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We have performed Monte Carlo simulations to determine current-voltage characteristics of two
vortex-glass models in two dimensions. Our results confirm earlier studies which concluded that
there is a zero-temperature transition. Additionally we find that, as the temperature approaches
zero, the linear resistance vanishes exponentially, and the current scale J & where nonlinearities
appear in the current-voltage characteristics, varies roughly as T . This result is quite diferent
from the prediction of conventional Aux creep theory in which J & T. The results for the two
models agree quite well with each other, and also agree fairly well with recent experiments on very
thin films of Y-Ba-Cu-O.

I. INTB.ODU CTION

In a magnetic field, the efI'ects of fluctuations and de-
fects in high-T superconductors are particularly strong.
In fact, much of the H-T phase diagram of high-T mate-
rials is occupied by a ' vortex-liquid" regime which is not
present in the mean-field phase diagram. When a cur-
rent is applied to a superconductor in the vortex-liquid
regime, the resistance is not zero because Aux lines move
under the action of a Lorentz force and produce a Joseph-
son voltage. An important question, is whether at lower
temperature, defects can collectively pin fIux lines so that
they have no linear response to the Lorentz force, thus
implying a vanishing linear resistance. In the presence of
defects, there is no long-range order in the positions of
vortices. Nonetheless, a transition to a state with van-
ishing linear resistance may occur. Such a state is called
the vortex glass.

While there is theoretical ' and experimental ev-
idence for a finite vertex-glass transition temperature
T in bulk superconductors, several simulations ' have
clearly shown that T = 0 in two-dimensional systems,
and rigorous analytic arguments have established that
there is no vortex-glass order at finite temperature in two
dimensions.

Recent work has shown that inclusion of gauge-
field fluctuations (i.e. , screening) changes the universal-
ity class, but the transition temperature is still zero in
two dimensions. Even though T = 0, there are observ-

able consequences at finite temperatures because the cor-
relation length diverges as the temperature approaches
zero. We shall discuss these consequences in detail. In
contrast, a difI'erent simulation of the nonlinear current-
voltage characteristics of the gauge glass in two dimen-
sions found evidence for a finite T ~ However, behavior
consistent with T = 0 has recently been observed in
experiments on 16-A. films of Y-Ba-Cu-O.

Although the experiments on two-dimensional sam-
ples are in quite good agreement with theory, they mea-
sure difI'erent quantities from what has been calculated
and a scaling hypothesis is needed to make a compari-
son. The experiments determined current-voltage (IV)-
characteristics, while the simulations investigated the size
dependence of the rigidity of the system with respect
to a twist in the phase of the condensate. It therefore
seems worthwhile to make a direct comparison of simu-
lation and experiment by calculating I-V characteristics
from simulations of two-dimensional systems. As an ad-
ditional benefit, we study two models which are some-
what difI'erent microscopically: the gauge glass, defined
in Eq. (1) below, which has eff'ectively random fluxes pen-
etrating the sheet; and a more realistic model, defined in
Eq. (14) below, which has a net uniform field penetrating
the sheet and a random pinning potential for the vortices.
We find that universal properties are the same for these
two models. Since the gauge glass has been extensively
used for numerical studies of the vortex-glass transition,
it is reassuring that it gives the same results as a model
with a net field, at least in two dimensions.
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II. THE MODELS

The first model that we study is the gauge glass, ' '

whose Hamiltonian is

'Rss = —) cos(P, —
P~

—A,~).
(i i)

The phase of the condensate P; is defined on each site i
of a square lattice, with N = I. sites. The sum is over
all nearest-neighbor pairs on the lattice. The eKects of
the external magnetic Geld and the defects are both rep-
resented by the quenched vector potentials A,~ which are
taken to be independent random variables with a uniform
distribution between 0 and 2'.

To compute the I-V characteristics we need to incorpo-
rate dynamics into the model. The standard way of doing
this is to view the model as a set of coupled Josephson
junctions. Josephson's and Kirchoff's equations for
the current are then

unity. Equations (2)—(4) are solved by the standard ma-
trix inversion method, described in detail in Ref. 13. The
equations of motion are integrated using a erst-order
approximation with a time step of bv = 0.057, where
T = 5/(2eI4I, ) is the basic unit of time (w'hich is set
equal to unity). The scale of v is the typical time for a
neighboring pair of sites to accumulate a relative phase
of order unity.

We have also studied an equivalent form for the gauge
glass written in terms of vortices. In contrast to the
phase representation of the model discussed above, it is
convenient to impose periodic boundary conditions on
a torus. To obtain the gauge-glass model in the vortex
representation we replace the cosine in Eq. (1) by the
periodic Gaussian (Villain) function, and perform stan-
dard manipulations ' which yield

*' + I sin(P, —P, —A,~) .+ rj;, (t),
0

h d

2e dt

Ii:eat y

(2)

where i and j are nearest-neighbor pairs. Equation (2)
expresses the sum of the current from site i to neigh-
boring site j as the sum of a resistive current given by
Vz/I4, a Josephson current, and a Langevin current
noise source q,~. (t). I, is the maximum Josephson cur-
rent of the nearest-neighbor pair, and BO is the shunt
resistance of the pair. The thermal noise has a Gaussian
distribution with the following properties:

where the (n;) are integer valued vortex "charges. " The
vortices sit on the sites of the dual lattice, which lie in
the centers of the squares of the original lattice. The
magnetic fluxes bi are the lattice curl of the vector po-
tential. They are given by the product of 1/2vr and the
directed sum of the quenched vector potentials on the
links of the original lattice which surround the site i of
the dual lattice. The periodic boundary conditions en-
force the constraint P,. b; = 0, and the integration over
the zero wave-vector piece of the phase variable enforces
the constraint g n~ —b~ = 0. Thus we have a "charge

2 2 2

neutrality" constraint P,. n; = 0. G(i —j) is the vortex
interaction

(. .
)

f'2vrl '). 1 —exp[ik (r; —r;)]
( I ) - 4 —2cosk —2coskk/0 y

which ensures that the system comes to thermal equilib-
riuin at temperature T. Equation (3) is the Josephson
relation connecting the voltage V~ with the time deriva-
tive of the phase difference P, —P~. Equation (4) is Kir-
cho8''s law expressing current conservation at site i. I;., t
is the external current at site i. This is zero except for
sites on the top row where an external current J = I/L,
is fed in, and sites on the bottom row where the same
current is extracted. The total current through the sam-
ple is then I. We take the system to be a cylinder with
periodic boundary conditions in the direction perpendic-
ular to the current. The average voltage drop along the
system V is given by

where the brackets ( ) denote a time average. The av-
erage electric Beld is then E = V/L. For this model we
work in units where 6/(2e) = I4 ——I, = 1. Through-
out the paper we also set Boltzmann's constant to be

At large distance, G(i —j) —+ 2vr ln ~r; —rJ ~.

We study the I-V characteristics of this vortex model
by using Monte Carlo dynamics. That is, we equate
Monte Carlo time and real time, an approximation which
is expected to be good in the limit of overdamped
dynamics and which has proven reasonable in other
simulations. Choosing a nearest-neighbor pair (i, j) at
random, we try to increase ni by 1 and decrease n~ by 1,
thus transferring a unit vortex from j to i. Following the
"heat bath" algorithm, if the change in energy is LE, the
move is accepted with the probability 1/[1+ exp(PAE)].
An applied current density J gives a Lorentz force of
Jh/2e on a unit vortex. The Lorentz force can be incor-
porated into the Monte Carlo moves by adding to LE
an amount Jh/(2e) if the vortex moves in the direction
opposite to the Lorentz force, subtracting this amount if
it moves in the same direction, and making no change in
LE if it moves in a perpendicular direction. Biasing the
moves in this way takes the system out of equilibrium
and causes a net flux of vortices in a direction perpen-
dicular to the current. This then generates a voltage V,
where
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(10)

with

where I+ (t) is the vortex current. Here t denotes a Monte
Carlo time (incremented by At after each attempted
move), and AQ, (t) = 1 if a vortex at site i moves one
lattice spacing in the direction of the Lorentz force at
time t, AQ; (t) = —1 if the vortex moves in the direction
opposite to the Lorentz force, and AQv(t) = 0 otherwise.
We set At = 1/4% so that an attempt is made to move
each vortex once in each direction, on average, per unit
time. We shall use units where h/2e = 1 when dealing
with vortex models.

The linear resistance can also be obtained from the
Kubo formula for Huctuations in the voltage in the ab-
sence of any net current. The Kubo formula is exact for
discrete time Monte Carlo dynamics provided the sum
over time is made symmetrical about t = 0& i.e. ,

R);„= ) b, t (V(t)V(0)),
1

t= —oo
(12)

which, in our units, can be expressed in terms of the
vortex current as

R„„= ) ~t (I (t)I (0)).
t= —oo

Using Monte Carlo dynamics should be a good approx-
imation near a critical point, where the vortex motion is
slow and overdamped. However, because of discretization
of time, and the fact that the fastest a vortex can move is
one lattice spacing per time step, it is not very satisfac-
tory for large currents or high temperatures. For exam-
ple, at high temperatures with no bias current, a vortex
moves in the + x direction with probability 1/4. From
Eq. (13), the resistance is then given by Ri;„= 1/(2T)
and tends to zero, which is unphysical.

The gauge glass represents a system with random
Huxes penetrating the film but with zero net field. The
gauge glass is a convenient model to study but it should
be verified that it is in the same universality class as ex-
perimental systems which have a net uniform field pene-
trating the Glm and a random pinning potential for the
vortices. We have therefore also studied a random pin-
ning model with the following Hamiltonian,

periodic boundary conditions and the fact that the zero
wave-vector part of G has been removed, it is not actually
necessary to include the f terms in Eq. (14).] We obtain
I-V characteristics from Monte Carlo dynamics. At each
Monte Carlo time we try to insert a (+1,—1) pair at a
randomly chosen pair of sites i and j. The analysis is
then precisely the same as described above for the vortex
representation of the gauge glass.

III. SCALING THEORY

To analyze the results it is necessary to understand how
the I-V characteristics vary in the vicinity of a second-
order phase transition. A detailed scaling theory has
been developed and we now summarize the results for
the case of a zero-temperature transition, where the cor-
relation length diverges as

(15)

where g is a scaling function. In two dimensions with
T = 0 this becomes

E ( J
(17)

Prom Eq. (17) one sees that the characteristic current
scale J ~ at which nonlinear behavior sets in, varies with
T as

J„)-T'+ . (18)

The linear resistance is

and the relaxation time ~ also diverges. Normally one
defines a dynamic exponent z by w (', but since the
transition is at zero temperature, the relaxation has an
activated form and diverges exponentially as the tem-
perature approaches zero. Formally this corresponds to
Z=OO.

The vector potential A enters the Hamiltonian in

Eq. (1) in the dimensionless form A;~ f A(r) . dr.
2

Therefore A scales as 1/(. The electric field is given
by E = —BqA and so scales as 1/((r) J.E, t.he en-

ergy dissipated per unit volume per unit time, scales like
k~T/(( w). Therefore 1 scales like k~T/f It is im-.
portant to keep the factor of T because T = 0. Combin-
ing these results we obtain (for k~ = 1)

'R,p
————) [n; —f]G(i —j)[n, —f] —) v(i)n, , EB);„——lim —,J~o J' (19)

(14)
where the n; are restricted to the values 0 and +1,
G(i —j) is given by Eq. (9), and v(i) is a random
pinning potential, uniformly distributed in the interval
—b, ( v(i) ( A. We set b, = 7r. We also fix the net
filling, f [—:(1/K) P, n, ], which efFectively determines
the magnetic field, to be 1/4. [Note that because of the

E
JR„„ iT +') ' (20)

and g(0) must be a constant, which we take to be unity,
so we can write
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TRI;„—————A exp [
—EE(T)/T],

1
7

100 '''"I ' ' ' '''"I
15 ----.---.

I I I I I IIII I I I I I III[

where AE(T) is the typical barrier that a vortex has to
cross to move a distance (. One conventionally defines
a barrier exponent @ by b,E ('~ T ~" in terms of
which

10= 9

8

TR„„exp ( C/T—+@
) . (22)

It has been suggested that @ may be zero in two di-
mensions, leading to barriers which are either 6nite as
the temperature approaches zero or diverge logarithmi-
cally. In the latter case the linear resistance would vary
as exp (—Cl ln(T)["/T), where p is another exponent.

In Eq. (21), the linear resistance is seen to vanish ex-
ponentially as the temperature approaches zero. In these
circumstances it is generally more diKcult to estimate the
form of possible power-law prefactors than the form of the
leading exponential dependence. We have incorporated
a factor of T on the left-hand side of Eq. (21) because
it emerged naturally from the scaling ansatz. This fac-
tor of T also looks reasonable when compared with the
Kubo formula, Eq. (13), since it is TRI;„which is given
by the voltage fluctuations. However, it is possible that
additional factors of T could be present in the scaling
region.

In a finite system, the I-V characteristics will also de-
pend on the size of the system when the bulk correlation
length ( becomes comparable with L Accordi.ng to finite-
size scaling only the ratio L/( is important. Therefore,
from Eq. (15), one can generalize Eq. (20) to

E t' J=ul T'+ ' L' T
Iin

(23)

The nonlinear behavior in the 6nite-size regime, de-
scribed by Eq. (23), is rather complicated because it
involves a function of two variables. Consequently, we
have studied nonlinear behavior either in the range where
finite-size corrections are negligible or, having already de-
termined v, choose L and T such that the second argu-
ment I ~"T is constant.

IV. RESULTS

RI;„exp(—C/T" ) (24)

with p 0.6. This variation, which is less rapid than an
Arrhenius form p = 1 is dificult to understand &om the

In Fig. 1 we show some of the experimental data of
Dekker et aL on 16-A. films of Y-Ba-Cu-O. For small
current densities, the data is flat, indicating Ohm s law,
with a linear resistivity which decreases rapidly with de-
creasing temperature. As J is increased the data starts
to curve upwards, indicating nonlinear response. The
current scale J ~ at which nonlinear behavior sets in, is
also seen to decrease with decreasing temperature. An-
alyzing all their data, Dekker et al. find that the linear
resistivity varies as

6"-

4
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0001 001 0 1 1 10

classical models which we study here. It may therefore
indicate that quantum tunneling of vortices is important
at the lowest temperatures. On the other hand, J„~ is
found to vary with T as T, which, &om Eq. (18) implies
v 2. This result is in agreement with our simulations
and earlier studies ' of the gauge glass.

We next discuss our numerical results for the I-V char-
acteristics of the gauge glass in the vortex representa-
tion. Data for T times the linear resistance against 1/T
is shown in Fig. 2 on a log-linear plot. A simple Arrhenius
form, i.e., a temperature-independent barrier height LE
would correspond to a straight line. In fact for the largest
size, the data is very close to a straight line indicating
that the barrier exponent @ in Eq. (22) is zero or nearly
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FIG. 2. Plot of the product T and linear resistance, on
a logarithmic scale, against 1/T for difFerent sizes of gauge
glass in the vortex representation. The data for the largest
size, L = 32, is well approximated by a straight line, indicat-
ing a temperature-independent barrier height, i.e., Arrhenius
behavior.

FIG. 1. Plot of some of the experimental data, at a field of
0.5 T, on 16-A. films of Y-Ba-Cu-0 from Ref. 12. The numbers
denote the temperatures, in kelvin, at which the diferent data
sets were taken.
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zero. These results are consistent with the suggestion
of a logarithmically increasing barrier, but this weak de-
pendence will be dificult to see on data which are over a
modest range of temperatures in 6nite-size systems.

Data for the nonlinear response at Rnite J is shown
in Fig. 3. The data for the smallest current density J
was actually obtained for J = 0 from the Kubo formula,
Eq. (13). As in the experimental results in Fig. 1, the
data follow Ohm's law at small J (where each data set
is horizontal) with a linear resistance which decreases
rapidly with temperature, as shown in more detail in
Fig. 2. Deviations from Ohms law occur at a scale J ~

where the data start to curve upwards. J ~ decreases with
decreasing temperature, as expected. Prom Fig. 2, finite-
size effects appear quite small for I = 16 at T = 0.5 and
0.8. Similarly, assuming v —2, the data for I = 32 in
Fig. 2 at T = 0.35 should not be significantly affected by
finite size effects. We have therefore analyzed the data in
Fig. 3 according to the expected result for bulk behavior,
Eq. (20). The scaling plot is shown in Fig. 4. The data
scales reasonably well with v =- 1.8 which is in quite good
agreement with other estimates. ' The values of B~;„ in
this plot were obtained from the Kubo formula.

Next we discuss the data obtained for the phase rep-
resentation of the gauge glass. Results for the linear re-
sistance are shown in Fig. 5. The data is consistent with
an Arrhenius form for the largest sizes, as was found for
the vortex representation (Fig. 2). Results for nonlin-
ear current-voltage characteristics for the gauge glass in
the phase representation are shown in Fig. 6. Unlike the
vortex representation, which has discrete time and so a
maximum vortex velocity, the dynamics of the phase rep-
resentation use continuous time and so can sensibly be

10 I I I I I I

1.8, J„, ~
L= 3P„T~L=16, 7

o L=16, 7

'F/( ~ 'F1+v

0.35
0.50
0.80

0. 1
I I I I I I I I I

1
J//1+v

I I I I I I I I

10

FIG. 4. Scaling plot of the data in Fig. 3, assuming that
Gnite-size corrections are small and the scaling form expected
for bulk behavior, Eq. (20), is appropriate. The value v = 1.8
obtained from this fit, is is reasonable agreement with other
estimates.

applied for large values of J (and also high T). In Fig. 6
one clearly sees a "Qux-Bow" regime for large J, where
the Lorentz force is sufBcient to overcome pinning, and
the only hindrance to vortex motion comes from friction.
This leads to a resistance which is roughly independent
of J and also only rather weakly dependent on temper-
ature. For small J, however, the vortices are pinned by
defects and move only by activation over barriers. The
linear resistance in this "fiux-creep" regime, is therefore
much smaller than that observed for larger J and is also
strongly temperature dependent.

We next describe our results for the random pinning
potential model in Eq. (14). The linear resistance is
shown in Fig. 7. As for the gauge glass, the data for
the larger sizes seem to be tending towards an Arrhenius

I I I
I

I I I I
I

I I I I

0.001 =

0.0001 =

L
4 ~

Q

0

16

10 '0'01 I I I I I I I Il

0. 1
I I I I I I I II

0.01:
FIG. 3. I og-log plot of the nonlinear current-voltage char-

acteristics of the gauge glass in the vortex representation. The
data for the smallest current density J is actually for J = 0
and was obtained from the Kubo formula, Eq. (13). The data
follow Ohm's law at small J (where each dataset is horizontal)
with a linear resistance which decreases rapidly with ternper-
ature, as shown in more detail in Fig. 2. Deviations from
Ohm's law, where the data start to curve, occur at a cur-
rent scale J ~, which decreases with decreasing temperature.
Computations were not performed at extremely high currents
outside the scaling regime, but the curves are expected to
saturate as in Fig. 6.

I I I I I I I I I

1 2

FIG. 5. Plot of the linear resistance, on a logarithmic scale,
against 1/T for difFerent sizes of gauge glass in the phase
representation. The data for the largest size, L = 16, is fairly
close to a straight line, indicating a temperature-independent
barrier height, i.e., Arrhenius behavior. This is similar to the
linear resistance data from the gauge-glass simulations in the
vortex representation, Fig. 2.
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behavior.
The nonlinear behavior of the random pinning poten-

tial model is shown in Fig. 8. As for the gauge-glass re-
sults in Fig. 6 there is a flux-flow regime for large J, and
a flux-creep regime at small J where the linear resistance
is small and strongly temperature dependent. Deviations
from the Ohm's law behavior in the flux-creep regime oc-
cur at a current scale J ~, which decreases as T decreases.
For suKciently large J, E will saturate, because there is
a maximum vortex velocity when each vortex hops every

0.1

0.01

0.001

j
I I I I

l
I I I I

j
I I I I

j
I I I I

L

8 ~

12
16 o
20

~W

0.0001

FIG. 6. Results for nonlinear current-voltage characteris-
tics for the gauge glass in the phase representation. There is
a Qux-Qow regime for large J, where the resistance is largely
independent of J and T, and a Qux-creep region at small J
where the linear resistance is small and strongly temperature
dependent. Deviations from the Ohm's law behavior at smallJ occur at a current scale J ~, which decreases as T decreases.

FIG. 8. Results for nonlinear current-voltage character-
istics for the random pinning potential model in Eq. (14).
For each size, L, the temperature has been chosen so that
LT = 2, in order to keep the second argument of the fi-
nite-size scaling function in Eq. (23) constant. The net filling,
f (= (1/N) P.n, ), is equal to 1/4. As for the gauge-glass re-
sults presented in Fig. 6, there is a Qux-flow regime for large
J, and a Qux-creep region at small J where the linear resis-
tance is small and strongly temperature dependent. Devia-
tions from the Ohm's law behavior in the Qux-creep regime
occur at a current scale J ~, which decreases as T decreases.

I I I I I I Ill

L
~ 8

12
o 16

20

I I I I I I Ill I I I I I I I I0

step, so the ratio E/J will decrease. This (unphysical)
behavior, which is just visible in the figure at the largest
values of J, is caused by discretization of time in the
Monte Carlo simulations. This discretization is, how-
ever, not expected to affect universal critical properties
near the T = 0 critical point.

A scaling plot of the nonlinear I-V characteristics of
the random pinning potential model is shown in Fig. 9.
Since there are finite-size effects within the range of ac-
cessible sizes, we assume that v 2, and choose sizes
and temperatures such that LT is constant. In this way,
the second argument in the scaling function in Eq. (23)

10 6

10 7 j I I I I j I I I I j I I I I

'~
4

4

FIG. 7. Plot of the linear resistance, an a logarithmic scale,
against 1/T for difFerent sizes of the random pinning po-
tential model in Eq. (14). The data for the largest sizes
seems to be tending to a straight line, indicating a tem-
perature-independent barrier height, i.e., Arrhenius behavior.
This is similar to linear resistance data from the gauge —glass
simulations, see Figs. 2 and 5.

J/Tl+v
10

I I I I I III
100

FIG. 9. Scaling plot of the nonlinear current-voltage char-
acteristics of the random pinning potential model, assuming
u 2, and choosing sizes and temperatures such that LT is
constant.
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important for the I-V characteristics. There is, however,
a small discrepancy between the numerical results and
experiment at high currents, for which we do not have
an explanation.

V. CONCLUSXONS
lX

10=
W

V
I I I I I IIII I I I I I IIII I I I I I IIII

FIG. 10. Scaling plot combining the nonlinear cur-
rent-voltage characteristics of both the experimental data in

Fig. 1 (lines) and simulations (points). The data points with
IT = 2 were obtained from the random. pinning potential
model and the other two sets of data points, at T = 0.35 and
0.50, were obtained from the gauge glass in the vortex repre-
sentation. The value v = 2 was used for all the data. The
temperature scale was set by To ——1 (random pinning poten-
tial model), To = 1.15 (gauge glass), and To = 12 K (experi-
ment). The two sets of data from the simulations agree quite
well with each other, but the experimental results lie lower
than theory at large values of J/T +".

is constant and E/(JRI, „) should only be a function of
J/Ts. The data is seen to scale very well over a wide
range. These results provide strong evidence that the
gauge-glass and random pinning potential models are in
the same universality class with a correlation length ex-
ponent at the T = 0 transition of v 2.

Finally, in Fig. 10, we compare the nonlinear current-
voltage characteristics from the simulations on the ran-
dom pinning potential and gauge-glass models with the
experimental results shown in Fig. 1. The same value of
v = 2 was used for all the data, and, for each system, a
temperature scale To was adjusted to get the best scal-
ing. The two sets of simulation data agree quite well with
each other. While the gauge-glass data were obtained in
the region where ( « I, as deduced from the results
for R~;„, the random pinning potential model data were
obtained in the finite-size region and so the data were
taken at fixed LT2 (or equivalently at fixed, but not very
small, (/I). The good agreement between the two sets
of data indicates that Bnite-size corrections are not very

We have studied the I-V characteristics of two mod-
els for vortex-glass behavior in two dimensions. For the
gauge glass, our results confirm earlier studies ' which
found a zero-temperature transition with a correlation
length exponent v 2. This behavior has also been
seen experimentally on very thin films of Y-Ba-Cu-O,
though the detailed form of the I-V scaling function is
somewhat difFerent between theory and experiment. We
also find that the linear resistance varies with an Arrhe-
nius form as the temperature approaches zero, indicat-
ing that the barrier exponent g is either zero or close to
zero. Experimentally the resistance vanishes at low tem-
perature less rapidly than an Arrhenius form, which may
indicate that quantum fluctuations of the vortices play a
role in the Y-Ba-Cu-0 Blms. The random pinning poten-
tial model is more realistic in that it describes a system
with a uniform applied magnetic field perpendicular to
the film, as opposed. to the gauge glass which has random
fIuxes. Nonetheless, the random pinning potential model
is found. to be in the same universality class as the gauge
glass, since they both have a zero-temperature transi-
tion with v 2 and Arrhenius behavior for the linear
resistance. Hence these two models are equivalent in two
dimensions. It can also be shown that in 6—~ dimensions,
the gauge-glass transition is in the same universality class
as the vortex-glass transition in a model with a spatially
varying transition temperature and a net magnetic field.
It is therefore quite plausible that the two models have
the same critical behavior in three dimensions. We are
not aware of a direct demonstration of this.
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