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Strains in superconductors that accompany vortex nucleation and arise due to the difference in the
specific volumes of the superconducting and normal phases are evaluated. The strain in anisotropic
materials causes an extra intervortex interaction, which is long range as compared to a stronger
but finite-range London force. In materials with a strong pressure dependence of superconductivity
(such as NbSe2) the strain-induced interaction affects the structure of the flux lattices. For the
field parallel to the c axis of NbSe2 the Bux lattice is locked on the crystal, a fact that cannot be
explained either by London or by harmonic elastic interactions. The possible role of anharmonic
elastic interactions of vortices for this case is discussed.

I. INTRODUCTION

There is a puzzling disagreement between predictions
of the London theory and the flux-line lattices (FL) ob-
served. in single crystals of NbSe2 in the scanning tunnel-
ing experiments (STM), decoration, and in small angle
neutron scattering. For any angle 0 between the mag-
netic Beld and the c crystal axis (except 8 = 0, 90 ), the
London energy is minimum for the structure (A), and
maximum for (B) shown in Fig. 1; see Ref. 5. In all ex-

n
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FIG. 1. The eros-section xy perpendicular to the field B of
the crystal with principal directions a, b, c; B forms angle 8
with the c axis. Vortex axes are along z. The axis y is along b,
whereas x is along the projection of c onto the xy plane. For
an arbitrary vortex orientation within the crystal (except the
principal directions), the flux-line lattices (A) and (B) have
the minimum and maximum London energies, respectively (in
materials with the coherence length ratio ( s/( ) 1). The
structure (B) is seen in the decoration, neutron scattering,
and in most of the STM experiments with NbSeq.

periments in tilted fields, only the structure (B) is seen.
When the field is along t", the hexagonal vortex lattice is
locked on the crystal, whereas the London theory does
not distinguish between difFerent orientations of the FL
within the crystal. This suggests that factors other than
London interaction of vortices are at play.

The elastic strain caused. by vortices in superconduct-
ing crystals was discussed. about 20 years ago as a source
of pinning ' and as a possible reason for observed cor-
relations between FL and crystal latticess (for further
references, see Ref. 10). Recently, the kinetic energy
of "deformable" crystals collateral to vortex motion has
been associated with vortex inertia. Early discussions
dealt mostly with cubic Nb and its alloys. With highly
anisotropic superconductors taking the central stage,
much stronger FL-crystal interactions may have broader
implications and deserve careful treatment.

In this paper, we study in some detail the strain-
induced interaction of vortices in anisotropic materials
and show that the interaction is long range [similar to
the interaction of two-dimensional (2D) dipoles in the
1/R dependence on the intervortex distance B, but dif-
ferent from the latter in the angular behavior]. For a FL
with the vortex density B/Po (B is the magnetic induc-
tion and Po is the flux quantum), the macroscopic energy
density due to this interaction is shown to be of the order

Here A stands for the order-of-magnitude estimate of elas-
tic moduli (10i2 erg/cm ), AL, is the London penetration
depth, and BT,/Bp is the pressure derivative of the crit-
ical temperature (typically, 10 o K cm /erg). We note
that London energies for difFerent FL's in intermediate
fields, H, i « B « H, 2, differ by (Po/A&) with a small
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numerical factor 10; see Ref. 1. Direct compari-
son shows that in materials with a strong pressure de-
pendence of T and not very high critical temperature
(as NbSe2), the energy (1) may play a doininant role in
forming FL structures.

It is worth noting that for H i (& B && H 2, due to the
long-range interaction, the elastic energy is proportional
to B2, while the London energy is linear in B. Moreover,
in this domain, differences in London energies for dif-
ferent FL's are practically field independent. Therefore,
as far as the FL's are concerned, the elastic interactions
become more significant at greater inductions.

II. ELASTIC INTERACTION OF VORTICES

We begin with isotropic materials. Within standard
notation, the elastic energy density reads

E = Au«/2 + pu, (2)

V„—V,

V,

H, BH
4' Op

(4)

typically, g 10 ~—10
We take the vortex direction as z. The displacement

u = (u, u„, 0) is radial in the plane xy, i.e. , curlu =
0 or u = Vy, and u p

——y p,. the Greek subscripts
acquire only x and y values here and throughout the text.
The equilibriuin condition (3) takes the form Ay pp +
2py ~pp ——0 with the first integral y pp = V' y = const.
Boundary conditions, however, for the core interior and
for the S phase around are different. In the core center
u = 0, and we obtain

{n)un = pn&) u~p = '7n~np )

where r = (x, y). In the S phase, u, = 0 at infinity, and

where u, y is the strain tensor, and A, p are Lame coef-
ficients; summation over double indices is implied. The
stress tensor 0';g = BE/Bu, i, = Aullh;g + 2pu;g, and the
equilibrium condition Bo;A, /Bxi, = o;y i, = 0 is given by

~u&i, '+ 2pu'A;, A:
= 0.

Let us consider vortex nucleation prior to which the
superconductor has been strain &ee. We model the vor-
tex core as a normal (K) cylinder of radius (, the co-
herence length, surrounded by the superconducting (S)
phase with the normalized order parameter ~g~ = 1. Nu-
cleation of the normal core causes stress, since the N
phase has larger specific volume V„ than V, . The relative
volume change i, is related to the pressure dependence of
the condensation energy or of the thermodynamic critical
field H (see, e.g. , Ref. 13):

The strain energy of a vortex can now be estimated;
it is of the order (2$2A. The ratio of elastic energy as-
sociated with a vortex to the London line energy is of
the order +PA/H, its ( A/H2. Usually, this ratio is
small.

Let us now turn to the question of intervortex interac-
tion. For two parallel vortices, 1 and 2, the total strain
u p = u p + u p. Substitute this in Eq. (2) to obtain(i) (2)

E = Ei + E~ + Ei2, where Ei and E2 are the energy
densities of 1 and 2 taken separately, and

E]2 = Auppu + 2pu pu p
(i) (2) (i) (2)

is the interaction part.
For anisotropic materials,

E = Aiklmuikulm/2

and the equilibrium conditions are A;A, ~ u~ I, ——0 or
in terms of the displacement u: A;A, ~ u I, ~

——0. For12

vortices along z, indices m, k, l acquire only x, y values.
The displacement field u outside cores has the core

expansion as a source. To find u for a system of well-

separated vortices (r )) (), we consider cores as point
sources. Then, similar to the thermal expansion of
anisotropic bodies subject to point heat sources, one
has to add a term

g pu p) 8(r —r„) (10)

to the &ee-energy density for the sources at r . Here

g p is a 2D symmetric tensor, a characteristics of the
material in the plane perpendicular to the vortex axis.
The equilibrium conditions now read

Anpvpup, gu — gapBp ) ~(1 iv).

these relates p's to the coefficient ( of Eq. (4). To find
this relation, note that had the N core been "extracted"
&om the S environment, it would have expanded in a
stress free-situation from the actual radius ( to a (
whereas the "hole" in S would have contracted to (, ( (;
see Ref. 14. This means that u„(() = ( —(
whereas u, (() = (—(, = p, (. On the other hand, vr((2—
(, ) = 2gvr(, /3 (the area expansion factor is 2 of the
bulk coefIicient () or („—(, = ((/3. Hence one can
exclude auxiliary quantities ( and (, to obtain p„+p, =
g/3. The second equation for p's is provided by equating
stresses at the N and S sides of the core surface at r = (.
We then obtain

Cl C(A+ V)
3(A+2@) ' ' 3(A+2p)

(.)u, = ', u'p —— ' ih p ——x xpi;r2 ~ r2 ( r2 )
is introduced for convenience.

The constants p and p, are to be determined from the
boundary conditions at the core surface r = (. One of g = —2vr( g(A + p)/3. (12)

In the isotropic case g p
—— gb p and A p„

Ab ph„„+ p(b „hp„+ 6 „hp„). Solving Eq. (11) (by
Fourier transform) we obtain the correct isotropic result,
Eqs. (6) and (7), provided
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Thus q is proportional to the core area S = m(2 (see,
Ref. 15).

In an anisotropic situation, the coefficient ( becomes
a 3D tensor g';, = (). Besides, the core is no longer a
circle, and in general, T, and H depend on the direction
of the applied stress. For a given vortex direction z
within the crystal, g p transforms as a 2D tensor under
coordinate transformations in the plane xy which leave
the core area S unchanged. Therefore, to construct q p
we are left with 2D tensors („„and A p„. One can check
that the combination

g p= —S(„A p„

nents. This is the case for the hexagonal symmetry for
which the crystal is elastically isotropic in the ab plane.
The same is true for a "uniaxial body" isotropic in the
ab plane: irrespective of the vortex direction, zc is the
symmetry plane. For di6'erent crystallographic systems
one easily identifies situations (proliferating with increas-
ing symmetry) for which four moduli suffice (in the cubic
case, of course, this number is reduced to three). Thus,
the case of four 2D moduli covers perhaps the largest
number of situations of interest.

We now evaluate the strain-induced interaction be-
tween two parallel vortices for such a situation. The
energy density is

has a correct isotropic limit (12).
The equilibrium Eq. (11) can be solved in the Fourier

space following the general idea of Ref. 19:

G
—1 f

G p
——A „pk„k„,

f =ig pkp) exp( —ikr ),
(14)

1 2
A~p~g d—ru~pu~g + g~p u~p(r„),2

where G p is the elastic Green's function: u = G pfp.
The total energy is

+ = - (A»' + A2u„'„) + Asu u„y + 2A4u'Kx yy yy my &

~yyyy & ~&&yy &
and Ay+y are abbreviated to

A 1 A2 A3 and A4, respectively. Tensor G p is given by

G A = Gyy = %4k + A2k„,
G „A = —G „=—(As+ A4)k k„,
Gyya G A1 k + A4ky

4 = A4(A, k + A2k„) + (AiA2 —As —2A3A4)k~ky.

(20)

Since for a uniaxial crystal ( „=0, g p is diagonal with
eigenvalues g1, g2. The elastic interaction of two vortices
then reads

where u p is the strain caused by all vortices.
Let us evaluate now the interaction %12 of two vortices,

one at r = 0 and another at r = R:

Wi2 = A p„„d ru~ pl(r)u~ „l(r) + 2g pu~'pl(R),

where we make use of u &(R) = u &(0). In the Fourier(1) (2)

space

Xi2(R) =— d k;kRN
(2vr)2 Z ' (21)

A.
Xi2(R) = g(p),

where N: Iy k& Gyy + 'Q2 ky G&& 2/1 'Q2 k ky G&y ~ Th
integration over k is done evaluating residues of 4 in
the lower (for x ) 0) half-plane of the complex k; the
integral over ky is known. We obtain

Xi2(R) =— dk kR,
2

e' np-9-pGp-k-kp
27r 2

The relation A „„pGp~k„k„=b ~ [see Eq. (14)] and the
symmetry of A p„„with respect to n ++ P and p E-+ v
have been used.

Inverting G
&

of Eq. (14), we have in the isotropic case

1 ( A+@ k kp)
pk2 q A+2@ k2 )

Substitute this in (17) to see that Xi2 ——0 for any ff-
nite A'. Thus, there is no strain-induced interaction of
parallel vortices in isotropic materials (in the harmonic
approximation of elasticity; see Ref. 20).

In a coordinate IIrame with z along the vortex axis, the
2D tensor A p~g has a maximum of six independent com-
ponents: A«&& A~&~y& A&~yy& A&y~y& A&yyy& and Ayyyyo If
the vortex axis z happens to lie in one of the crystal sym-
metry planes, one can choose the intersect of this plane
with xy as, e.g. , the y axis; then all A p~g with an odd
number of z's turn zero, leaving four nonzero compo-

2

A2 As 2As A2

A4 AiA4 Ai
'

Ai
(23)

The angular dependence of %12 is given by a dimension-
less function:

g =g2 —gi,
(D2 ~ + 1)cos2p —1

[(Di2 2
—1)cos2p + 1]2

Di2 2A —(pDi 2 + 1) = 91P=
r/2

A12 ——

(24)

and A = (Ai+ p Aq —2Asp)/A4. Equations (23) and (24)
hold provided P —4Q ) 0, the condition to be checked
dealing with a particular material (in the isotropic case

where B = /2:2 + y2 and Ip = tan (y/x) give the posi-
tion of the second vortex (for the first at the origin). The
constant prefactor is



VORTEX-INDUCED STRAIN AND FLUX LATTICES IN. . . 15 347

P~ —4Q = 0). If this condition is not met, the solution
should be replaced by another one that will be discussed
elsewhere.

Thus, the strain-induced interaction of vortices is long
range: it changes as A, i.e., slow as compared to the
exponential decay of the London interaction. Clearly, the
angular behavior of the interaction, g(y), can be studied

only in one quadrant. One can see that fo Q(p)dp = 0.
Besides, the boundary values, Q(0) = A2/D2 —Ai/D, '
and g(~/2) = Ai —A2, are of the same sign or not, de-
pending on the constants involved. This means that g(p)
changes sign once or twice within the quadrant. Since g
determines the sign of interaction Xi2, the behavior of g
is physically relevant.

The potential Tq2 is reminiscent of the dipole-dipole
interaction in electrostatics: for two equal 2D dipoles dx,
Xz = d (2cos y —1)/R . This, however, turns zero only
once in a quadrant. The angular dependence of Tz2, on
the other hand, is sensitive to the relative values of the
elastic constants as well as to the vortex orientation in
a quite complicated way [as is evident from Eqs. (24)j
An example of this complexity is seen in Fig. 2, where
Wq2(x, y) for NbSe2 is plotted in the first quadrant of the
xy plane for vortices at 0 = 60 .

Given the intervortex interaction, we can evaluate its
part in the energy of a Hux-line lattice by summing up all
pairwise contributions. The macroscopic energy density
of elastic interaction can then be written as the interac-
tion of the vortex at the origin with all others, multiplied
by their number density:

3.0

2.0

(25)

positions R form a 2D lattice, rp are the correspond-
ing azimuthal angles, and the prime indicates that the
term m = n = 0 is skipped. Since all R „oc Po/B, we
have F oc (B/Po), the direct result of the long-range
interaction. The order-of-magnitude estimate of the en-
ergy (25) is given in Eq. (1). An alternative form of this
estimate is

F;„t A( (B/H, 2) . (26)

We note that the estimate F;„t, A( of Ref. 8, being
independent of the vortex density, cannot be correct.

The 2D sum g R „diverges logarithmically. Due to
cancellation caused by the angular function Q (the aver-
age of which is zero) the sum (25) converges. The result
for E;„t, however, depends on the shape of the summa-
tion domain chosen. This is a direct consequence of the
long-range dipole-type interaction in question. As in the
case of the dipole-dipole interaction in magnetic mate-
rials, the elastic interaction of vortices yields the shape-
dependent contribution to the total energy. Fortunately,
the difference in F;„t, for two different Fl 's is shape inde-
pendent since the contribution of large distances to the
sum (25) is sensitive oiily to the density of vortices rather
than to their arrangement. Hence, evaluating E~ —E~
we can choose any summation domain which provides for
the cancellation mentioned above. Having this in mind,
we take the domain of summation over m and. n so as
to assure the circular shape in the plane xy; then contri-
bution of large R's (where the sum can be replaced with
an integral) vanishes. In doing so we disregard possible
effects of sample surfaces, which may turn out to be con-
siderable: the convergence of the sum (25) up to three
significant digits is achieved when m, n reach 10 —10,
i.e, on macroscopic distances. The shape and surface ef-
fects of the long-range interaction in question call for a
separate consideration.

A. Flux lattice of NbSeq in tilted fields

1.0

0.0
0.0 1.0 2.0 3.0

We apply now the results obtained to the hexagonal
NbSe2. To address major features of FL's in this material
we consider it as "uniaxial, " so that the potential Tq2
developed above applies. For vortices along z at an angle
0 relative to the sixfold axis c, one has to find the 2D
moduli in the plane xy. The xyz frame is obtained &om
abc by rotation 0 about y = b; transforming A;k~ from
the crystal frame abc to xyz we have

FIG. 2. Strain induced interaction Tqq of vortices for
NbSe2. One vortex is placed at the origin, the second is at
(x, y). Vortices are tilted at 8 = 60' relative to the c axis.
Coordinates x, y, and z (perpendicular to the figure) are the
same as in Fig. 1. Contours Xiz(a, y) = const are shown in
the 6rst quadrant of the plane zy. The coordinates x and y
are in units (2C'o/~3B) ~; H = 5 kG. Straight lines corre-
spond to T&2 ——0; adjacent contours differ by ATzz ——10
erg/cm.

A3 A~yy

A4 A&y&y

Ciicos 8+ (2C]3 + 4C44)sin icos 0

++33S~n ~& ~2 = ~yyyy

Cg2cos 0 + Cg3sin g,
1—(Cii —Ci2)cos 8+ C44sin 0.2 ~ 2

2

(27)

The moduli C,~ (common notation for A;i, i in principal
axes) are estimated in Ref. 21 from the phonon-dispersion
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curves by employing certain theoretical models; we take
the average of the values thus obtained: Cqi ——1.47,
Ci2 ——0.38) C$3 —0 11, C33 —0 ~ 53) alid C44 —0.174 x
10i2 erg/cm .

Similarly, one obtains ( p.

(28)= ( bcos 0+ (,sin 0, („„=( b,

where (see Ref. 22)

H.'(0) BT.
4' T Op

H, (0) OT,
4mT Op b

(29) (B)

These energies are to be compared with the difference
in London energies E for the structures (A) and (B).
Although the London energy in high fields is given by a
logarithmically divergent sum over the reciprocal lattice,
the difference E~ —E~ is fast convergent. At T 5 K
(as in Ref, 4), the in-plane London penetration depth
A b —5000 A. , and we obtain E~ —E~ shown in Fig. 3
by the upper solid line. One sees that notwithstanding
the London preference for the structure (A), the elastic
interactions in NbSe2 win, resulting in the observed FL

and. H, (0) is the low-temperature limit of H, (T). To es-
timate g ~ and g» we use the T~ dependence on unidirec-
tional stress p, along the c axis in the lou stress limit:
BT,/Bp, = 5.3 x 10 K cms/erg. Combining this with
BT,/Bp 0.46 x 10 K cm /erg for the hydrostatic
compression, we estimate DT, /Bp b as —2.4 x 10 K
cm /erg. Using T, = 7.2 K, the low-temperature value
of H, 1.4 kG, and Eq. (13) we obtain the needed ('s
and g's.

With these input parameters, we are now able to eval-
uate the interaction energy of two FL's shown in Fig. 1.
The lattice vectors for the cases (A) and (B) given in
units of (2gp/~3B) ~ are:

a(") = ~( + ~/2), B(")= ~3~/2&;
B&~) =~a& /2, B(~&=( /2+ )/~.

Further, p = I' sin 0+ cos 0 and I' 3.1 for NbSe~.
The core area S = Pp/H~2(0) = 27r( bp for a uniaxial
material; ( b 80 A. . Doing the sum in Eq. (25) for
B = 5 kG we obtain F~(0) and F~(0). The energy F~(0)
is shown by the dashed line in Fig. 3; the lower solid
line shows the difference E~ —E~. Hence, the strain-
induced interaction prefers the FL (B), which is seen
experimentally.

B. Flux lattice of NbSeq for &
~~

c

Clearly, the elastic interaction described above cannot
be responsible for the locking of the FI in NbSe2 on
a certain crystal direction observed in sufficiently large
fields along the c axis: ' in this case, the 2D tensor A p&„
is isotropic and the strain-induced interaction is absent.

However, in a treatment based on the standard elas-
ticity we neglect the anharmonic terms in the en-
ergy expansion. The first such term is of the form
A

& &„u pu~gu~ . It can be shown that the six-

rank material tensor A~ ~ for a hexagonal crystal is not
isotropi c even for H

~~
c; Ref. 23. Since for the field paral-

lel to the sixfold crystal axis both London and harmonic
elastic interactions are degenerate with respect to differ-
ent orientations of hexagonal FL's, the eKect mentioned
may well be caused by anharmonic strains induced by
vortices.

There is no point in detailed derivation of these extra
interactions because we have no data on actual values of
A~ ~. Still, the anharmonic contribution to the energy can
be estimated by observing that Eq. (1) can be written as
E;„t AU, where U is an estimate for the strain within
the FL cell. In other words, U is given by the expression
in parentheses of Eq. (1). Then,

0.1
(16 A T, Bpp

(31)

0.0E

U)
Q)

Since E,-„~ oc B, in suKciently small Gelds the anhar-
monic eQ'ects should give way to whatever weak pinning
that is always present even in "perfect" crystals.

The latter is estimated for a weak collective pinning
as

H. ('o,pj.&

Al, ('I' q jp y
(32)

Q) 0.2
LU

0.0 30.0

Angle (degrees)

60.0 90.0

FIG. 3. The energy density F& of the structure (B) as a
function of the angle 9 between the Geld direction and the c
axis of NbSe2 (dashed line). The solid lines show the difFer-
ences of the elastic (F& —Pz) and London (Eis —Ez) energy
densities.

Here, np —— gPp/B is the FL cell size, and
cH, /3~6mAI. = 3 x 10 A/cm is the depairing current
density. The critical current density j, for the crystals
of NbSe2 studied is field dependent: j, j~pBp/B with
j,p = 40 A/cm2 and Bp = 2 kG. Hence, the pinning
energy increases with the falling field: E& oc R

Equating E~ ~ to E„, we obtain a crude estimate of
the crossover Geld B under which the pinning should
dominate:
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A~I, 16~ Tc gcoBO
5 2 2

P(a) P2 (Pl/2g T j )

With the numbers available and taking A~ ~ A 10
erg/cms, we estimate B, ~ 1000 G. This is not far from
the experimental estimate of 100 G for this Geld.

III. DISCUSSION

don penetration depth, Al oc N(0), with the anisotropic
density of states N(k~). This procedure is hard to jus-
tify, however, because only quantities integrated over the
Fermi surface, such as N(0), enter BCS-type formulas for
the penetration depth (see, e.g. , Ref. 27).

One can roughly estimate the role of higher-order
derivatives at arbitrary temperatures by examining the
structure of the general nonlocal BCS relation between
the current j and the vector potential A in the Fourier
space:

There is yet another observation which may possibly
be explained by anharmonic interactions: increasing the
tilt angle 0 from B

~~
c, one sees the structure (B) being

gradually established with increasing 0.2 Qualitatively,
this should be so: although the harmonic interactions
are absent at 0 = 0, they take over the anharmonic terms
when the angle increases. Actual evaluation of this in-
terplay should involve more than just comparison of two
given FL structures; one has to find the ground-state
structure in the presence of both the London and the full
elastic interactions. This calculation does not seem fea-
sible: suKce it to mention that the moduli A~ ~ are not
known.

Among other materials for which application of the in-
teraction potential discussed above is of interest, we point
to YBa2Cu&Oq. As is seen in Eq. (1), high T, suppresses
the elastic interactions, still the stress dependence of T,
in this material is strong and highly anisotropic. The
potential developed here may not apply, however, be-
cause of a peculiar set of elastic constants which yields
a negative parameter P —4Q [see the discussion after Eq.
(24)j. We will present the proper potential elsewhere.

One should mention that the relative role of vortex-
induced strain and of other possible contributions to the
anisotropic intervortex interaction were the subject of in-
tensive discussion in the early 1970's. The anisotropy of
the gap 4 has been removed &om the list of major fac-
tors for the coupling between FL's and the crystal, since
it was established experimentally that the FLL in Nb
crystals is stable with respect to the increasing impurity
concentration that smears out the gap anisotropy (see
the review by Schelten in Ref. 26 and references therein).

Among other factors, a major role belongs to nonlo-
cal efFects in superconductors with anisotropic Fermi sur-
faces, the question discussed by Takanaka. He derived
terms of higher order in gradients of the order parameter
in the Ginzburg-Landau energy functional, which provide
corrections to GL equations beyond the standard "mass-
tensor" approximation. Although Takanaka's formal-
ism applies only near T or in the immediate vicinity
of H 2 (while the decoration or neutron-scattering tech-
niques imply H « H 2), he showed that some FL's seen
in cubic crystals correlate with the model predictions.

A quantitative comparison of Takanaka's results with
those presented here is dificult because they are derived
for diferent Geld domains. In fact, Takanaka dismissed
any role for the elastic interactions referring to the pa-
per by Roger et al. ,

2 who incorporated the Fermi sur-
face anisotropies simply by replacing the density of states
2V(0) at the Fermi level in the expression for the Lon-

4~e'K(0)TA' .P+ 6/2~
P2

~i~j
(p + 5/2») ' + j5» . k/2) ' )

j,(k) =—

(34)

Here a) is the Matsubara frequency, P2 = Q2 + &2~2, v
is the Fermi velocity, 7' is the scattering time, and (. . .)
stands for the average over the Fermi surface. Equation
(34) is the anisotropic version of the BCS result which
holds in small fields. One can obtain this equation start-
ing with Eilenberger equations and looking for solutions
which are small perturbations to the zero-Geld case.

Note that in the clean limit (7 —+ oo), the term con-
taining v . k is of the order Qk2 relative to the first one
in the denominator of Eq. (34) where (o ——((T = 0).
This is the term responsible for nonlocal corrections to
the current (being converted to the real space, it gives
rise to higher derivatives of A in the current-Geld rela-
tion). The major k's contributing to the FL energy are
of the order a = gB/r/io, the inverse unit cell size.
Since in the field domain of our interest ( /a « 1, one
can expand Eq. (34) in this small parameter and obtain
corrections to the London current. Then one estimates
corrections to the standard London FL energy density
I"I. H, iB/87r as being of the order

H, iBg H, i(T)B
8' a2 16vrz H, 2 (0)

with a numerical factor of about 0.1 since averages over
the Fermi surface (such as (v;vt, vrv ) in the first correc-
tion term) decrease with the number of v's being aver-
aged.

To estimate relative contributions of the elastic in-
teractions and of the "beyond-London" currents to the
FL energies, this quantity is to be compared with the
elastic energy (1). We then obtain approximately the
same energy due to the nonlocal terms as the elastic
energy: the ratio of the latter to the Grst in NbSe2- 10 'AH. ,H.,(B„T./T-. )' - 1 at T -+ 0.

We further observe that for k ~ 0 (e.g. , at large
distances from the vortex core) and in the dirty limit
(w ~ 0) the term with v k in the denominator of Eq. (34)
can be disregarded; then j; oc (v;vt, )A/„which is just
the anisotropic London equation (the latter is commonly
written27 in terms of the "mass tensor" m,.k oc (v, vt, )).
In other words, in the dirty limit, the current-field rela-
tion is local, and there are no corrections from the mi-
croscopic theory to the London description beyond the
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standard mass tensor approach. One can expect that in
materials with a short mean-free path, our estimate (35)
will be further suppressed. As we have mentioned, the
same FL-crystal correlations in the cubic Nb are observed
in dirty crystals as well as in clean. This suggests that
in these crystals, the nonlocal corrections could not be
a major factor in forming FL's. Similarly, for a "moder-
ately clean" Nbsez, the estimate (35) should be reduced
by impurities and by raising T's. This would lean the
balance in favor of elastic interactions as the most im-
portant. A quantitative comparison, however, is still to
be done.

Concluding, we have shown that the vortex-induced
strain in anisotropic superconductors results in extra in-
tervortex interaction, which may well compete with Lon-
don energies in determining the equilibrium flux-line ar-

rangement. This interaction is long range (it goes as
R 2) and has an angular dependence sensitive to details
of elastic properties of a particular crystal, to the stress
dependence of T, and to the vortex orientation. Most
of the experimental information on flux lattices in NbSe2
can be understood if this interaction is taken into ac-
count.

ACKNOWLEDC MENTS

The authors thank D. Bishop, P. Gammel, H. Hess, J.
Clem, and A. Khachaturyan for informative and useful
discussions. The work was supported by the OfBce of
Basic Energy Sciences of the DOE and in part by NSF
Grants No. DMR9307581 and PHY89-04035.

L. J. Campbell, M. M. Doria, and V. G. Kogan, Phys. Rev.
B 38, 2439 (1988).
H. F. Hess, C. A. Murray, and J. V. Waszzak, Phys. Rev.
Lett. 69, 2138 (1992); Phys. Rev. B 50, 16528 (1994).
C. A. Bolle et al. , Phys. Rev. Lett. 71, 4039 (1993).
P. L. Gammel et a/. , Phys. Rev. Lett. 72, 278 (1994).
At 8 = 0, both A and B structures reduce to hexagons ro-
tated with respect to each other and belonging to a contin-
uum of hexagons of the same energy. The degeneracy exists
also at 8 = 90: A and B belong to a continuum of now
difFerent FL's of the same energy, the question discussed
in Ref. 1 within the London model and by K. G. Petzinger
and G. A. Warren in the Ginzburg-Landau domain [Phys.
Rev. B 42, 2023 (1990)].
E. G. Kramer and C. L. Bauer, Philos. Mag. 15, 1189
(1967).
H. Kronmuller and R. Schmucker, Phys. Status Solidi B
57, 667 (1973); 74, 261 (1976).
H. Ullmaier, R. Zeller, and P. H. Dederichs, Phys. Lett.
44A, 331 (1973).
B. Obst, Phys. Status Solidi B 45, 467 (1971);J. Schelten,
H. Ullmaier, and W. Schmatz, ibid. 48, 649 (1971); U.
Essmann, Physica 55, 83 (1971).
A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199
(1972).
E. Simanek, Phys. Lett. A 154, 309 (1991); M. Coff'ey,

Phys. Rev. B 49, 9774 (1994); J. Low Temp. Phys. 96, 81
(1994); 97, 181 (1994).
L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Pergamon, New York, 1986).
D. Shoenberg, Superconductivity (Cambridge University
Press, Cambridge, 1952), p. 74; L. D. Landau and E. M.
Lifshitz, Electrodynamics of Continuous Media (Pergamon,
New Y'ork, 1984), Chap. 6.
Our procedure is similar to that for nucleation of a new
phase during phase transformations in crystals: A. G.
Khachaturyan, Theory of Structural Transformations in
Solids (Wiley, New Y'ork, 1983).
For AL, )) (, it is better to define the core area as S =

Po/H, q
——2vrg so that the core "radius" is (v 2; see J. R.

Clem, J. Low Temp. Phys. 18, 427 (1975).
M. A. Obolenskii et al. , Fiz. Nizk. Temp. 15, 984 (1989)
[Sov. J. Low Temp. Phys. 15, 544 (1989)].
T. F. Smith, J. Low Temp. Phys. 6, 171 (1972); T. Sam-
bongi, ibid. 18, 139 (1975).
U. Welp et al. , Phys. Rev. Lett. 69, 2130 (1992).
I. M. Lifshitz and L. N. Rosenzveig, Zh. Eksp. Teor. Fiz.
17, 783 (1947).
In a more realistic model of the vortex core, without a sharp
boundary between the A and S phases, this interaction
exists even in the isotropic case. However, it is short range
(of the order () and is practically absent at distances of
interest here.
J. L. Feldman, Phys. Rev. B 25, 7132 (1982).
Estimating dH, (T)/dp = [dH (T)/dT, ](dT, /dp), one can
use H (T) = H, (0)(1 —T /T, ) and dH, (0) /dT
H, (0)/T . Then, dH (T)/dT, —[H (0)/T, ]f(t), where f
is a slow function of the reduced temperature: f(0) = 1,
f(1) = 2.
In the isotropic case the six-rank tensor A has three inde-
pendent components (Ref. 12). For B

~~
c of a hexagonal

crystal, this number is 6 (use the method of Ref. 12).
G. Blatter et al. , Rev. Mod. Phys. 66, 1125 (1994); Ch. 4.
In our case the "bundle size" A, ) AL, I'.
E. Zouboulis et aL, Physica C 190, 329 (1992); Ming Lei
et al. , Phys. Rev. B 47, 6154 (1993).
Anisotropy Effects in Superconductors, edited by H. Weber
(Plenum, New York, 1977).
L. P. Gor'kov and T. K. Melik-Barkhudarov, Zh. Eksp.
Teor. Fiz. 45, 1493 (1963) [Sov. Phys. JETP 18, 1031
(1964)]; C. Caroli, P. G. deGennes, and J. Matricon, Phys.
Kondens. Materie 1, 176 (1963).
M. Roger, R. Kahn, and J. M. Delrieu, Phys. Lett. 50A,
291 (1974).
J. Bardin, L. N. Cooper, and J. R. SchriefFer, Phys. Rev.
108, 1175 (1957); E. M. Lifshitz and L. P. Pitaevskii, Sta-
tistical Physics (Pergamon, New York, 1980), Pt. 2.


