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Gap-function anisotropy and collective modes in a bilayer superconductor
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We study the gap-function anisotropy and collective-mode spectrum (~ ( 2A) of the Anderson-
Chakravarty model for high-T, oxides based on Cooper-pair tunneling in a bilayer (with strength
Tq). For both s-wave and d-wave pairing in the layers, the shape of the gap around the Fermi surface
is strongly dependent on TJ. Besides the usual Anderson-Bogoliubov phase and Littlewood-Varma
amplitude modes, we find branches (optical phononlike modes) involving fluctuations of the relative
phase and amplitude of the order parameters of the two layers. These modes are the dynamic
signature of the Cooper-pair tunneling model since their energy and damping depends critically on
the relative magnitudes of the Cooper-pair tunneling strength (Tg) and the pairing interaction (g),
but not significantly on the symmetry of the pairing. The generalization to a trilayer system (which
can arise in Bi, Tl, and Hg copper oxides) is briefiy discussed.

I. INTRODUCTION

Recently Anderson has introduced a mechanism in
which Cooper-pair tunneling between nearby Cu02
sheets leads to a strong enhancement of T in the oxide
superconductors. Assuming 8-wave pairing, this bilayer
pair tunneling model has been shown by Anderson and
co-workers to give rise to an anisotropic 8-wave gap
function Lp.

In this paper, we use a slightly generalized form to
study the gap-function anisotropy and collective oscil-
lations of the bilayer order parameter for both 8-wave
and d-wave pairing in the layers. As expected, the shape
of the gap function on the Fermi surface is strongly de-
pendent on the magnitude of TJ. If the pair tunnel-
ing strength TJ is fairly large, the gap is very small in
a large region around d-wave node positions p& ——+p
[the F-A(Y) lines], compared to the pure d-wave gap
without pair tunneling (TJ = 0). Experiments to look
for this using high-resolution angular-resolved photoe-
mission spectroscopy in cuprates would be of interest.
Perhaps of greatest interest, we find collective modes in-
volving out-of-phase fIuctuations in the relative phase
and amplitude of the order parameters in the two difI'er-

ent layers. The energy and damping of these out-of-phase
modes depends critically on whether the pairing (g) in a
given sheet is larger or smaller than the Cooper-pair tun-
neling strength (TJ), but not on the symmetry assumed
for the pairing. These modes are thus the characteristic
dynamic signature of the Cooper-pair tunneling model
discussed in Refs. 1—4. A Brief Report of these results
has already been published for the case of 8-wave pairing
and isotropic Josephson coupling TJ in a bilayer.

In the present paper, we do not discuss the correctness
of the Cooper-pair (Josephson) tunneling model for high-
T layered materials. As in Ref. 6, we work within this
model and use it to discuss the gap-function anisotropy
and order-parameter fIuctuations in a superconducting
bilayer as a function of TJ.

In Sec. II, we discuss the gap-function anisotropy in
a superconducting bilayer with Cooper-pair tunneling,
assuming either 8-wave or d-wave pairing in the lay-
ers. In Sec. III, we develop the formalism to deal with
time-dependent fields and work out the collective-mode
branches. These appear as poles of various correlation
functions involving the fluctuations of density, as well as
phase and amplitude of the order parameters. In Sec. IV,
the dispersion relation and damping of all the in-phase
and out-of-phase collective modes are studied. In Sec. V,
we summarize our main conclusions. In the Appendix,
we discuss the analogous results for collective modes in
a trilayer system. For simplicity, in this paper we only
treat the T = 0 case (for 6nite temperature, calculations
similar to those given in Ref. 7 can be performed).

II. FORMALISM AND GAP ANISOTROPY

The total efI'ective Hamiltonian K = H —pN of our
coupled bilayer model is

~0 + +11 + V12

where the noninteracting part is

Ko ——) cpa, a, p + ) t(p)at a,. ~ . (2)
p ~i/2

Here a, z and a,. are the usual destruction and cre-
ation operators, respectively, for electrons on layer i and
the layer kinetic energy (measured with respect to Fermi
energy) is e& ——p /2m —p. The intralayer interactions
(pairing and Coulomb) are denoted by Vii and the in-
terlayer interactions by V12. Following the arguments of
Refs. 1—4, we omit single-particle hopping between layers
due to the second term in (2), although it will give rise
to pair tunneling in higher order (see below).

Within the time-dependent Hartree-Fock-Gor'kov
(mean-field) approximation for a perturbed system, the
intralayer two-particle interaction V11 is described by '"
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1
hVii ——— ) 2v2D(q)(a; + a; p ~) a. . .ai pi ~~ 2gz(p, p )(a,. ai p+q ~)G Q;

~ P ) ( i,p o i —p+g c—r) i, —p'+9, —~ i,p', ~ + g(P& P ) (oi, p+—q, cri—ii,p, cr)i' p
t t

where vqD(q) = 2vre /q is the Coulomb interaction be-
tween electrons in a given layer, gz (p, p') is a short-range
interaction in the zero-sound (particle-hole) channel, and

g(p, p ) is the pairing interaction in the Cooper (particle-
particle) channel. The latter is responsible for the super-
conductivity in a layer. We will approximate the short-
range particle-hole interaction gz(p, p') as a constant gz
for simplicity. For p, p' close to the Fermi momentum,
the pairing interaction in (3) is assumed to have the sep-
arable form (with g ) 0)

range Coulomb interaction in the self-consistent Hartree
term and the short-range interactions in the exchange or
I'ock terms. For a more detailed discussion, see Ref. 7.

In an analogous way, the time-dependent mean-field
approximation for interlayer interaction V&2 in the p-h
channel is given by

bVi2" ——— ) 2v~(q)(a, . p+~ ~a, p ~)

g(p, p') = —~f(p)f(p') (4)
Xat (6)

where we have defined the (real) function

I for s-wavepairing,
cos(2$) for d 2 &2-wavepairing.

Here P is the direction of p on the two-dimensional (2D)
Fermi surface. The average (A) in (3) is determined self-
consistently by the full mean-field-approximation (MFA)
Hamiltonian [see (23)]. In (3), we only include the long-

where we only include the interlayer Coulomb
interaction v~(q) = v2D(q)e " (where d is the distance
between layers) in the Hartree term. The contribution
from the exchange terms are ignored due to the absence
of single-quasiparticle tunneling ((a, a~) = 0) as well ast

the absence of Cooper pairs formed by pairing of elec-
trons in difFerent layers ((a, a.) = (a;az) = 0). Finally,
the mean-field approximation for the interlayer interac-
tion V&2 in the p-p channel is given by

1
bVi~" = —— ) Tg(q, p, p )(u; p ii; p+~ )i', p'+g —oiij,p,.—

Ix»a
cr,igj

+ &(q»p )(ai,—p+a, — i,p, )u' ' — '+

where only the Josephson coupling for the Cooper-pair
tunneling contributes. The physical content of (7) re-
duces to the well-known Lawrence-Doniach theory of
layered superconductors in the Ginzburg-Landau region.

While Chakravarty and Anderson argue that the
quasiparticle momentum should be conserved during tun-
neling (i.e. , p = p ) in (7), we treat a generalized version
of the Cooper-pair interlayer interaction in which only
the center-of-mass momentum of the Cooper pair (q) is
conserved. We allow the quasiparticle momentum to be
spread out just as in the intralayer pairing interaction
[see the last two terms in (3)]. As in Ref. 6, we use the
separable form [with Tg(q) ) 0]

T~(q, p, p') = T~(q)t(p)t(p') (8)

for quasiparticle momenta p and p' close to the Fermi
surface (some sort of BCS cutoff is needed, for the usual
reasons). In (8), t(p) is the interlayer single-particle tun-
neling amplitude introduced in (2), normalized with a
maximum value of unity. io Our ansatz (8) reduces to
the expression of Anderson and co-workers when one

t(p) = cos (2q )sgn[f (p)] (l.O)

in our calculations, where cos (2P) corresponds to the
continuum limit of [cos(p a) —cos(p„a)] . The factor
sgn[f(p)] in t(p) is redundant for s-wave pairing case
(since f = I) but is crucial for the d-wave pairing case
where f = cos(2$) can change sign. This factor sgn[f (p)]
ensures that the Cooper pairs involved in (7) have the
same symmetry as those in (3). This in turn guarantees
that the amplitude of the resulting gap function ~Ap ~

will
have the symmetry of the Cu02 layer electronic band
structure.

The generalized time-dependent mean-field approxi-
mation summarized by (3)—(7) allows one to give a com-
plete description of the Cooper-pair dynamics (see also

imposes their stronger constraint that the quasiparticle
momentum should be conserved in (7),

T&(q = p p ) = T~(q = )[t(p)] ~p, p'

Following Refs. 2—4, we use the specific form
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Ref. 7). These equations can be used to find the self-
consistent BCS gap equation (we recall that the order
parameter describes the static mean field arising from
pairs with center-of-mass momentum q = 0)

—).g(p, p)(a;, —,,—.a;,, .)

The self-consistency of the gap function (13)—(16) re-
quires that

(1 gf20)(1 TJf02) —gTJfii —1 —gf2o —TJfo2 = 0,

(17)

where we have defined

+) Tz(q =0 p p')(a, p, asap, ).
P

~c

ft. —= ) .V(p)]'lt(p)]" ~p(T) (18)

The indices i and j in (ll) (with i g j) are redundant
since the anomalous pair average in the both layers must
be identical by symmetry, with

(ai —p —~ai p &):(a2 —p — a2 p ~):Ap» (T) (12)

where»(T) = (1/2E) tanh(PE/2), P = 1/k~T, and the

BCS quasiparticle spectrum is Ep = ep2 + ~b,p ~2. Using

(4) and (8) in (11), we find

In the second line in (17), we make use of the fact that
to a good approximation for the BCS weak-coupling
limit, fo2f2p —fii —0. The gap function Ap enters
through Ep in»(T). As an example, when one assumes
Tg(q, p, p') = Tg [i.e. , t(p) = 1] and s-wave pairing [i.e. ,

f(p) = 1], choosing the same cutoff frequency &u, for g
and TJ allows one to trivially solve (17) to obtain the
expected result

( )= ( )f()+ ( )t() 1

N(0)(g + Tg)
(1S)

where we have self-consistently defined

&o(T) —= g).&pf(p)»(T)

Ai(T) —= Tg ) Apt(p)»(T), (14)

where the 2D density of states at the Fermi surface is
N(0) = m/vr. It is clear that T, is enhanced drastically
if TJ is large compared to g.

The gap functions (13) on the Fermi surface (at T = 0)
can be written in more explicit forms which bring out the
physics: for s-wave pairing,

Ep ——Ao + Ai cos (2P),
and Tg = Tg(q = 0). One should, in general, use a
difFerent Fermi surface cutofF ~, for g and TJ.

Inserting (13) into (14), one finds

and for d-wave pairing,

Py

Ao(T) =

~c

»i(T) ).t(p) f(p)»(T)
P

~c
1 —g ).lf (p)]'»(T)

P

(15) I
P„

and 6, =0
1

T &o(T) ).t(p)f(p)& (T)

Ai(T) =
1 —T~ ) .lt(p)l'»(T)

(16)

Py Py

Since t(p) is defined in (10) to have the same sign as f (p),
and g and TJ are positive, the only consistent solutions
of (15) and (16) are such that b.o and Ai have the same
sign (with our sign convention, we have b,o, b, i & 0).
Moreover, one can see from the definition of (14) that
in a limited sense, Lo g and Lq TJ. While there
exists additional solutions of (15) and (16) with different
signs for Lo and Lz, these solutions are unphysical since
one can show they involve discontinuities of these gap
functions on the Fermi surface. The anisotropic features
of the gap function given by (11)—(16) are qualitatively
quite similar to the one discussed in Ref. 2 based on (S).

~Px

5,1=36,o 61 =206,
O

FIG. 1. Sketch of the order parameter Ap (black shaded
area) as given by (20), for a superconducting bilayer with
Cooper-pair tunneling and 8-wave pairing on the layer. The
maximum of the amplitude for the gap function is taken to
be the same for all values of Ao and D1.
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Py Py with the zth layer:

C i,q, a. =

1

~ Z. a'p a', *p+~,
Pi~

~ ) .f(p)(a,'. ..a,', ,
P

ai, —p+g, —~ai, p, n) 1

f(p)(;,,'
p

Py
JE

Py

+ *, p+—~, ~a;,p, ~),

C",~,-= ~) t(p)(a, ,,.a;, .. .'
P

ai, —p+ci, crai, p—,a) &

0 6) =206

A, ~ = ) t(p)(at a,.
P

+ai, —p+~, —chai, p, a. ) ~

FIG. 2. Sketch for Ap as given by (21), for d wave la-yer

pairing. See Fig. 1.

= Ap cos(2$) + Ai cos (2$)sgn[cos(2$)]. (21)

For a given layer, C & and 4& represent the phase fluctu-
ations, while A~ and Az represent the amplitude fluctu-
ations and pz is the usual density fluctuation. In terms
of these operators, the mean-field approximation (3)—(7)
(hV2 ——bVii + hVi2) for the efFect of the two-particle in-
teractions can be written as '

In Figs. 1 and 2, we plot 4& for 8-wave and d-wave in-
tralayer pairing by varying the relative size of 40 and Lz.
For convenience of illustration, the maximum of the gap
function is taken to be the saxne in all cases. Our main
interest here is the relative variation of the gap function
over different regions of the Fermi surface, which we take
to be circular. We note in both the 8-wave and d-wave
pairing cases, the variation of the gap around the Fermi
surface is strongly dependent on the relative size of Ap
and Ai (or, equivalently, the relative size of g and Tg).
In particular, the gap is seen to be very small in a fairly
large region around d-wave node positions p„= +p [the
I-X(Y) lines] when Ai )& Ap (or when the pair tun-
neling strength Tg is fairly large), as compared to the
d-wave gap without the pair tunneling effect (TJ = 0).
This behavior is a characteristic feature of strong pair
tunneling and could be used as an experimental test of
the latter.

III. DERIVATION QF RESPONSE FUNCTIONS

As discussed in Ref. 6, in discussing collective modes,
it is useful to define the following operators associated

&Vz = ). 2v2D(q)+gz (p,' )p*, +2v~(q)(p,' )p, ,

—g 4~ 4, ~+ A~ A, ~

—Tz)g)((kt )k, ,~+ (At )A, ~), (23

where we assume that the spin up and spin down give
the same contribution.

A perturbing Hamiltonian be can be expressed in
terms of the operators in (22) as

h Vi ——) [h((q, (u) p, ~ + brl(q, ~)C; ~ +

by*�

(q, (u) A; ~
q,i

+br'�

(q, cu) 4, ~ + Srl* (q, (u) A; ~], (24)

where the external perturbation h( couples into the den-
sity operators p, z, the symmetry-breaking field bg cou-
ples into 4, z, etc. Using linear response theory to cal-
culate the effect of hVi in (24), in conjunction with a
mean-field approximation for the two-particle interac-
tion in (23) appropriate to a bilayer superconductor with
Josephson tunneling, we obtain"

) . Xo,p, ~C + Xo,e, ~rl + Xo,~, ~@* + Xo,.g, ~6+ Xo, A-, ~rl*

) (yo (b(+ [2v2D(q) + gz]8p, + 2v~(q)bp, ) + yo c (SrI —g84', ) + yo. ~. (heal*
—gSA, )

+go @ [Srj —TJ (q) 84, ] + y - [Srl* —Tg (q) h A, ]),
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where the various response functions in (25) are defined
in terms of the ten operators (0, P) in (22) for given
values of q and o,

x = x' —x'Vx
= (2'+ x V) (27)

xone (& '"-) =— *"- (T-O ( )P,'(o)) (26)

We drop the spin label 0. in 4;, A; and 4, , A; for sim-
plicity.

One has to solve a 10 x 10 random-phase-
approximation-like matrix equation which summarizes
the above coupled equations (25). These can be rep-
resented schematically by

det(Z'+ x V) = 0.

A detailed calculation gives

(28)

where 2 is the 10 x 10 unit matrix and the matrix ele-
ments X, with r, s = (1, ..., 10) = (pi, z, ..., Az z), repre-
sent the response functions for noninteracting BCS quasi-
particles. The general structure of (27) shows that the
complete collective mode spectrum of the system will be
given by the zeros of the secular determinant, namely,

( App
0

—2c1o
0
0
0

—2co1
0
0
o

0
oo
0

—2c10
0
0
0

—2co1
0
0

—2c1o
0

—B2o
0
0
0

—B
0
0
0

0
—2c1p

0
—B2o

0
0
0
B11
0
0

0
0
0
0

—&2O
0
0
0
+11
0

0
0
0
0
0

—&2O
0
0
0

—2cp1
0

0
0
0

—Bo2
0
0
0

0
—2co1

0

0
0
0

—Bo2
0
0

0
0
0
0
+11
0
0
0

—&O2
0

0
0
0
0

0
0
0
&p2 j-

(29)

where we have defined (l, k = 0, 1, 2) (Refs. 6 and 14)

Bgi, (g, iA„) =

Agi, (q, iA„) = dp
27r 2

dp
(2vr) 2

dp
Cgi, (q, iO„) =

27t. 2

dp
cgA, (q, iA„) = 2' 2

[f(p) [t(p)

~( )] t( )

f(p) t(p)]

f(p) t(p)
1

(iO„)' —(E+ E')'

k E + E' EE' —~e' + A~ L~+
2EE' ('n„)2 —(E+ E~)2 '

I E + E' (EE'+ ee'—+ ApAp+~)
2EE' (iA„)2 —(E+ E')2

i E + E' (EE' + ee' ——ApAp+~)
2EE' (iA„)' —(E + E')

A;
—iO„L~

2E (3o)

Here iO is the usual Bose Matsubara frequency, E = E&, E':—Ez+z, and e = e&, e' = e&+z. The corresponding
interaction matrix V in (27) is found to be

( —2vaD —gz
—2v~

0
0
0
0
0
0
0

—2v~
—2V2D gg

0
0
0
0
0
0
0
0

o 0 o o o o o 0)
0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0
0 g 0 0 0 0 0 0
0 0 g 0 0 0 0 0
0 0 0 g 0 0 0 0
0 0 0 0 0 TJ 0 0
0 0 0 0 TJ 0 0 0
0 0 0 0 0 0 0 Tg
0 0 0 0 0 0 TJ 0)

Using (29) and (31) in (27), one can show that the determinant of the denoininator factorizes,

det(X+ x V) = D+D D+D',

where we have defined

(32)

D~ = 1 —(2v2D + 2v~ + gz)App (1 —gB2p) (1 g TgBp2) g gTgBii

+4 2v2D + 2vJ + gz gcip (1 W TJBp2) + TJcpi (1 —gB2p) + 2gTzcipcpiBii
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D~ = 1 —gC2p 1 + TJCp2 g gTpC&z. (34)

This means that there are four possible collective-mode branches in a superconducting bilayer which includes interlayer
Cooper-pair tunneling, given by the solutions of ReDy(q, w) = 0 and ReD+(q, o2) = 0. To gain more insight into
these collective-mode branches, we consider the response functions for the simple case of isotropic TJ and s-wave
pairing [this means f (p) = 1 and t(p) = 1 in (30)]. In this case, 4 = 4 and A = A and all x~g for z = A, B,C, c and
l, A: = 0, 1, 2 reduce to xpp = xp. The functions D~ and D+ in (33) and (34) then simplify to the results quoted in
Ref. 6,

Dv(q, 4D„)—:1 —(2vov A 2vo +gv)Ao 2 —(2 A To)22o +4(2vov A 2vo +gv) (2+To)oo,

D'v(oL40„) = 1 —
(g +To)Do.

(35)

Solving (27), we find the following nonvanishing correlation functions:

[1 —(2v2D + gz)E ]E+[1—(g —Tg)Bp][1 —(g + Tg)Bp] + 4TJcp
~P1P1 ~P2P2 D+D

2v~ E E+ [1 —(g —Tg) Bp] [1 —(g + Tg)Bp] —4Tgcp

D+D~P1P2 ~P2P1

&Pi@'1 = &P2@2 &@'1P1 = &+2P2

cp(1 —(2v2D + gz)Ao —gBo + [(2v2D + gz)g + 2v&Tz](AoBo + 4cp))
D+D

~P1 @2 ~P2 @1 ~@'2P1 ~+1P2

cp(2v~Ap + TgBp —[(2v2D + gz)TJ + 2v~g] (ApBp + 4cp) )
D+D

+414'2 —+4241
TJF F+ [1 —(2v2D —2vj + gz) Ao] [1 —(2v2D + 2vz + gz) Ao] —8v J cp

D+D

~@1@1 . ~@2+2

[1 —gF ]F+[1 —(2v2D —2v~ + gz) Ap] [1 —(2v2D + 2v~ + gz) Ap] + 8v~co
D+D

QA1 A1 —+%2A2

PA1 A2 —PA.2 A1

Cp(1 —gCp)
D' D'

TJCp
DI Dl

where we have defined

E~ =Ap—

F~ =Bp—

4(g + Tg)cp
1 —(g + Tg)Bp

'

4(2v2D + 2v~ + gz)cp
1 —(2v2D + 2v~ + gz)Ap

In the usual way with imaginary frequency Green's func-
tions, we analytically continue iA„ to the real frequency
axis u+ i0+.

We note the following important features exhibited by
the response functions in (37). One finds that y~, ~ (q, o2),
yg, , @.(q, or), and y~, c, . (q, w) (fori, j = 1, 2) all have poles
when D+ ——0 and D = 0. This shows that the zeros
of ReD~ given by (33) and (35) correspond to collective
modes associated with Buctuations of the charge density
as well as the phase of the Cooper-pair order parame-
ter. Moreover, these are coupled to each other and are
strongly modified by the long-range intralayer v2D and in-
terlayer v~ Coulomb interaction [as shown explicitly by
(33) and (35)]. We refer to these two zeros of ReD~ ——0

I

as phase modes I and II. In contrast, the response func-
tions y~, ~. (q, w) (for i,j = 1, 2) involving the amplitude
operators only have poles corresponding to D+ ——0 and
D' = 0. This shows that the zeros of ReD+ given by
(34) and (36) correspond to collective modes associated
with Cooper-pair ampjtitude Quctuations. These two am-
plitude modes are not coupled to the charge or phase
Quctuations and are unaffected by the Coulomb interac-
tion [as shown explicitly by (34) and (36)]. We refer to
these as amplitude modes I and II.

We remark that even in the absence of interlayer pair-
ing tunneling (Tg = 0), the interlayer Coulomb interac-
tion v~(q) in (35) renormalizes the phase modes of the
individual layers (see also Appendix A of Ref. 14).

IV. COLLECTIVE-MODE DISPERSION
RELATIONS AND DAMPING

A. p-h excitation and damping

When one deals with an anisotropic tunneling strength
as given in (8) with t(p) assumed to be of the form (10),



51 GAP-FUNCTION ANISOTROPY AND COLLECTIVE MODES IN. . . 15 323

I s s s
i

s s s s
i

s I s s
i

s s s s3
s —wave

----- d —wave 2.5

s s s s
I

s ~ s s
I

s s s s
I

s s s

s—wave

d —wave

3
O

~ 1.5
OC

E

3
O

~ 1.5
E

1

0.5 0.5

0 r s « I «s
0 0.5
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~
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FIG. 3. The frequency dependence of the imaginary part
of the noninteracting density response function as given by
(39) and (30), with Ai ——0.1&p (or Ap/A = 10/11), for both
s-wave and d-wave layer pairing. For d-wave pairing, there is
6nite spectral weight at all frequencies.

one obtains an anisotropic gap function for both 8-wave
and d-wave intralayer pairing. Moreover, the collective
modes found within 2A (where b, —:Eo + Ai denotes
the maximum value of the gap) can be damped due to
the p-h pair breaking which is always possible because
of the vanishing of the energy gap. We evaluate the
imaginary part of the density response function for two
noninteracting BCS quasiparticles [see (37) after setting
v2D, v~, gz, g, and TJ equal to zero]

Imp, , (q, (u) ImAo (q, iv),

where Ao = Aoo is defined in (30). The q = 0 results
are plotted in Figs. 3 and 4 with two diferent ratios of
Ai/Eo, for both s-wave and d-wave intralayer pairing.

The main difference between the 8-wave and d-wave
pairing as shown in Figs. 3 and 4 are easily under-
stood from the gap-function anisotropy (see Figs. 1 and
2). Since Ao is the minimum value of the gap A~ in
the 8-wave case, the p-h spectral weight has a threshold
u = 2Lp. This implies for the 8-wave pairing that the
collective modes with energy ~ ( 24p are well defined,
but are damped when ~ ) 2Lp. In contrast, the p-h
spectral weight develops at ~ = 0 for d-wave case since
the minimum gap vanishes. Thus the collective modes
in the d-wave pairing case are always damped. However,
we note that in the low-&equency region, the p-h spec-

FIG. 4. The same plot as in Fig. 3, for Ai ——10&p (or
Ap/b. = 1/11).

tral weight (and hence the damping) is still small even
in the d-wave pairing case. Therefore low-energy collec-
tive modes are always well de6ned, for both 8-wave or
d-wave pairing. We also observe &om Fig. 4 that when
Ai is large compared to Ao (i.e. , Tg )) g), as expected,
the p-h spectral weight is very similar for both kinds of
pairing.

B. Collective-mode spectrum

In Ref. 6, we have already given a detailed discussion
of collective modes of a bilayer, assuming 8-wave pair-
ing in a given layer and isotropic tunneling strength TJ
[t(p) = 1]. These results bring out the essential physics
of the collective-mode spectrum of the bilayer supercon-
ductor model. In this section, we generalize our earlier
analysis to deal with an anisotropic tunneling strength
TJ, treating either 8-wave or d-wave pairing in the lay-
ers. Due to the strong p-h damping in the high-frequency
region (~ & 2A), we will focus on collective modes in the
low-&equency region (ur (( 2A). We ignore the wave
vector dependence and set Tg(q) = Tg in (33) and (34).

Phase modes

We first ignore the Coulomb interaction (v2D = v~ =
0) and study the phase modes in a neutral superconduc-
tor. Using (33), the phase modes I and II are found to
be given by the zeros of

D+(q, u) = 1 —PzAOO (1 —gB2O) (1 W T+BO2) T P+Bii

+4gz gcio(1 g TzBO2) + Tzcoi(1 —gB2O) + 2gTzciocoiBii

Before solving the above complicated equation, we note
that numerical calculation shows that (for small q and
a ) [B2OBO2 Bii] [cioBo2 + coiB2O 2clocolB11]

~ 0. This allows us to reduce (40) to

D~(q, ur) = 1 QzAoo 1 —gB2o + TzBo2

+4gz gc&p + Tzcpy
2 2 (41)
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Rewriting the Peg in (30) as

&ex (q, ~) = fez —Qet (q, ~),

Qei, (q, (u) =
(2 ), f(p) t(p)

E+ E'(u' —(e' —e)' —(A~+~ —Ap)'
4EEI ~2 (E + Ef)2

where the functions fei, have been defined earlier in (18)
and the functions Qei, are defined by

in which we have used the approximation (d (Ipp2I2pp-
Iipi) ur (Ipp2Ip2p —Ipii) 0. While the solutions for
branch I and II phase modes share the same form for
both s-wave and d-wave pairing [as given in (48)], there
is a crucial difference between 8-wave and d-wave pairing
built into the functions Ie~ (tu). The latter involve a
different function f (p) (and hence a difFerent anisotropic
gap function Ez) for s-wave and d wav-e pairing.

To be more explicit, one finds that independent of
x, the branch I phase mode (ReD+ ——0) is given by
(ReIoo2 -——1/2)

(43)

Using (42) and (43) and recalling the gap equation in
(17), we can rewrite the key factor in (41),

2 122
& + Zz I

oooo I)2

—v~q 1 + (49)

gQ2o + TJQo2 (I)
g&2o + TJI3o2 = &

Q T Q + (II)

(44)
where the upper sign gives branch I and the lower sign
gives branch II. The constant y = f2p/fp2 equals 8/3 for
s-wave and 4/3 for d-wave pairing, if the same BCS cutofF
frequencies are applied for both g and TJ. We treat the
ratio

z = (45)
g

as an adjustable quantity, as a way of exploring how the
qualitative features of the order-parameter fluctuations
in the bilayer superconductor model vary.

In the limit of small q, where we can use e' —e vp q
and L&+& Lz, we need only keep the q dependence in
the term e' —e in Qe~ [see (43)] and set q = 0 elsewhere
in (41). This gives

N( ) 2 2 2
Qe~ =

(2A)2 2
——v+q Ieko(~),

Peg = N(0)Ieiz2(Lu)

N(0)
ceo = —

+)~Ieai(~) ~

2 2L

with the functions Ieq (~) defined by

"~ [f(p)] [t( )] ["( )l
E(- —E )

(47)

1
D~(q, (u) = gI2pp + TJIp2p2A 2

2 122x z' ——ooZ 1 —Zzrooo)2
o

0 (I)
1 gzIpp2

(48)

and ur = ~/2A, ~—:e/A, and E = E/A. It is convenient
to write Az = Ah(p), where the anisotropic functions
h(p) for s-wave and d-wave pairing are given in (20) and
(21), respectively. Using these results in (41), we obtain
[with N(0)gz -+ gz, N(0)g + g, and N(0)Tg -+ Tg]

This always exists in the region ~ ( 2A and cor-
responds to the well-known 2D Anderson-Bogoliubov
phonon mode. The particle-hole channel pairing inter-
action gz only modifies the phonon velocity in (49). This
low-energy mode is well de6ned for both s-wave and d-

wave pairing since ImIpp2(w) 0 at low cu.

The preceding result for the in-phase phase mode is
for a neutral bilayer superconductor model. When we
include the Coulomb interactions v2D and v~ in (33),
since (v2D+v~) 4vre /q in the limit of q ~ 0, the phase
I (Anderson-Bogoliubov) mode in (49) is renormalized
into

1 2 2 gz
(d QJ2D + —Vy q 1 +

2 2

where uzD = 2vr(2n)e q/m (n = k&/2vr is the 2D number
density). This first term dominates the right-hand side
(rhs) of (50), which is seen to correspond to a 2D-like
plasmon mode of the two layers moving in phase.

In contrast, the branch II phase mode (ReD = 0) has
a solution which it is convenient to write in the form

(d = (dp(ld) + vt, q 1 +—2 2 122 gz
2 2

where we have de6ned the frequency-dependent energy
gap as

(»)' 2x

g Re[(x + y) (xIpgp —I2pp)]

When the Coulomb interaction is included in (33), mak-
ing use of the fact that for small q, where (v2D —v~)
2vre d, we obtain, in place of (51),i

o(~) + v~q 1+ —g—z + 2me d2= 2 12 2 1 2

2 2
(53)

where up is as defined in (52). The last term in (53) is
equal to 2d/ap, where ap is the usual Bohr radius. This
term is typically much larger than unity in the copper
oxides.

The detailed behavior of this branch II phase mode
given by (53) depends very much on the self-consistent
value of wp(ur) in (52). We find that to have a small
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positive value of ~0~ (x.e. , cdp && 4), one needs a small
ratio x « 1 (Tg « g), which implies Aq « Ap. For
)'dp « 4, we have [ImIpzp(cd) ImI&00(ur) 0 for low ~]

rewrite the Ceg in (30) as

Ce. (~, ~) = fe. —I'e. (~, ~), (57)

ReIo2p =

ReI2pp =

——(s)16

1—— (d)

1-- (8)
2

where Pgk is defined as

E E'
&em(~, ~) = f ~ , )f(v)

' f(v)l' 4zz,
cd —(e —e) —(Ap+~ + E~)

~2 (Q+ @l)2 (58)

1-- (d)

where 8 and d denote 8-wave and d-wave pairing in the
layers. Substituting (54) into (52), we see that for small
x, )dp(cd) is given by [this corrects (27) in Ref. 6]

23x(»)' —(s)
2g

0

(»)' —(d).
g

(55)

This means that the branch II phase mode exhibits an
energy gap cdp oc ~x in the c1 = 0 limit and for small
x. Since the region u (( 2L is being considered, for
consistency (53) is only valid for z & 0.04 for s-wave
and x & 0.02 for d-wave pairing. %e remark that in
the regime where x )) 1, this branch II phase mode has
a dispersion relation similar to (53) but with ~0 ) 2A.
In this case, this mode is strongly damped due to pair
breaking.

Anderson and co-workers argue that TJ can be
much larger than g in the oxide superconductors. It
can be seen from (51)—(55) that the branch-II-phase
collective-mode energy spectrum and the damping de-
pend critically on the relative magnitude of the Cooper-
pair tunneling strength TJ and the pairing interaction g
(i.e. , the ratio x), but not significantly on the nature of
the pairing. As we noted in Ref. 6, this branch II phase
mode is analogous to one first discussed by Leggett
in a simple model of a two-band bulk superconductor.
Leggett also pointed out that such a Buctuation in the
relative phase of two order parameters was physically
the analog of excitonlike modes in a bulk 8-wave super-
conductor with an attractive interaction in the d-wave
channel.

This is similar to Qe), in (43), apart from having the
uncanceled term (Ap+~ + A~) in place of (A~+~ —A~),
which plays a icey role in amplitude modes. D+ in (56)
thus can be represented as [using (17)]

gP2o + TJPo2 (I)
2x

gP2o —TJPo2 + (II),x+g
(59)

where the parameters x and y are as given in (44).
In the limit of small q, we can approximate the func-

tions Ie~ in (58) as

&e) =
I

cd ——vy, q ~Ieap(~) —(2e-')) Ie~~(~)
N(0) (, 1

(2A)2

(60)

where Ie), (w) are given in (47). As a result, we obtain
[with N(0)g -+ g and N(0)Tg —+ TJ)

/
1 2 122

D+(q, tu) =
~ gI~00 6 TJI0~0

2b, ~ 2

gI2p2 6 TJIp22 + &

(&)

(&~).x+ g

0
(61)

2 2 122
)'d = Ld~+(cd) + —v~q

2
(62)

where again it is convenient to define an energy-
dependent gap

Again, the branch I and II amplitude modes share the
same form for both 8-wave and d-wave pairing [as given
by the zeros of (61)].

One finds that the dispersion relation of the branch I
amplitude mode (ReD+ ——0) can be written in the form

2. A.mplitude modes

We next turn to (34) and discuss the two amplitude
modes given by ReD+ ——0. These are unafFected by the
Coulomb interaction. The discussion for the branch I and
II amplitude modes are similar to the analysis of branch I
and II phase modes given above. Since [CqpCpq —C~~] oc
u4 ~ 0, D+ in (34) is reduced to

D+(~, ~) = 1 —gC20 W +JC02.

Following the expansion for the functions Beg in (42), we

„Re[Impy(~) + xIpgg(cd)]
cd'+(cd = (2A) & 0.

Re[Iqpp(cu) +. xIpqp(~)]
(63)

This mode corresponds to when the Cooper-pair ampli-
tudes in the two layers oscillate in phase and is the ana-
log of the well-known amplitude mode of a bulk 8-wave
superconductor. Thus we can interpret wz+ in (63) as
related to the energy needed to break up a Cooper pair,
which should correspond to some appropriate Fermi sur-
face average of (2Az) . The value of cd'+ is clearly depen-
dent on the relative magnitude of Tg and g (i.e. , z), as
well as Lo and Lz. One may verify that when x —+ 0
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(and Ai « Ap), corresponding to a pure s-wave (or
d-wave) superconductor without any pair tunneling, we
have idi+(id) = 4E (Ref. 18) for s-wave and 34 for
d-wave pairing. This in turn shows that in this limit,
the branch I amplitude mode has energy at ~ = 2A for
s-wave and id = v33, for d-wave pairing cases. These
modes are strongly damped since the energies are near
2L, with strong p-6 damping. For large value of x, the
gap functions become highly anisotropic and we have not
been able to find a solution of id = idi2+(id) for either s-

wave or d-wave pairing.
In contrast, for the branch II amplitude modes

(ReD' = 0), one finds that the zeros of (61) are given
by

(d = & ((d) + —Vy g (64)

where again it is convenient to introduce

~,'(~d) —= idO(id) + ~di-(id) (65)

and idp is given by (52) and qadi is given by [compare
with (63)]

(d~ & = 2A2 ~ 2 R, [I202((d) XI022(~d)]
& 0.

Re[I2pp (w) xI020 ((d ) ]
(66)

Evaluating (52), we find idp & 0 for z » 1, while qadi

is always positive. In this regard, the appropriate value
of the energy gap ids in (65) can be much smaller than
2L if uo —+ —uz . In the regime x &( 1, the branch II
amplitude mode always has an energy gap ~~ & 2L. As
a result, it is strongly damped and of less interest.

V. CONCLUDING REMARKS

In this paper, we have extended our recent
discussion ' of the order-parameter Quctuations in a
2D superconductor to the case of a superconducting bi-
layer. Some of these results were reported in Ref. 6. Fol-
lowing recent work, we allowed Cooper-pair tunneling
between the two layers but no coherent single-particle
tunneling. The order-parameter dynamics of this bi-
layer model was worked out in a time-dependent Hartree-
Fock-Gor'kov mean-field approximation, within the usual
weak-coupling BCS scenario. We considered the case of
either 8-wave or d-wave pairing in the two superconduct-
ing layers and derived approximate self-consistent equa-
tions for the gap function in Sec. II.

In the rest of the paper, we discuss the Huctuations
of these static solutions using linear response theory.
As expected, we find two kinds of collective mode in
our coupled bilayer model. The complex order param-
eters (phase and amplitude) of the two layers can ei-
ther Quctuate in phase or out of phase with respect
to each other. In addition to the well-known in-phase
Anderson-Bogoliubov phase and Littlewood-Varma am-
plitude modes, we predict out-of-phase modes. The en-
ergies of these modes are strongly dependent on whether
the tunneling strength TJ is larger or smaller than the

layer pairing interaction g. We compare the results for 8-

wave and d ~ &~-wave pairing in the layers and find that
these out-of-phase collective modes are basically the same
in both cases in the low-&equency region (id « A).

The out-of-phase modes are a feature of the two-layer
model and thus of special experimental interest as an in-
dication of the role of interlayer Cooper-pair tunneling.
The new out-of-phase Buctuations in phase and ampli-
tude may be described as an "internal dynamic Josephson
effect. " The out-of-phase phase mode of two coupled or-
der parameters was discussed at length by Leggett in
the context of a two-band (s- and d-electron) model of
a bulk superconductor. Much of Leggett's analysis and
discussion can be applied to our bilayer model.

We also generalize the discussion to a trilayer system,
which can arise in Bi, Tl, and Hg Cooper oxides (see the
Appendix). As expected, there are three collective-mode
branches for both phase and amplitude fluctuations ex-
hibited in the trilayer system. In addition to the branch
I which corresponds to the Huctuations in which order
parameters on all three layers oscillate in phase, we find
another two "out-of-phase" branch modes. One branch,
in analogy with the branch-II out-of-phase modes in bi-
layer system, involves only the out-of-phase Huctuations
of the order parameter in the outer layers, while the order
parameter in the middle layer is undisturbed. Another
branch corresponds to Buctuations in which the order pa-
rameters of the two outer layers oscillate in phase, while
the order parameter of the middle layer oscillates out of
phase to the two side layers. The analog of these three
branches have been discussed in Ref. 8 in the normal
phase (T & T,).

We have not considered the excitonlike modes in this
paper. However, when 8-wave and d-wave pairing inter-
actions are both present (with one larger than the other),
there will be excitonlike modes (two branches) in addi-
tion to the amplitude and phase modes discussed here for
bilayers. For further discussion of such excitonlike mode
in a two-dimensional d-wave superconductor, see Ref. 7.

In Ref. 6, we brieHy discussed experimental techniques
which might be used to study the out-of-phase modes we
have predicted to exist in a superconducting bilayer. One
needs a probe which is sensitive on a scale of the separa-
tion d of the two sheets. One possibility is inelastic light
scattering, the theory of which has been extensively de-
veloped for semi-infinite metallic superlattices in the nor-
mal state (see, for example, Ref. 19). The intensity of this
Raman scattering involves a weighted sum of the density
response functions y~, z, , y~, ~, , and y~, ~, , as given by
(37) for a superconducting bilayer. Similarly the elec-
tron energy loss scattering (EELS) cross section involves
a (different) weighted sum of these response functions.
In a future publication, we will use the results of the
present paper to calculate these cross sections, which are
sensitive to the spacing of the sheets and show resonances
associated with the zeros of D~ in (33).
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APPENDIX: TRILAYER SYSTEM

The generalization &om a bilayer to trilayer system is
straightforward. In this appendix, we brieQy sketch the
final results (for more details, see Ref. 11). We consider
the isotropic TJ and 8-wave pairing case, which contains
the essential physics. We consider Cooper-pair tunneling

only between adjacent layers but include the Coulomb in-
teraction between all layers. The various physical quan-
tities (e.g. , density of states, Fermi energy, gap, pairing
interaction, etc.) are taken to be the same for both outer
layers (by symmetry), but allowed to be difFerent in the
middle layer. ' In this appendix, we use the index 1 for
either of the two outer layers and 0 for the middle layer.

Following our analysis for the bilayer system, we find
the matrix for the various BCS noninteracting response
functions [compare with (29)]

( Ai
0
0

—2cy
0
0
0
0
0

0
Ap
0
0

—2cp
0
0
0
0

0
0

Ag
0
0

—2cy
0
0
0

—2cy
0
0

—Bg
0
0
0
0
0

0
—2cp

0
0

—Bp
0
0
0
0

0
0

—2cy
0
0

—Bg
0
0
0

0
0
0
0
0
0

—Cg
0
0

0
0
0
0
0
0
0

—Cp
0

0

0
0
0
0

-C, )

where various functions in (Al) involving outer or middle layers are analogous to (30) with E = k = 0 and E + E; =
A&2 + ~A;~2 (i = 0, 1), etc. , corresponding to middle (i = 0) or outer (i = 1) layers. The interaction matrix V is found
to be [compare with (31)]

( —2vi
2vlp

—2vyy
0
0
0
0
0
0

—2vyp
—2vp
—2vyp

0
0
0
0
0
0

—2vyy
—2vyp
—2vy

0
0
0
0
0
0

0 0 0
0 0 0
0 0 0

gcl TJ
TJ gap TJ

TJ gc1
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

gcg TJ 0
TJ gcp TJ

gci )

(A2)

where, for the layer i, 2v,. = 2v2D + gz; is the sum of the intralayer Coulomb Hartree interaction and short-range
exchange p-h interaction and g; is the p-p channel pairing interaction; vip(g) = V2D(g)e is the Coulomb interaction
between adjacent layers and vll(cl) = v2D(q)e 1" is the Coulomb interaction between the two outer layers (see also
Ref. 8).

Using (Al) and (A2) in the mean-field analysis of Sec. III, we find

det(Z+ y V) = DD D'D',

where

D = 1 —2 vpAp + v~ + vqq Ay + 4 vp vy + v~~ —2 vp& ApAy 1 —gpBp 1 —g~B~ —2TJBpBg

—8(gpgi —2') (vl + vli)Bpci + vpBicp + 8 vpgpcp + 4vpiTgcpci + (vi + vll)gi cl

—16 vp (vl + vll) 2(vol) gp (1 —giBl )Rico + gl (1 —gpBp) Apci

+2T~ (ApBpcl + A1Bicp) —4(gpgi —2T~) cpcl

D:— 1 —2(vi —vll)A1 1 —glB1 + 8(vi Vll)glci

D'—:(1 —goCo) (1 —giCi) —2T~ CoCiy 1

D' —= 1 —g, C, .

(A4)

(A5)

(A6)

(A7)
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It is clear from (A3) that the collective modes will be
given by the zeros of the real parts of these functions.
As three layers are involved, one expects to have three
collective-mode branches for both phase and amplitude
Buctuations of the order parameter. In this appendix, we
summarize our main results for the trilayer system (in
the absence of superconductivity, these reduce to those
of Ref. 8).

The factors D and D' in (A5) and (A7), in analogy
with the branch-II out-of-phase modes in bilayer system,
involve only the Huctuations of the order parameter in
the outer layers (i.e. , only layers with index 1). These
correspond to the phase and amplitude fluctuations in
which the order parameters on the two outer layers have
out-of. -phase Quctuations while the middle layer is undis-
turbed (we call this branch II). To be more explicit, the
solutions of ReD = 0 correspond to a phase fluctuation
and ReD' = 0 correspond to an amplitude Buctuation.
Both exhibit an optical-phonon dispersion relation, al-
though with a diferent energy gap. The size of the en-

ergy gap strongly depends on the relative magnitude of
TJ and the pairing interaction g;, just as we found for
the out-of-phase branch-II phase and amplitude modes
in a bilayer system in Sec. IV.

In contrast, the zeros of D and D' in (A4) and (A6)
give rise to another set of phase and amplitude modes. Of
these two branches, we Gnd that one corresponds to the

Quctuations in which order parameters on all three layers
oscillate in phase (we refer to this as branch I). Another
branch corresponds to Quctuations in which the order pa-
rameters of the two outer layers oscillate in phase, while
the order parameter of the middle layer oscillates out of
phase to the two side layers (we refer to this as branch
III). Due to all the order parameters on three layers os-
cillating in phase, the branch I phase fluctuation [i.e. ,
the well-known Anderson-Bogoliubov phonon mode with

q] in a neutral superconductor (which is independent
of T~ and g, ) will be shifted to a 2D plasmon (io ~q)
by the Coulomb interaction. In contrast, the branch III
phase mode, involving the out-of-phase oscillations of the
order parameter on the two outer layers relative to the
middle layer, has an optical-phonon dispersion relation.
Again, the size of the energy gap of the branch III optical
phonons is strongly dependent on the relative magnitude
of TJ and the pairing interaction g, .

For the amplitude modes, which are not affected by the
Coulomb interaction, we also find an optical-phonon-like
dispersion relation for both branches I and III (similar to
the amplitude modes in the bilayer system). The magni-
tude of the energy gap of the branch I amplitude mode,
which depends on Tg and g, , corresponds to an appropri-
ate Fermi surface average of 2~A& ~, which is the minimum
energy required to break up a Cooper pair.
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