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Failure of hydrodynamics within the vertex-liquid phase
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The recent discovery that some of the coeKcients of the viscosity tensor are negative is shown to
invalidate the hydrodynamic approach to the vortex-liquid phase of a type-II superconductor. A
satisfactory theory requires retention of all the spatial gradients of the velocities or electric fields and
not just the first derivatives, as assumed in a hydrodynamic theory. We illustrate such a procedure
by using time-dependent Ginzburg-Landau theory to determine the electric-field distribution near
a single "twin-plane boundary" due to a current passing through the boundary.

There exists an. extensively developed phenomenolog-
ical hydrodynamic theory for superconductors in the
vortex-liquid regime. In the recent work of Mou et aL,
the coefBcients of the viscosity tensor were calculated
from a more fundamental theory, in this case Ginzburg-
Landau theory, and some were found to be negative. We
show explicitly that this invalidates the hydrodynamic
approach. We find that a satisfactory theory requires
retention of all the spatial gradients of the velocities and
not just the first derivatives, as assumed in a hydrody-
namic theory. We illustrate our procedure by calcu-
lating the electric-field distribution near a single "twin-
plane boundary" when a constant current is being passed
through that boundary. The electric field decays to its
bulk value; whereas, the hydrodynamic theory with neg-
ative viscosity coefficients (as calculated) has unphysical
oscillatory behavior of the electric field as a function of
distance from the boundary.

Because the motion of extended Aux lines plays a vital
role, the transport properties of type-II superconductors
near and below the H,2(T) line are expected to be non-
local. For instance, the current j produced by a small
electric Geld E, is given by

results in a stable theory; S, e.g. , must be positive.
(We take the external field B to be in the z direction. )

However, recent calculations of Mou et al." of the S's
from Ginzburg-Landau theory found some of them to
have signs opposite of those required for stable hydro-
dynamics. We extend their calculations and show that
stability is regained if the full expansion in powers of the
wave vector is considered. Then we proceed to calculate
the zz component of the conductivity in the presence of
a boundary and with it, we calculate the electric field for
the case of a constant current j being passed through
a "twin-plane boundary" (at z = 0). The results are
compared with those from the hydrodynamic theory.
This example also illustrates the necessity for stability
of including the normal component of the conductivity
(assumed to be local).

Our starting point is the time-dependent Ginzburg-
Landau equation

+ a @(r,t)

o„(k,a = 0) = cr„„(0) + S„p„A: Icp (2)

(in the notation of Mou et al.7). Moreover, hydrody-
namics includes a tacit assumption that this truncation

j„(r) = f a„(r,r') s (r') dr',

where the conductivity tensor cr~ is nonlocal, i.e. ,
o&„(r,r') g o'~„b(r —r'). Assuming translational in-

variance, Eq. (1) then becomes in momentum space:
j„(k) = o„„(k) E„(k), where nonlocality now implies

o„„(k)g const. Recent experimentss found the nonlo-
cal effects to be substantial.

The "hydrodynamic" approach assumes that an ad-
equate description of the long-time, large-distance behav-
ior can be derived &om a truncation of the small-wave-
vector, small-&equency expansion of the conductivity to
the lowest nontrivial terms. For instance, the dc hy-
drodynamic conductivity tensor would be taken in the
hydrodynamic approach to be

+—~Q(r, t)
~

g(r, t) = rI(r, t), (3)
6

with noise correlations

(rl*(r, t) rI(r', t')) = h(r —r') b(t —t') (4)

and with mq, 2
——m g and m3 ——m . We use the sym-

metric gauge to describe the uniform field: A = By/2—
and A„= Bx/2. As the parameter I' sets the time scale,
time will here after be measured in units of I', h and k~
will be set to 1. The following calculations are based on
the linearized version of Eq. (3), and so strictly speaking
above the H,2(T) line; however, making the Hartree ap-
proximation a,tr = a + b (~g~ ) can take one below the
H,2(T) line. It is conceivable that as one goes to lower

temperatures still, to the regime where the Hartree ap-
proximation breaks down, that the viscosity coeKcients
become positive (see Ref. 7).
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First, let us sketch out the derivation of the bulk con-
ductivity, returning to the case with a boundary after-
ward. The linear response to the field can be calculated
via the Kubo formula as follows:

e~'~(k, IS) = f d(r —r') f dr e's'~'

x (J„(r,t + 7.) J„(r', t) ), . (5)

Here, we will be interested in the nonlocal nature of the
dc conductivity: 0„' (k, (v = 0). [The frequency depen-

d . (s)

dence of the urnform conductivity oId' (k = O, cu) was
studied in Ref. 10.]

In order to calculate the current fIuctuations, we will
need the Green's function and correlation function. We
can take the result for the Green's function from the
path-integral approach:

where cup = e*B/m g is the cyclotron frequency, E

(e*B) 1)'2 is the magnetic length, and r ) 0.
From the definition of a Green's function

I) (r, T) = f dr' dr' G [r, C; r', t') q(r', t'),

which one can then use to calculate the correlation func-
tion (g*(r', t') @(r,t)). Using Eq. (4) for the noise cor-
relations, it follows after some algebra that

(dI'(r', d)d[r, fI)) = 2T f dSG(r, r;]C —t ]+ 2S). (8)

The Kubo formula for the conductivity involves a prod-
uct of correlation functions with some (covariant) deriva-
tives acting on it, those derivatives coming from the usual
definition of the current density

m
G(r, t+~;r', t) =

32vr3E4r sinh cupr 2
mc Ix exp —ar — z —z
2r

Xexp
coth((vpr/2)

482
x —x' '

+(V —u')'] + 2I, (ee' —ee')
l

J„(r,t) = @*
~

—i
e* „( 0

2m~ ( Or~
—e*A„~ g + c.c. . (9)

The next steps are relatively straightforward: (i) insert
Eqs. (6), (8), and (9) into the Kubo formula (5); (ii)
carry out the required derivatives; and (iii) perform the
spatial integrations in Eq. (5), which are all Gaussian
integrals. Three integrations over time variables remain.
After some rearrangement of these time integrations, we
find

*2T 1/2

(kO)= e ™oo 3/2 —2a~
dr Gtl 'U

sinh(~pr) ()

du C„„(r,u, v, k)

[cosll(SIST) costI(COISCT)] s s T( o ) )s
)x exp k'+ k„'

2 sinh([vpr)
k k„ (lo)

where

2 cosh(uv(d)pr) sinh (uv[d)p7')

l2 sinh(Ldpr) 8111ll ((dpi')

[cosh((vpv. ) —cosh(uvpdpr)]+ ~ 2 y)sinh ((up~)

(uv[d)p7 ) —[cosh((d)pr) —cosh(uv(d)p&)]

sinh'(cupr)

C„=2m, /r + u v k„
C, = [uv sinh(uvwpw)/sinh(a)pr)] k k, (11)

The (2; ~ yj symmetry gives one the other C),„'s.
Expanding Eq. (10) to quadratic order in k and per-

forming the u and e integrations reproduces the results
of Mou et a/. , including results such as 8 & 0 andS„„(0. However, one can see from Eqs. (10) and

(ll) that the full expression for (rI,'i(k) is greater than
zero as required for stability.

In some special instances, we can resum the expansion
in powers of k; a case we will be using below is a,' (k
O, ky ——O, k, ):

~( )(k )
e m T ) ((x + 2u(c)p)

Z ~—p

—( +2 .+k'/4, ) ",
where n = 2a+up measures the distance from the II,2(T)
line.

The above results are, however, for the bulk conductiv-
ity. In the case with boundaries, the calculation should
be repeated with the Green's function g which satis-
fies the boundary conditions imposed on the Ginzburg-
Landau equation (3). Let us consider an example with
a boundary condition at z = 0:

g(x, y, z = 0;t) = 0.

One could imagine that such a boundary condition might
arise from having a defect like a twin plane at z = 0. We
admit that this is not a realistic model in any sense for
such a-defect. It is just the simplest example we could
devise which enables us to make some analytical progress.
The response function g is then given by
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g(r; r', ; t) = G(r; r', ; t) —G(r —2z; r', t), (14)

which is just the difFerence between the bulk Green's
function and its image.

Suppose one passes a constant current in the z direc-
tion through this boundary, and that one would like to
calculate the corresponding electric field. Since in this
case the current and electric field both point in the z di-

rection, only Z,', the zz component of the conductivity
in the presence of the boundary, is required. Also the
electric field varies only in the z direction, so the x and
y variables can be summed over (or in momentum space
k = 0, k„= 0). Thus we need to evaluate Z,', (z, z').
As from now on we shall only be considering z compo-
nents, we shall drop the z indices; for example, E, —+ E,
g(', (k) ~ g(')(k), S„, + S, etc. Furthermore, we will
denote the uniform conductivity g'(') (0) simply as g (').

The calculation of the conductivity involves a product
of Green's functions. When repeating the steps outlined
earlier with g instead of G, one can identify four pieces:

( )+ ()(k )

Since in the present scenario, we know the current and
want the electric field, we need the inverse of Z(z, z'), the
resistivity p(z, z'). For an operator of the form (17), the
inversion is readily performed:

OO

p(z, z') =-
fr

sin(k, z') sin(k, z)
g (") + g (8) (k )

[this ease of inversion is the reason why the "cross terms"
in Eq. (15) were dropped]. Notice that without the
inclusion of o.~ ~, the normal component, this integral
would have been divergent. The electric field is then
obtained by integrating over the source j(z'):

tween the two. On the scales of interest, the normal
conductivity is local. Hence our final expression for the
zz component of combined conductivity is

OO

Z(z, z') = — dk, sin(k, z') sin(k z)

Z()(«') = g( (.—.') —g )(z+.')
+ ,( )(, , )

E(z) = dz' p(z, z') j(z').
0

(19)

The first term comes from the product G(z —z')G(z-
z') and is the bulk conductivity g(') (z —z'), the Fourier
transform of which was given in Eq. (12). The second
term arises from G(z+z') G(z+z') and is the image of the
first —g (')(z + z'); the negative sign resulting from the
derivative with respect to z associated with the current
operator. The third term originates from the cross term
G(z —z')G(z + z') and takes on the form

OO 1 )i/2 —2a~

&(z, z') = A d7. ~ dv v du +
0 0 —1 sinh ~0~

x 2~r+v. /m, —~ (z —z') + r+(z+ z')

x exp (—K (z —z') /2 —K+ (z + z') /2),

where A = e*2T/32vr m, E and Ic~ = m, /7(i~uv). And
finally, the fourth term is the image of the third, again
with a negative sign.

The first piece, the bulk conductivity g (')(z —z'), de-

cays away from the source at z', the second piece, its
image, decays away from the image of the source at —z'.
The cross term &(z, z'), on the other hand, decays away
from both source and image. Hence, it only produces
a significant contribution near the boundary where it is
close to both source and image. However, at the bound-
ary, its contribution is killed oK by its image —&(—z, z ).
Thus, one expects the cross terms to play a lesser role.
For this reason, though mainly for sake of calculational
convenience, we will drop the cross terms. (Of course,
the cross terms while cumbersome could be handled in
numerical work if quantitative results were required. )

Thus far the calculation has concerned only the super-
conducting contribution to the conductivity. Before pro-
ceeding to determine the electric field, the normal com-
ponent must be included. Here we will simply add a
normal contribution cr~ ~, neglecting any interference be-

For a constant current j(z') = jo, one finds

2 jo „„sin(k,z)'
k, Ig (~) + g (8) (k )

(20)

Inserting the form of g(')(k, ) provided in Eq. (12)
provides the electric-field distribution shown in Fig. 1.
At the boundary the electric field E takes on the value
jo/g( ). Since @(z = 0) = 0, the current there must be
purely normal in composition. The electric field then
decays toward its bulk value jo/[g. ( ) + g(')]. Within
the bulk, the superconducting channel becomes available
and thus a smaller electric field is required to produce
the same current. In expression (20), the length scale
associated with the decay of the field to its bulk value
depends not only on static quantities such as n [which is
related to the c-axis correlation length ( (m, o.) ~ /2]
but also on dynamic quantites such as the normal con-
ductivity 0 ~ ~.

What would have resulted from the hydrodynamic ap-
proach? With a negative coeKcient S (as calculated),
Eq. (20) would yield unphysical oscillatory behavior, in
particular

(21)

with b = [(g ( ) + g('))/~S~] ~ (see Fig. 1).
The attraction of the hydrodynamic approach is its

simplicity. The calculation considered above is cumber-
some even for a single boundary and with simplifying
assumptions. The complications will only multiply as
one considers geometries more appropriate for modeling
multiterminal transport measurements. We suggest the
following ad hoc procedure which has the virtue of sim-
plicity, gives reasonable agreement with the full theory,
and. which could be generalized to other geometries. %'e
approximate the conductivity by
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0.8

S k„as derived from Landau-Ginzburg theory), has the
correct large-k behavior ( g'( )), and is positive definite
(i.e. , stable). With this form for cr(k, ), Eq. (20) yields:

0.7

0.6 E(z) = 1 + exp —z/b

N 0 5

0 4

0.3

0.2

0.1

0 05
L.r, i s I s

1.5 2 2.5 3 3.5 4 4.5 5

g(n) g (s) + [g(')]2 + g(n).( ) + (S( k: (22)

which has the correct small-k behavior (g'( + g(') +

FIG. 1. The solid line shows the electric field (normalized
by jo/g( ) as a function of distance from the boundary [mea-
sured in units of (m, n) /2, the mean-field c-axis correla-
tion length] as calculated from Eq. (20) with cr(') (k, ) given by
Eq. (12) with g'( )/g'(') = 1 and us/n = 2. The dashed line
shows E(z) resulting from Eq. (23). The third line shows the
oscillatory "hydrodynamic" result using the same parameters
with S ( 0 (as calculated).

where b = [g'(')/cr( )] /28 . Note it has the correct
limits: E(0) = jo/o. (") and E(oo) = Jo/(g. (") + cr(')).
Furthermore, it provides a simple expression for the de-
pendence of the length scale associated with the decay of
E to its bulk value. Its similarity to the full expression
can be judged from Fig. 1.

As multiterminal transport measurements represent
one of the key experimental probes of superconducting
materials, calculations within such geometries are impor-
tant for relating theory and experiment. Steps toward
this end weze initiated within the phenomenological hy-
drodynamic approach; however, the subsequent calcula-
tion of negative viscosity coeKcients within Ginzburg-
Landau theory invalidates the hydrodynamic approach.
Here, we have presented a computation which while more
cumbersome than hydrodynamics has the advantage that
it begins with a more fundamental theory and leads to
sensible results.
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problems posed by negative viscosity coefFicients. T.B.
thanks A.3. Bray for useful discussions.
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