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Collective modes with a sound spectrum in layered superconductors
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The collective-mode spectrum for a layered superconductor is considered here. The Hamiltonian de-
scribes electrons in a metallic layer in the effective-mass approximation and the coupling of neighboring
layers by a Josephson-type term. In this model, electrodynamic equations are obtained that are valid in
the whole range of the nonmagnetic-impurities concentration. The velocity values of collective modes
for two principal directions of the wave vector (along and across the superlattice axis) are found.

I. INTRODUCTION

In conventional superconductors including nonmagnet-
ic impurities, collective modes related with the order pa-
rameter phase oscillations were predicted in papers. '

These oscillations, which weakly damp near the transi-
tion temperature were detected in the experiments of
Carlson and Goldrnan (the so-called "CG modes, " see
review and refs. therein}.

In this paper analysis of such modes is given in layered
super conductors, such as transition-metal dichal-
cogenides intercalated by organic molecules, or in high-
temperature oxides. Dynamic properties of electronic
subsystem play an important role in our understanding of
superconductivity in conventional superconductors, and
they may serve as a key to the mechanism of high-
temperature superconductivity (HTS). However, HTS
materials differ from conventional superconductors in
many ways. Besides sufficiently high transition tempera-
tures, these systems (e.g., La-Sr-Cu-0 and Y-Ba-Cu-0)
generally also have a pronounced layered structure, so
that the interlayer distance c &&a, b. The dispersion rela-
tion E(p) is highly anisotropic, where p=[p~~, p, I is a
quasimomentum (p~~ is a two-dimensional momentum);
the z axis being chosen normal to the layers. As a first
approximation, one can assume cylindrical Fermi sur-
face, which corresponds to the neglect of interlayer tran-
sitions. However, the latter bring too small deviations of
Fermi surface from cylindrical shape. Following
Lawrence and Doniach, we describe the conduction elec-
trons of a layered superconductor by a Hamiltonian
which treats the electrons within metallic layer in the
effective-mass approximation and couples the neighbor-
ing layers by means of a Josephson-type term. In this
model, the z dependence of the single-particle states has a
tight-binding form, so that the dispersion relation is

s(p) =p~~/2rn+rl(i —cosp, c),
where m is the effective mass of electron in two-
dimensional (2D) band, il is half-width of the energy band
corresponding to motion across the layers, ~p, ~

mac.
This dispersion relation is a result of a cylinder-
symmetric Fermi surface of an "hour-glass" shape, where
the radius of the "waist" (p, =0) is determined by the in-

terlayer hopping probability g. Absence of hopping be-
tween the layers (q=O) would correspond to a strictly
cylindrical Fermi surface of a 2D system. The dispersion
law (l) was widely used in consideration of various prop-
erties-both of conventional and high-temperature super-
conductors. It would be useful to generalize the con-
sideration of collective modes for layered compounds, in
particular for high-T, superconducting oxides.

In this paper we consider the conditions of collective
mode propagation both along and across the superlattice
axis, on the basis of the BCS model. We assume the BCS
s-wave intralayer pairing with one layer per unit cell, and
neglect the pairing of electrons in different layers, in the
spirit of the BCS theory for bulk superconductors, where
interaction is assumed to be pointlike. Thus, this model
describes a series of "two-dimensional" superconductors
coupled only through the interlayer electron tunneling.

d pj (k)=2eTQ f vG&+, , (p+p )'+'-
(2m )'

&)—&f =2lglT g f [F(, , (p+, p-}

(2)

—+t, , (p+ p —))+ d p
+' (2m )

II. BASIC EQUATIONS

We shall use the Gor'kov equations' for the Green's
functions to construct the theory of linear response of su-
perconductor to longitudinal electric field. " Here, since
the calculations will be carried out in an orbitrary gauge,
with the use of two gauge-invariant potentials (scalar
@=P+y and vector Q = A —Vy), we shall need a set of
two equations for determination of these quantities. The
first equation is for current j (k) [or charge density

p (k}]. Here co and k are, respectively, the frequency and
wave vector of the electric field. As the second equation,
we may use the continuity equation. However, since the
latter is identical in a superconductor with the self-
consistent equation for the phase of order parameter
y„(k) (b, i

—5& =4iey), we may use this equation, which
significantly reduces the volume of calculations. Here
and below we use the natural units A=c =k~ = I. Thus,
the necessary equations in the Matsubara technique are
written in the form
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G„= A~ + A~

FIG. 1. First-order correction to the thermodynamically
equilibrium Green's function Go+.

Here
~ g ~

is the BCS effective electron-electron coupling
constant, T is temperature, s~=E+a)/2, p+=pkk/2.
We shall denote the vertex with electromagnetic poten-
tials A and y by a point with a wavy line (k~~A). Then
the graphical representation of the first-order correction
G,+ to the free Green's function Go+ will assume the form
shown in Fig. 1. Similar graphical representation exists
also for the functions 6 &, FI+, and F I .

Equations (2) and (3) must be continued analytically in
s and co to the real axis, and also averaged over the im-
purities. Here we shall use the technique developed by
Gor'kov and Eliashberg, ' ' without however imposing
any limitation to the mean free path I, other than the
condition p+I »1, which enables us to take only the
ladder diagrams into account in averaging over the im-
purities. The technique of averaging over the positions of
impurities, suggested by Gor'kov and Eliashberg, ' al-
lows us to obtain the result much more economically
than when the well-known procedure' is used. It con-
sists in that the averaging over the impurities of super-
conducting Green's function is reduced in a definite
fashion to the averaging of Green's functions of the nor-
mal metal. In this case, four types of vertices are to be
averaged for Eqs. (2) and (3)

FIG. 2. Diagrammatic representation of the integral equa-
tions of two Green's functions product in the presence of impur-
ities for vertices I & and I 4.

2mP(a )1, =N(0)
z

+c.c.
Dk —iQ

(7)

r =n I = —nN(0)u
isa g(a )

+C.C.
Dk —iQ

i m.Qr;= —nN(0)v'. ,
" +c.c.

Dk —iQ
(9)

Here the following notations are used

g(a )=2[1—p(a )]/a'; p(a )=(1+a )

a =k u Y.; 7=r(1 iQ „—r)

tions represented by diagrams in Fig. 2.
Omitting the calculations, we write down the result for

two orientations of wave vector k =(k~~, k) ), along and
across the layers:

Here in agreement with Ref. 13

i =1,2, 3,4 .
and

D=D g(a )(1 E'0 „r)—; Q

r/2;Dj =g c r/2;

1/r= 2n n; pN (0) V(),

(10)

GR(A)(p)— 1

g
—E(p ) + JL), +1/2r

is the retarded (advanced) Green's function of the normal
metal, p is the Fermi energy, and ~ is the lifetime of elec-
tron due to scattering on impurities, and

f, =l, fz=(v n), f3=u, f4=u(u n); n=A/A;

u =BE(p)/Bp, u =(u~~, u, ); u, =vj sin(p, c),
U~ =maxv, =pc .

The bracket ( ); denotes an average over the im-
purities of the two Green's functions product. In the dia-
grarns, we denote the potential of the impurity by a cross.
The crosses which refer to the same impurity are con-
nected by a dashed line. Then, in the ladder approxima-
tion, for vertices I 2 and I 4 we have the integral equa-

where n; is the concentration of impurities,
N(0)=m/2m. c is the single-particle density of states at
the Fermi surface for a single spin in layered supercon-
ductor, Vo is the constant of impurity potential. Note
that we assumed g«p=pI;/2m to obtain expressions
(7)—(9). Therefore integration over

p~~
was carried out

near the two-dimensional Fermi surface.
Upon averaging over the impurities and analytic con-

tinuation in E and a), with account of (7)—(9), as well as
expressions for thermodynamically equilibrium Green's
functions of superconductor'

G,*,(f, )=+, ', ;+„(g,)=+,', (g, )=,
k.=(e' —~')'" k, =s(p) —V=uF(~p~~~ —pF) .

Equations (2) and (3) assume the following form (we have
omitted the orientation index cr of the wave vector):
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md n
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2

X [e/IQ „bl 2+eycoAr, +(41—&1)(g g„—E+E—+~ )r1[

(12)

where g= ~g ~&(0},g+
——g,+, g =g, . Here and below, all integrals over e must be understood as analytically contin-

ued, &.e.,

fdsF(g, g )= fde tanh r(g', g') —t»h F(g",g")— t»h
T

—t»h2T +(4
2T +' 2T

(14)

(
2 g2)1/2 2) g2

eR (eA)»—
~ (g2 e2)1/2 e2 & g2 (15) =2e X(0)D~~ (21)

axis. The conductivity o. is connected with dift'usion

coefficient by the Einstein's relation'

Expressions (12) and (13) are easily integrated over g
and g„, by calculating the corresponding residues. Using
the following relations

Q[s+/g+ —s /g ]=co[1—(e+e +5 )/g+g ]
(16)

Q[1 —(e+E —6 )/g+g ]=co[s+/g+ —e /g ]

as well as

fde[E+/g+ —E /g ]=4e1; f deQ/(g+g )=4&

In our model, the natural anisotropy parameter is

) =(,/, )'"=(D,/D )'"=~./. „ (22)

D k «co «6 «w (23)

Further, we shall consider the solution of the set of
equations (18) and (19) in the case when the current of
normal electrons is equal and oppositely directed to the
current of superconducting pairs, so that the total
current j (k) =0. Below we limit our consideration by a
dirty limit and weak spatial dispersion

j„(k)=—f — . QQ 1—0 dE
4 1 —iA~

E+E. +4
0+0-

we obtain, after straightforward but cumbersome calcula-
tions

In this case P(a) =g (a)= 1 and the system of homogene-
ous equations for Q and 4 assumes the form

e)Q fdE[1—(e+e +b, )/g+g ]

—k@f de[i —(E+E —4 )/g+g ]=0,

g(~)
Dk —iQ

(18) dE dC 1 =0.
(24}

dE Q g(a)Dik
g+g 1 iQr Dk—' —1Q

Dk iQ—
Evaluating integrals over energy E. near the transition
temperature T, and setting the determinant of system
(24) equal to zero, for the dispersion law of modes we ob-
tain

in which g, P, and D are given by formulas (10),
Q=g++g, and 21+ 518 —s k +i5~ 1+ ln-2 2 sk 86 =0

Q = ~ —~x @=y+i (20)
(25)

are the generalized gauge-invariant vector and scalar po-
tentials.

III. CGLLKCTIVK MADES

The equations for current (18) and order parameter
phase (19) are valid in the whole range of nonmagnetic
impurities concentration, as well as for any orientations
of the wave vector k, both along and across superlattice

max[r, ', 6] &co &min[6, , ~b/In(8b/co) J (26)

the acoustic dispersion law is valid. For two principal

where 6=~6, /2T, N, /%=5 is ra ratio of superconduct-
ing pair numbers to that of normal carriers, and
s =(2Db, )'/ is the wave velocity As it follo.ws from (25),
in the case of weak attenuation (5 «co) and under the
neglect of pair breaking, i.e., when
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orientations of wave vector, the velocity s =(2D b)'r
according to (10) is given by

sl =U~~(61 ) and st ='tlc(5'r)

The damping 6 of collective modes near transition tem-
perature T, is small. It is easy to see that the ratio s~/s~~
is expressed through the same anisotropy parameter y.
In inequality (26) r, is the inelastic relaxation time. The
considered quasiequilibrium. solution is valid when the
condition co~, &&1 holds and the dynamic pair-breaking
eft'ect is absent (co&A, ). Therefore, the wave numbers
satisfy the following inequality co-(D k b, )'~ & b, , i.e.,

where ~l "" g& 7'gal a e r spe t'v y
lengths parallel and normal to the layers.

IV. CQNCLUSIQN

The issue of collective modes propagation in supercon-
ductors was widely discussed in the literature, starting
from the creation of microscopic BCS theory. The excel-
lent review on this topic has been made by Martin. '

As shown by Bogoliubov' and Anderson, ' if the
Coulomb interaction is neglected, the longitudinal collec-
tive acoustic-type oscillations with frequencies within the
energy gap must originate in the electron system of su-
perconductor. However, when the Coulomb interaction
is taken into account, these oscillations turn into plasma
oscillations, ' which do not differ from those in normal
metals. Strictly speaking, such a situation may occur
only in superconductors with infinite conductivity in the
normal state.

The mechanism considered in Refs. 1 —3 and in the
present work, substantially differs from the standard
treatment. ' Note that the modes obtained in the present
paper are caused by velocity oscillations of the superQuid
pairs (order-parameter phase). Meanwhile, the
Bogoliubov-Anderson modes are due to oscillations of
density X, —~

6~, namely to oscillations of order parame-

ter modulus. In addition, due to Landau-type collision-
less attenuation in clean superconductors (cow)) I), the
collective modes treated in this work and in Refs. 1 —3 are
damped. Considering the equation of self-consistence for
6,+6i, it is easy to find that in our case var

X, -A, +5*, =O.
Above we limited our consideration only by the dirty

case, when 6r «1, which according to (28) means that
I «g'. Though Eqs. (18) and (19) of linear response to the
longitudinal electrical field are valid for any impurity
concentrations, their application to HTS oxides, in the
so-called clean limit h,r))1 (or g'« l) should be made
carefully. Because of the small coherence length, as well
as complex band structure of some HTS materials, such
as Y-Ba-Cu-O, ' their multigap structure becomes very
essential.

Experimental methods of the so-called "CG-modes"
observation are considered in detail by Schon. Taking
into account the typical values of parameters, one may
say that the obtained results are applicable not only to
conventional superconductors, but also to La-Sr-Cu-O-
type HTS compounds. ' One should note that La-Sr-Cu-
O has a relatively simple band structure described by the
one-band model. ' ' For HTS Y-Ba-Cu-O-type oxides
the simple theory presented here is not applicable
without some modification. However, the development
of the theory for two-band structures goes beyond the
scope of this paper and requires special consideration.

Finally, we note that experimental revealing of anisot-
ropy parameter y =(s„/s~~ ), which rejects the Fermi sur-
face topology will allow us to unite the set of anisotropy
properties displayed both in normal and superconducting
states of layered superconductors. It is necessary also to
point out the more expressed anisotropy of parameters of
the normal state Dz/a~~ =o.~/o. ~~=y, as compared to
that of the superconducting state gj /g~~ =s~/s~~ =y.
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