r'~yj )4~ fi2 (2~) ~

] 2m.
(2') (k,'~ U,j lpga

)4~
2m.

4~

fd6', fdt's(k, '~A;, I;,m, )(6';,I;,m; ~Ti ~@i,li, m )(C,i, m ~k )
g2

(17)

4m m;

1,. , m, , I., m.
fdic";fdic', 5

m;k;
Yi '(k )T, '(8;)5, , 5

I J J

Ak
Yi J(k )'

2m J

4m m;
T;,'(8; )5(A'; —v, )Yi '(k )Yi '(k, ),

i,~ Qm, k, Qm, k,

fi k
(k~@,I,m)= 5 g-

&mk 2m
Yi (k),

(6;,I;,m; ~TJ ~Cz , Ii, mj ) .=TJ(6;)5i i 5 . (21)

ik. r .It should be noted that if we replace y. by e ' in Eq.
(18), we than obtain the scattering amplitude in the Born
approximation. To obtain the angular dependence of the
scattering amplitude, we choose the coordinate system in

where Yi '(k, ') is the angular part of the wave function
t

~ ~ ~y;(r) associated with the direction along k with the or-
bital and magnetic angular momentum li and m, , respec-
tively, 6; [—=h(k, )] and e [—:6(k )] are the energies of
particles in band i and band j, respectively, and the tran-
sition matrix Tz, &

for the transition from the state ~k~. )
i j

of band j to the state
~ k,' ) of band i is introduced:

T„,„=( ~2)'& 'k~ T~k, )
l j

27rfi2=(2~)'(k;
~ V„~q,. ) =—

I

and use was made of the equalities

Yi (ki)= 2l+1
4m

' 1/2

mp &

Y, (k )= 2l + r

4m
Pi(cos8),

where PI is the Legendre polynomial of order l, and 8 is
the angle between k,' and ki. Thus, using Eqs. (22), Eq.
(18) can be simplified to be

fJ
= g (2I+1)fJ(k, , kj;8;)Pi(cos8),

I

where

f, (k;, k, ;6;)
' 1/2

(23)

m,.

mJ
T,'(8, )5(8, —6, ) .

k, k
(24)

Using Eq. (23), the scattered wave function of Eq. (17) at
large distance can be written as

such a way that the wave vector of the initial states
(k;j=1,2) is in the positive-z direction as shown in Fig.
I, which leads to

1/2

where we used

—i(k,.r —1m)ik,.r

g (2l+1)Pi(cos8) .
(2n ) 2ik;r

ik,.r

+[f;(k, ,k;;8)+f,';. (k;, k,';8))
r

(25)

oo oo ikr —i(kr —lm)e'"'= g i (2l+ l)Pi(cos8)ji(kr): g (21+ l)Pi(cos8)
1=0 r~oo i 0 2ikr
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FIG. 1. Direction of incoming (k& and k2) and outgoing
waves (kj and k2) waves after a scattering event.

2i5,.(6)=e (27)

Thus, on substituting Eq. (27) into Eq. (25), the radial
part of g, (r) with orbital angular momentum 1, R (r), at
large distance takes the form

R,'(r )
C, (k, , k, )

sin[k;r+ 5,'(k;, k; ) —lir/2], (28)
k, r

in which Ci(k;, k;. ) is a normalization constant. From
Eqs. (25) and (27), it can easily be shown that fiux is con-
served.

In order to decompose 5,' into 5,'.; (intraband phase

In order to insure conservation of Aux during elastic
scattering (incoming fiux must be equal to outcoming fiux
for elastic scattering), we introduce the scattering matrix
S which satisfies

S = 1+2ik, [f,';(k;, k;; 8)+f; (k;,k;; 8)]

shift) and 5,';. (interband phase shift), and to evaluate
these, we start by expanding, respectively, the plane wave
y;(r), and the unperturbed Green's function in the outgo-
ing wave boundary condition

e ' = g (21+1)i'P&(k;.r)ji(k, r), (29)
I

p, (r)= g (21+1)i'Pi(k;.r)R (k;r),
I

G (k, ,r —r') =mp(k; ) g(21+1)P,(r r')
I

(30)

X[ji(k;r& )9t(k;r& )

bi(k, r j)(k r )], (31)

l a
2'; r2 Br 3r

1 (1 +1)
2

+[U,, (r) —g(k;)] R(k, r)=0'. (32)

On substituting Eqs. (29)—(31) into Eq. (15), R;(k;r) is
given by

where jI and gl are the spherical Bessel functions of the
first and second kinds, respectively, of order l,
h&

= —
li+iij&, p(k;)=k;m;/2(A'm) is the density of

states in band i, and r & and r & respectively, denote the
smaller and the larger of the two lengths r and r'. Here
the radial function of p;(r), R,'(k;r), satisfies the equa-
tion

R;(k, r)=j&(k;r)+. 4np(k;) f r.' drj'i(k;r& )hit(k;r& )U;;(r')R (k,.r')

+4' p(k;) f r' drj'&(k, r )hi (k, r )U, ,'(r')R, (k;.r') .

In the asymptotic limit at large distance, this integral equation can be written as

(33)

R,'(k, r) :j,(k, r)+[D,',.(k, )rl, (k, r)+D, ', , (k, )rl, (k, r)]—i. [D,',.(k,. )j,(k, r)+D,.',. (k, )j,(k, r)]

sin(k, r —lir/2) cos(k,.r lir/2) — sin(k;r lir/2)—
(D,', +D,', , )

— —i(D,', +D,', , )
k, r k, r tt tl k

(34)

where

D, , +D,, , = —exp(i5; ) sin(5, ) .

Thus the proper choice of normalization constant is

C, (k;, k; )=exp[i5,'(k, , k, )] .

(36)

(37)

DJ. =4' p(k;) f r drji(k;r)U; (r)R'(k r),
0

and iri k; /2m; =iri k /2m, which assures energy conser-
vation, as required for elastic scattering; hereafter, this is
implicitly assumed. The potential U, (r ) is assumed to be.
of short range, i.e., it falls ofF faster than 1/r at large dis-
tances. This is necessary for the integral in Eq. (35) to be
well defined.

As the two asymptotic expressions of Eqs. (28) and (34)
must be identical, we set

The phase shift given in Eq. (36) can be separated by set-
ting

exp[2i(5,';+/) ]—1

tt

exp [2i(5,'; —g) ]—1
D; = —exp[2i(5,', +g)]

l

where

5,'=(5,';+()+(5,,' —g),

(38)

(39)

(40)

and g represents an arbitrariness in the choice of phase.
Finally, combining Eqs. (35) and (38), we obtain

D, ,
= —e "sin(5, , )

=4' p(k;) f r dr ji(k, r)U, , (r)R, (k, r), . .
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i25 i6
D,', =. —e "e " sin(5,'; )

=4~4p(k, . )f r drjl(k, r).U;; (r)R;.(k;r), (41)
0

where we set /=0 as D;;, and D;. must vanish when
U;;(r )= U, ,'(r ) =0. From Eqs. (18), (19), and (35), the re-
lation between the transition matrix, the scattering am-
plitude, and D;J can be established as

27rfiz
f(k,', kj)

= 2M' g (2l+1)PI(cos8)D (42)
m,-k

The procedure to determine phase shifts for the interact-
ing two-band system is as follows: The radial wave func-
tions for intraband interactions, R (k;r), are solved first
from Eq. (32). Then from Eq. (40) the intraband phase
shift 5;; is determined. Finally, the interband phase shift
5,', is obtained from Eq. (41) once 5,'.; is known.

En order to obtain the differential scattering cross sec-
tion do. /d Q, where 0 is the solid angle, consider a large
number of identically prepared particles. The differential
cross section for intraband and interband transitions can
be defined, respectively, as

number of particles scattered into d 0
per unit time from band i to band i

d Q number of incident particles through

band i crossing unit area per unit time

r2~ sc

',
' =~f(k,', k, )~'dn,

A
(43)

number of particles scattered into d 0
c

per unit time from band i'to band i Iml " ~A

d A number of incident particles through k; m;
~
ji,"

~

k, m;
band i'crossing unit area per unit time

(44)

Therefore, using Eqs. (40) —(42), the total cross sections for intraband and interband transitions are given, respectively,
by

1~'„"=f ~f(k;, k, )~', „,8 d n=

k;m;.' f ~f(k;, k, , )~',

(2l+1)sin (5,';)

(l+1) sin (5,'; —5,';+')

(2l+1) sin (5,'; )

l+1) '
(

(45)

(46)

On the other hand, the presence of two interacting bands of carriers introduces considerable complexity into transport
calculations. The standard way of handling this problem, within the semiclassical regime, is to first set up the
Boltzmann equations for the two-band system, and then solve the resultant coupled equations. The derivation and the
exact solution to first order in the external electric field E, in the isotropic band approximation, are shown in the Ap-
pendix. The quantities q, . s, which correspond in their characteristics to the inverse of the relaxation time, can be cal-
culated according to Eqs. (A8):

q, ,
=

3/2
2m,

'
2m. "r
& (2~)'

3/2 ~2
y (1+1) sin2(5I 5l+1)

m,
'

3/2
2~ "r 2m

~ (2~)'

~ 7gy g (2l+1) sin (5,'.,'),
m,

'

cosO 0,'.
,',' —,' T,,' ~

f cos8 d 8fQ 6",d 8,'5( 6,' —6, )
~ T,, i ( 1 —cos8 )

q;=—
' 3/2

~r 2m,
'

3~(2'�)
2 ~2n

m,.
' Qg' m;

f cos8d8 f+8,'d8,'~T, , ~2

m;

1 /2

g 2(l+ 1) sin(5;; ) sin(5, '.
,

+. ')cos(5,'.; —5,,+. '),
I
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(2m )
(48)

III. NUMERICAL RESULTS

The scattering of holes in the heavy- and light-hole
bands of p-type GaAs by ionized impurities is calculated
by the phase-shift method developed in Sec. II and, also,
in the Born approximation over the hole density range
1 X 10' —1 X 10 cm . The Born approximation is valid
when carrier energies are high relative to the interaction
potential, but is invalid for carriers with energies near
band extrema, as in this case the carriers are strongly
scattered by the screened Coulomb potential. The
phase-shift method, based on a maximum of 50 partial
waves, gives more accurate results because it is valid for
all carrier energies.

The corresponding inverse relaxation times in the Born
approximation can be calculated according to Eqs. (A8),
and are given by

where nl is the density of ionized impurities, m (m ) and
6 (8'), respectively, designate the effective mass and en-

ergy of a carrier in the initial (final) band, and the first
and second indices of the inverse relaxation times
(q;;,q;;,q;} designate the initial and final bands, respec-
tively, involved in a scattering event; q, , gives the transi-
tion probability weighted with (1—cos8) due to intra-

- band scattering, and q,',. and q; describe transition prob-
abilities weighted with 1 and cosO, respectively, due to in-
terband scattering. In Eqs. (47) we used the relation be-
tween the differential scattering rate S; and the transi-
tion matrix for ionized impurity scattering:

with the total carrier concentration of p (p =p, +p 2, p,
and p2 are the hole densities in bands 1 and 2, respective-
ly) and F„ for the Fermi integral of order r:

x dx F
"~F x-g ' IF k T '

o 1+e F B

@+=Fermi energy .
(52)

p; =e (~;(8) ) /m;, (53)

where ( ) denotes an average over carrier energies (the

We used the Thomas-Fermi screening, rather than other
more sophisticated methods, as it should give a reason-
able numerical result, in view of the complexity of the
valence band. The overlap functions, ' which represent
the anisotropy of scattering due to the symmetry proper-
ties of the wave functions of Bloch holes, are taken into
account in the above equations.

The upper bound in the phase-shift sum was deter-
mined by the criterion that the next term in the series
should be less than 1% of the leading term. The upper
limit of 50 partial waves satisfied the desired numerical
accuracy over the hole concentration range considered in
this work. The Schrodinger equation was solved by the
Numerov method, ' and the end point of the screened
Coulomb potential was selected when it dropped below
0.1% of the value of the potential at the screening length.
Once the relaxation times were determined using Eq.
(A7}, the mobility for holes in band i were calculated by

n, e'
1

64&2m.e Qm;(kiiT) ~

X (3A —1) ln
I&+ ll —2 9A —6+ 4

A+1

nIe /~+1/
2A ln —4

64&27rE m (k T) K

3n, e4
1

64''2~e Qm;(k~ T)

X 6A +(3A —1)ln

(49)

where e, kz, and c respectively, are the electron charge,
the Boltzmann constant, and the dielectric constant, and

0

CL

0.1

0.01

V)
CL

UJ

I-

0 0.1
l-

H

2

1 10 100

HOLE DENSITY (1o c~ )

K=M+1+Q/K i ki

2v M 2m;kii T'
Aq,

2m;k~ T
(50)

Here M=1 for q; and M=m'/m for both q;.; and q;,
and q, is the inverse screening length given by

2 e p F &)2
2

q, =
2Ekg T F+ &/'2

0.01
0.1 1 10

HOLE DENSITY (10 crn )

100

FICx. 2. Momentum relaxation times due to ionized impurity
scattering, calculated at 300 K using (a) the phase-shift method,
and (b) the Born approximation, where r& and ~2 correspond to
the heavy and light holes, respectively.
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10
h

10 ~ a %Is ua

0.1 1 10 100
HOLE DENSITY (&o &m )

10
300K

E
310

I—

CQ0
10

0.1 1 10 100
HOLE DENSITY (&0 cm )

upper limit for this integration was 10k~ T above the Fer-
mi energy, or 10k~ T into the band). The combined two-
band hole mobility was obtained from

P (P IP1+I 202) ~(71+72 ) (54)

The parameters for the heavy-hole mass, light-hole mass,
and dielectric constant used in this calculation were
mg =0.5mp m

&
=0.088mp, and c= 12.9, respectively,

where mp is the free-electron mass. The numerical re-
sults at 300 K are displayed in Fig. 2. The corresponding
hole mobilities are presented in Fig. 3.

IV. DISCUSSION AND CONCLUSIONS

FIG. 3. Ionized impurity scattering mobilities for heavy and
light holes, and total mobility, calculated at 300 K using (a) the
phase-shift method and (b) the Born approximation.

system and derived a generalized Lippmann-Schwinger
equation. Then we followed the standard procedure to
obtain the phase shifts, i.e., by expanding the LS equa-
tion, keeping only terms up to first order in the scattering
potential, and by taking the asymptotic limit of the scat-
tered carrier wave functions at a large distance. By this
method we determined the phase shifts for both intra-
band and interband scattering events.

Our results show that the momentum relaxation times
obtained for heavy holes at high-carrier densities by the
phase-shift method are significantly shorter, by about a
factor of 2, than the values obtained by the Born approxi-
mation. Also, the relaxation times for light holes are
slightly longer for the phase-shift method in comparison
to the Born approximation. In summary, the Born ap-
proximation overestimates the overall ionized impurity
scattering rates for hole concentrations less than 1 X 10'
cm and underestimates the rates by approximately
40% for concentrations above 1X10'9 cm This be-
comes clearly apparent when the data from Figs. 3(a) and
3(b) are combined as in Fig. 4. It should be noted that
this appears to be a typical and, possibly, a general result
of the Born approximation, as it was previously note by
Lowney and Bennett from a variational calculation using
an effective single band for p-type GaAs and by Meyer
and Bartoli' for p-type Si.

It is appropriate to mention that the results of Fig. 4
should not be compared directly with experimental
mobilities, as a detailed mobility calculation should in-
clude a number of additional scattering mechanisms for
hole densities not highly degenerate. Comprehensive mo-
bility and Hall factor calculations for p-type GaAs at
room temperature, using the phase-shift method for ion-
ized impurity scattering presented here, will be published
elsewhere. Finally, it should be noted that in the past a
value of unity for the Hall factor has generally been as-
sumed, which leads to an incorrect determination of mo-
bility and hole density from experimental Hall effect data.
We conclude that it is important to calculate relaxation
times separately for each hole band in p-type materials,
especially for highly degenerate carrier densities, as the
ionized impurity scattering mechanism dominates over
all other scattering mechanisms.

It has been several decades since the phase-shift
method was first applied to study the scattering of free
carriers in a semiconductor by a screened Coulomb po-
tential. The phase-shift method is clearly preferable to
the Born approximation as it yields more accurate
scattering cross sections. However, it has only been ap-
plied to the calculation of impurity scattering in multi-
band semiconductors by treating the two bands as a sin-
gle equivalent band and, thereby, not allowing for

'different cross sections for the intraband and interband
scattering processes.

In this paper we developed a method to calculate phase
shifts of the carrier wave function resulting from both in-
terband and intraband scattering in the two valence
bands of p-type semiconductors. We started with the
most general Hamiltonian for the interacting two-band

10
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0.1 10 100
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FIG. 4. Comparison of ionized-impurity-scattering mobilities
as calculated at 300 K using the phase-shift method and the
Born approximation.
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APPENDIX

The scattering processes centered at band i (i = 1 and
2) can be expressed as

S; =S(k;,k,')+S(k;,k,', ) =S;;+S;;.,

S =S(k;',k; )+S(k,', k; ) =—S;+S;;,

where i%i', S(k, , k') is the differential scattering rate for
a transition from an initial state k in band i to a final state
k' in band j (outgoing scattering), and S(k'. ,k, ) is that
from state k' in band j to state k in band i (incoming
scattering).

Using the scattering rates defined in Eqs. (Al), a pair of
Boltzmann equations can be written as

E' x, =—f dk'[S, (f,'+x;X;;g )(1 f; —x;g;)—+S;(f +x;X;;g )(1 f; —x;g;—)

S,, (f, +—x,g, )(1 f x;x—,,g —) S;;(f;+—x;g;)(1 f —x;—x;;g )], (A2)

in the isotropic band approximation, where X; (i,j = 1,2)
is the cosine of the angle between either k; and k' or k,'.

and k; g and g' are the perturbation part of the non-
equilibrium function f ( k; ) to first order in E ( = ) E) ); x;
(x,') is the cosine of the angle between the electric field E
and k; (k';), f; —=f(k,. ); f =f(k ); f is the equilibrium
Fermi distribution function, and we use the fact

fx'S(x)dk'=x fxS(x)dk' as S is independent of the
azimuthal angle. In this approximation, the differential
scattering rate can be expressed in terms of )k;), )kj) and

g;-, and g and g' depend on wave-vector magnitude; i.e.,
g; =g;(k) and g,.'=g;(k'). In Eq. (A2), we retain only the
first two terms in the perturbation expansion of f(k; ) un-

der a weak external electric field E, i.e.,

eEr(8;) Bf(6, )
g;—=g(N;)=-

8k,-

eEr(6,') Bf(C', )
g —=g(t &)=-

()k,'

I 1/2

g) )
m, .

(A4)

where 6; (8';) and m; (m ), respectively, are the energy
and effective mass for the initial (final) band i We no. te
that even though the valence band is not isotropic, except
near the band maxima, we take this form of Eqs. (A4) to
be valid up to the highest hole density considered in this
paper.

Integrating Eq. (A2) over x
&

and x2, respectively, gives
the detailed balance equation

f(k; ) =f;+x;g, and—f(k,') =f,'+x,'g, ' . — (A3)
1 f,'—

Jg
(A5)

As in the isotropic band approximation, all the functions
included in Eq. (A2) can be expressed in terms of energy;
hereafter we replace the wave vectors by particle energies
for those functions. With this replacement, g and g' can
be assumed to take the following form for elastic scatter-
ing:

where we make the physically reasonable assumption that
the intraband and interband scattering rates separately
obey the detailed balance condition.

On the other hand, integrating Eq. (A2) over x
&

and x2
of the resultant equations multiplied by x, and x2, re-
spectively, gives

3/2

E=vr
2
— f cosgdOf &6"'d6"[S,[f,'g; —X;;(1 f;)g. ]+S;[fg;

——X,.;.(1 f;)g]-af; 2m

E

+S;;[(1 f )g; X;;f;g )+S;—; [(1 f—)g; X;;f;g,
" ]]— —

Replacing g' by g and S' by S in Eq. (A6) using the second equation of Eq. (A4) and Eq. (A5), and solving for g, and g2,
we obtain for elastic scattering the solution which is exact to first order in the electric field E:

I
ql 1 qll

E

(%i+a')(0('r'+q('i ) 9i( 9rr''
where

(A7)
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q;;=+
2mi (l f—)

fi f cos0d0f Q6';dC, 'S,, l—
' 1/2

imi

8,.m,.
' cos0 5( 6", —8, ),

qi,.t = 7T

3/2
2mi~ (l f —

)f cos0d0 fQ6;d 6'; S;; 5(6,' —6; ),

I
7T

3/2
2mir (1 f —) 6,' m;f cos 0 d 0fQ6,' d 8,'S;;, 5( 8,' —8; ) .

D,.m,.'

Here the first and the second indices for q and q designate the initial and final bands, respectively, involved in the tran-
sition.
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