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Phase transitions in ferromagnets with dipolar interactions and uniaxial anisotropy
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A renormalized-field theory for the critical behavior of ferromagnets with dipolar interactions and
uniaxial anisotropy is developed to the one-loop order whereby the (reduced) dipolar g and uniaxial
m couplings are studied on equal footing. A generalized minimal subtraction scheme is used to
study the attractors and the renormalized flow of the P coupling constant and, subsequently, to
determine the Kouvel-Fisher efFective exponent p & for the longitudinal susceptibility for arbitrary
values of m and g. Despite the difficulties brought about by the generality of treatment, the
investigation was carried out analytically throughout. The crossover transitions between the four
nontrivial fixed points (Heisenberg, Ising, uniaxial dipolar, and isotropic dipolar), as exemplified
by p &, are determined in detail to the one-loop order of the theory. In particular, all previous
predictions concerning the discussed features of criticality in dipolar ferromagnets are obtained as
specific cases of the present study. The problems arising in an attempt to fix the physical scale in
a renormalized-field theoretical treatment of crossover behavior are discussed in view of finding a
quantitative interpretation of recent experimental results on Gd and Fe&4NdgB.

I. INTRODUCTION

The short-range exchange interaction is the dominant
interaction in ferromagnetic materials and is responsi-
ble for the existence of spontaneous magnetization be-
low a certain critical temperature. The theory of the
second-order phase transition in magnetic materials with
short-range exchange interactions is well established.
It turned out that the thermodynamic properties are gov-
erned by critical exponents which depend only on the
number of components of the magnetization vector n and
on the dimensionality of space d. In addition to the ex-
change interaction which is short ranged and isotropic, in
real ferromagnets other physical interactions are present
which difFer in strength, range of action, and spatial sym-
metry. - Outstanding examples are the dipolar interac-
tions between the magnetic moments and the crystal-
field interactions. The former are long ranged and are
covariant (tensorial) rather than invariant (scalar) un-
der spatial rotations while the latter induce anisotropy
in the magnetic properties. While these interactions are
typically one or two orders of magnitude smaller than
the dominant exchange interaction, it is still a subject of
current research how they infIuence the critical behavior
of real ferromagnets. '5

Below, we shall be interested in the modifications
which arise in the critical behavior in the paramagnetic
phase of ferromagnets with dominant exchange interac-
tion, dipolar interaction between the ordering magnetic
moments, and uniaxial anisotropy. As in almost all rele-
vant studies on critical behavior in the presence of dipo-
lar forces, our investigations are based on the fundamen-
tal work by Fisher and Aharony. ' There they derived
the proper Landau-Ginzburg-Wilson Hamiltonian for the
renormalization-group (RG) treatment of the problem '

in the presence of dipolar forces in a d-dimensional cubic

system and gave a procedure for the estimation of the
relevant parameters in terms of the respective material
constants. Uniaxial anisotropy is incorporated into the
analysis of the critical behavior along the lines set out in
the phenomenological scaling theory of anisotropy and
developed later within the RG scheme.

The asymptotic critical behavior of isotropic n-
component ferromagnets in which dipolar efFects are im-
portant has already been studied within the &amework
of the RG analysis and the e expansion. ' ' For XI
(n = 2) and Heisenberg (n = 3) dipolar systems, the
asymptotic behavior is governed by the dipolar fixed
point of the RG recursion (flow) equations characterized
by an infinite increase of the dipolar coupling constant.
For the Heisenberg dipolar case, the values of most of
the critical exponents are very close to those of the re-
spective short-range model with a switched-ofF dipolar
interaction.

In contrast, for Ising (n = 1) dipolar systems,
i.e., dipolar systems with infinite uniaxial anisotropy,
the asymptotic behavior is characterized by mean-Beld
exponents. This drastic difFerence is directly related
to the fact that the upper critical dimensionalities d,
above which the corresponding mean-field description of
criticality is exact, are difFerent for Ising and non-Ising
dipolar cases (d, is 3 and 4, respectively ). Precisely at
d, logarithmic corrections are expected and, in fact,
have been detected for the Ising dipolar system at d = 3
within the parquet-graph approximation even before
the advent of the RG analysis of phase transitions. This
is the much-discussed mean-field behavior with logarith-
mic corrections. It must be emphasized that the efFect
of the dipolar interaction is difFerent from that of a long-
range exchange interaction. There the critical behavior
is driven towards the mean-field regime regardless of the
value of n.

The account of corrections to the main scaling, i.e. ,
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asymptotic, behavior is inevitable in order to achieve
a useful characterization of the experimentally accessi-
ble vicinity of the critical point. In the case of the
dipolar ferromagnets in a nonasymptotic temperature re-
gion, the critical behavior characteristic for the respec-
tive short-range model shows up. Quite generally, the
crossover theory explores the possibility for and the con-
sequences of the switching over between difFerent generic
regimes of critical behavior upon variation of tempera-
ture. Theoretically, the difFerent regimes of critical be-
havior belong to diferent fixed points of the RG transfor-
mation, as described by the corresponding universality
classes which depend on underlying symmetries, range
of interactions and dimensionalities of space, and or-
der parameter field. Once the fixed points of the pa-
rameter How under the action of the RG have been lo-
cated, standard. analysis of linear stability near the re-
spective fixed points allows one to estimate, usually in an
e or 1/n expansion, the correction-to-scaling exponents
as was demonstrated already in the pioneering papers
on the subject. ' ' Without further complications,
one finds the crossover exponent which characterizes the
way a system runs away to a new fixed point or, possibly,
to infinity when further physically relevant perturbations
are included into the problem and the "old" generic fixed
point is no longer stable. In the above mentioned exam-
ples of isotropic dipolar ferromagnets the dipolar fixed
point is stable and therefore determines the asymptotic
critical behavior while the respective short-range fixed
point is unstable and may inAuence the critical behavior
in an intermediate-temperature region. If further per-
turbations, like anisotropies, are included, the number of
possible fixed points increases and the critical behavior
becoxnes more complicated, as will be shown below.

A fundamental difticulty which is then encountered
within the RG perturbation expansion techniques is the
sensitivity of the result to the initial (bare) values of the
parameters. It is only when a given physical system
evolves along a RG trajectory which traverses the im-
mediate vicinity of one or more unstable generic fixed
points that the critical behavior characteristic for the
unstable attractors would show up. Consequently, the
expected crossover between diferent regimes of critical
behavior occurs only for a certain range of the initial val-
ues of the parameters. A further complication is that
the "distance" of a given physical system to criticality in
parameter space can be measured with reference to dif-
ferent fixed points. Early RG crossover treatments
exploited a reduced temperature variable referred, in the
first instance, to the fixed point which becomes unsta-
ble under an additional perturbation; consequently, a
matching condition has to be used to extend the anal-
ysis to the domain of attraction of the additional fixed
point, that is, to the true asymptotic critical behavior
whereby significant complications arise. As shown by
Amit and Goldschmidt, a more natural and advanta-
geous crossover scheme can be formulated if the tem-
perature scale is referred to the true asymptotic critical
temperature &om the very beginning. Below we extend
this scheme to the more complex context of the present
model.

It is the purpose of the present paper to study in detail
the crossover in the critical behavior of ferromagnets with
dipolar interactions and uniaxial anisotropy. We have
chosen to characterize the crossover in the paramagnetic
phase via the calculation of the eH'ective temperature-
dependent exponent p,a (Ref. 29) to the one-loop order
of the renormalized-field theory:

d lri gii
d ln7.

Here yz& is the inverse longitudinal susceptibility, 7
(T —T,), and T, is the true critical temperature. The
renormalization is carried out within the generalized min-
imal subtraction scheme which is itself further gener-
alized to match the more complicated situation encoun-
tered in the model discussed.

DiH'erent cases which will later be identified as partic-
ular cases of our investigation have already been studied.
For instance, p,g for the crossover Rom short-range to
dipolar critical behavior of Heisenberg (n = 3) ferromag-
nets exhibits a pronounced dip for reduced temperatures
of the order of the reduced dipolar interaction.
This dip was claimed to be responsible for the exper-
imentally observed susceptibility exponent in EuO and
EuS. For the crossover &om short-range to dipolar
critical behavior of Ising (n = 1) ferromagnets,
decreases &om its short-range value pl to the asymp-
totical mean-Beld value of p = 1. This prediction
complies with experiments on I iTbF4. ' Addition-
ally, for ferromagnets without dipolar interactions, p ~
has been calculated for diferent models which exhibit a
crossover originating &om the anisotropy of the short-
range interaction.

The substantial generalization and, hence, complica-
tion in the present study lie in the simultaneous analysis
on equal footing of uniaxial anisotropy and dipolar forces
as measured by their reduced coupling strengths m and g,
respectively (see below). This introduces tzvo additional
characteristic lengths into the problem in the crossover
region. The latter has therefore a structure which is far
more complicated than in problems with a single addi-
tional characteristic length studied previously. The diK-
culties in tackling the two-scale problem were only par-
tially overcome in a treatment in which the reduced cou-
pling strengths m and g were set equal at a certain stage
of the calculation, thus reducing it to an electively single-
scale one. The results were related to experiments on
Feq4Nd28 (Ref. 39) via the additional plausible "mean-
geometric" approximation m = g —(m,„~tg,„zt) ~ and
the experimental values under the square root were es-
timated &om available experimental data. A Brief Re-
port on the results for general m and g focusing on the
value of p g with new nonuniversal logarithmic correc-
tions as well as on some important intermediate results
was given quite recently. The generality of the proce-
dures used and the results obtained allows their applica-
tion to situations with any m and g relevant to exper-
iments on such matenals, including the known limiting
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cases where one of the strengths is zero or infinitely large.
Furthermore, the accomplishments reported here allow
various extensions to exhaustive crossover calculations of
even more complex cases and/or of other crossover func-
tions. All this motivates a detailed presentation.

The plan of the paper is as follows: The model is pre-
sented in Sec. II and a brief qualitative discussion of
the salient features concerning the possible crossover sce-
narios is given on the basis of the correlation function
in the Gaussian approximation. Section III outlines the
renormalization procedure and the Wilson P function is
obtained after the renormalization of the relevant four-
point vertex. In Sec. IV the effective exponent for the
longitudinal susceptibility is calculated from the respec-
tive renormalized two-point vertex and its crossover be-

havior is studied. The limiting cases are deduced in Sec.
V. A final Sec. VI presents a discussion of the results in
view of recent experimental work. Important analytical
procedures and calculations are given in some detail in
the Appendixes A, 8, C, and D.

II. MODEL

A. Hamiltonian

The critical behavior of a ferromagnet with dipolar
interactions and. uniaxial crystal-field anisotropy is de-
scribed in momentum (q) space by the effective Landau-
Ginzburg-Wilson Hamiltonian

(2)

The P (q)'s are the n components of the order-parameter
fleld which are related to the components S (H) of a
spin located at a lattice point R, by a Fourier transform.
Below we will choose explicitly n = d = 4 —e which
simplifies the calculation of the one-loop integrals [see
Eq. (22)]. In Eq. (2), A is the nonlinear isotropic coupling
constant, E p~g = (1/3)(b pb~h + b ~bpg + 8 gbp~), and

f stands for J+ d"q/(2vr)". The spin interactions are
contained in the matrix

vertex is not present in the starting Hamiltonian. No
rigorous proof about the asymptotic irrelevance of the f
term is available, although careful studies to second or-
der of the e expansion4 or by means of the parquet-graph
approximation provide arguments in this direction. In
any case we assume, as usual, that the h and f terms
do not contribute appreciably either to the asymptotic
critical behavior or to the critical crossover behavior.

The free-field. two-point correlation function

(q) = (r-+ q') b-p + g +&) (5)

The choice of the easy axis of magnetization along the
first coordinate axis specifies the r 's as ri ——r and

r~ =r+m for 1& j &n, (4)

with m ) 0 measuring the anisotropy strength, while
r is proportional to the bare reduced temperature r
(T —T()) with the mean-field critical temperature To [see
Eq. (78a) for details]. Apart from a trivial shift of the
critical temperature which is already included in To at
this stage, the crucial inHuence of the dipolar forces is
reflected in the g term in Eq. (3). The two additional
characteristic lengths discussed in the Introduction are
set up by the parameters m and g. One should not over-
look the fact that two further terms are naturally gen-
erated when the Fourier transform of the d-dimensional
dipolar interactions between moments located on a cu-
bic lattice is considered in the relevant long-wavelength
limit. ' They are of the form hq qp and fq b p. The
first term is definitely irrelevant for the asymptotic criti-
cal behavior. The second term is of cubic symmetry and
reHects the adopted underlying symmetry of' the lattice.
This term is known to generate a four-point vertex of
cubic symmetry under the action of the RG even if such

in the paramagnetic phase is of paramount importance
to the one-loop RG calculation of the zero-Geld. suscepti-
bility and, hence, of the effective susceptibility exponent

ff . In Eq. (5), Go (q) is the inverse of V& (q) and has
a complicated structure when both m and g are nonzero
as assumed in the present study. Namely,

1
~ g cf~gp

+q q +gQ &p+qnj9 (6)

with

a,-p (o) = b.p .
r +gK

The quantity N has the simple interpretation of being

where the r 's are defined in Eq. (4). As explained in
Ref. 7, the expression (6) for the correlation function is
nonanalytic in the limit q ~ 0 in that its limiting value
depends upon the direction from which the wave vector
approaches zero. At q = 0,
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the respective diagonal component of the demagnetizing
tensor for the considered sample only in the case when
the latter is an ellipsoid whose principal axes coincide
with the anisotropy axes. In the general case N is
given by complex lattice sums.

~»m, (
Heisenberg

B. C aussian appraxixnatian
Ising isotropic bipolar

The correlation function of Eq. (6) contains all impor-
tant details concerning the Gaussian critical behavior,
i.e., the criticality of the noninteracting (A = 0) fiuctu-
ation model. It is instructive to present the analysis of
the &ee-field case. ' ' Among other things, this serves
to establish salient qualitative features of the possible
crossover scenarios and to naturally introduce relevant
terminology and relations.

I et us now concentrate on the Gaussian correlations
for three-component systems (n = 3). By dimensional
considerations, one has

uniaxial bipolar

FIG. l. Qualitative crossover scenarios as seen in the Gaus-
sian analysis of the problem. Going beyond the zeroth order
of the perturbation theory, the mean-6eld temperature scale

(T —To) has to be replaced by the renormalized temper-
ature scale 7 (T —T ).

where the correlation length ( = r ~ (T —To)
diverges for T ~ To with the mean-field critical expo-
nent v = 1/2 . For r » g, one finds different correlations
along and perpendicular to the easy axis as seen in the
expressions for the two-point correlation functions, re-
spectively:

GI~ (q, k) = b (q+ k),+q2 2

2

(10)

The index j with 1 ( j & n stands for the difFerent
perpendicular directions. An isotropic two-point correla-
tion function for any combination of components derives
from Eqs. (9) and (10) if, additionally, r » m so that for
sufEciently high temperatures both uniaxial and dipolar
interactions are suppressed. in the correlation function

&.".", (q, k) =
1 +q2 2 b p b(q+k)

and one expects to detect critical behavior typical for the
Heisenberg model.

As r ~ 0 (T ~ To), one has to specify the relative
magnitude of the parameters m and g which indicate
the strength of the anisotropy and the dipolar interac-
tion respectively. Considering the extremes for the ratio
m/g, there emerge two generic crossover scenarios as the
reduced temperature variable decreases to zero. The sit-
uation is depicted in Fig. 1.

For m )& g, one has to consider next the temper-
ature range specified by the inequalities m, &) r » g
and Eq. (10) indicates that the perpendicular correlation
function G . . vanishes in this limit. As only spin compo-
nents along the easy axis are then correlated, this regime
is characterized as Ising critical behavior. Therefore, a

crossover from Heisenberg to Ising critical behavior is ex-
pected to occur for r m . In the Ising critical regime
(m » r » g) one obtains from Eq. (6)

&ii (q k) =(2)
b (q+ k),1+ g (m)

2

(12)

~P ' 1+q2 2 b (q+ k) . (13)

Upon further lowering of the temperature, one reaches
once again the asymptotic uniaxial dipolar behavior (cf.
Fig. 1).

As already stated in the Introduction, it is our inten-
tion to characterize quantitatively the crossover behavior
in the system described by the model (2) by calculating
the temperature-dependent efFective critical exponent for

which is the well-known correlation function for the dipo-
lar Ising system. If the temperature is further reduced,
so that now both m, g » r, Eq. (12) implies that the lon-
gitudinal correlation function vanishes for wave vectors
q parallel to the easy axis. Nonzero longitudinal cor-
relations persist only for wave vectors which are trans-
verse to the easy axis (qq

——0). Such a growth of the
transverse-q contribution to the correlation function is
typical for dipolar systems. The regime m, g )& r is then
denoted as unia2;ial dipolar critical behavior. It is ex-
actly in this case that one expects mean-field asymptotic
behavior with logarithmic corrections. Obviously, a fur-
ther crossover should have occurred in between, namely,
the crossover &om Ising to uniaxial dipolar behavior at
P~g.

For m « g, the system starts out with the Heisenberg
regime for r » m, , g, as commented above [Eq. (11)],
and then crosses over at r —g to an isotropic dipolar
behavior as can be recognized in the correspond. ing form
of the two-point correlation function:
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the susceptibility. The tensor of the inverse susceptibility
y &

is defined with respect to the internal magnetic Beld.
In the paramagnetic phase it is given by

G 'p (k = 0)(2) (14)

+11 /g

y, ,' = (r+ m)/g . (16)

At r = 0 (T = T0), it is only the component of the sus-
ceptibility parallel to the easy axis that diverges. This
statement holds beyond the Gaussian regime. Introduc-
ing the reduced temperature scale referred to the true
critical temperature T, by r (T —T,), the singularity
of y~z is characterized by the critical exponent p accord-
ing to the usual definition gii ~r~

~ . The behavior
of the other components of the susceptibility tensor will
not be discussed here; the reader is referred to Refs. 10,
44—47 for further discussion of this issue.

The results of the Gaussian analysis of the correla-
tions in the critical region can now be applied to obtain
qualitative predictions about how the expected crossover
schemes (Fig. 1) would reHect upon the value of the effec-
tive critical exponent p, ir defined in Eq. (1). In the range
r )) m, g and regardless of the ratio m/g, one expects
that p ff ——p~ . For m )) g, the crossover as seen in the
value of p ff should proceed as p~ ~ py ~ GAUD, while
for m && g the sequence should be p~ ~ AD ~ GAUD.

Here, the subscripts H, I, ID, and UD stand for "Heisen-

berg, " "Ising, " "isotropic dipolar, " and "uniaxial dipo-
lar, " respectively. If the parameters m and g are of the
same order of magnitude, no two-stage crossover struc-
ture is to be expected as the problem is then an ef-
fectively single-parameter one. There is then a single
crossover p~ —+ GAUD which corresponds to the crossover
from Heisenberg to uniaxial dipolar behavior. Asymp-
totically, GAUD takes on the mean-Beld value of unity but
this proceeds slowly on the 7. scale because of the loga-
rithmic corrections. In fact, all qualitative predictions for
the special case m = g have been corroborated quantita-
tively by a recent explicit one-loop calculation of jef.

III. THE RENORMALIZATION FLOW'
IN PARAMETER SPACE

Renormalized-field theory ' is applied to determine
the parameter flow, the fixed points, and the eAective
critical exponent for the longitudinal zero-Beld suscep-
tibility of the system described by (2) to the order of
one loop. The propagator is the one defined by Eq. (6).
Two vertex functions have to be determined and renor-
malized, the four-point vertex I"iiii (ki, k2, ks, k4) and

the two-point vertex I'ii (ki, k2). When duly renormal-
ized and taken at zero momenta, the former yields the

with the second term being the usual demagnetization
correction. In the Gaussian regime, according to Eqs.
(5) and (7),

I,(N ) ZN/2 ~(~)
R (17a)

(17b)

A = Z„K'Sq u. (17c)

In Eq. (17b), r is the shifted reduced temperature,

r = r —gNii+ I'ii (k = 0;r = O, m, g),

while I'&, w, and u are the respective renormalized(x)

quantities. The geometric factor is the usual S&
2 vr"~ I'(d/2) with I'(z) the gamma function, e = 4 —d,
and K is an arbitrary momentum. In the critical region
and within the e-expansion scheme, u is of the first order
in e and the renormalizing multiplicative factors are of
the form

Z4, = 1+0(u'),

Zp. ——1+c,u+ O(u ), (19b)

Z„= 1+aiu+ O(u ) . (19c)

The Brst equation simply means that the anomalous di-
mensionality of the order-parameter (OP) field does not
show up in the one-loop calculation. It remains then
to determine the renormalizing factors Z~2 and Z„or,
which is the same, eq and aq. In principle, these con-
stants are determined from the one-loop contributions to
the two- and four-point vertices, respectively. The most
convenient way of doing this is the method of minimal
subtraction invented by 't Hooft and Veltmann. Within
this approach only the poles of the vertex functions which
are of the form 1/e and lead to divergencies in the limit
d ~ 4 are considered. For the application to systems
with crossover behavior, Amit and Goldschmidt de-
veloped the method of generalized minimal subtraction
(GMS). To understand their ideas, the How of the param-
eters under a transformation k; —+ pk, of the length scale
has to be considered. It follows from naive dimensional
analysis that

m(p) =— and g(p) = —, (20)

RG How equation for the P4-coupling constant, while the
latter gives the inverse longitudinal susceptibility itself.
Combining the information &om both gives finally p ff.

The emerging one-loop integrals are calculated with
the help of dimensional regularization and e expansion
with ~ = 4 —d and d indicating the dimensionality of
space. An infinite cutofF is used and, hence, renormal-
ization has to be performed. As in the simpler mod-
els studied earlier, ' no renormalization of m and g is
necessary. The N-point vertex functions I'( ), the tem-
perature variable r, and the P4-coupling constant A are
renormalized multiplicatively with the renormalizing fac-
tors Zy, Zy2, and Z„which are deBned as usual:
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and the critical region is found in the long-wavelength
limit p ~ 0. The critical region therefore corresponds
to the region of in6nite anisotropic and dipolar coupling
constants. Consequently, in addition to the poles ap-
pearing in the limit e ~ 0, the divergences showing up
for m ~ oo and g ~ oo have also to be subtracted
within the GMS scheme. A prerequisite for the imple-
mentation of the GMS method is the temperature shift
given by Eq. (18) whose physical meainng is the fixing of
true criticality at r = 0 or, as follows from Eq. (17b), at

28

It will be seen (Sec. IV) that it is not necessary to
determine t"q explicitly in order to And p,g to one-loop

I

order. This is a considerable simplification because of
the rather complicated nature of the perturbation inte-
grals which have to be considered. This aspect of the
calculation of p,g has remained unnoticed in the sim-
pler limiting cases considered earlier within the GMS
scheme (dominant anisotropy in n ( n components of the
OP) isotropic dipolar ferromagnet, and Ising dipolar
ferromagnets4). It is therefore an improvement over pre-
vious treatments as well.

It is now clear that it remains to determine the renor-
malizing factor Z„(i.e. , the constant ai) from the one-

loop contribution to I'iiii(k; = 0):

I'llll
I

o ————
I

= ———
I

—
I

Go (q) G0 (q)+ Go'(q) G0'(q)(4)
(' r m g A ) A 3 f A l '

ii ii 2 (n, —1) ij ij
'K 'K 'r:) K' 2 (r') 3

+ Gl'(q) G" (q)+ Gl' (q) G" (q)

In deriving Eq. (21), the obvious symmetry Go ——Go has been used. The n —1 directions perpendicular to the easy
axis are indicated by j,j' with j g j'. The integration can be further simplified, with n = d = 4 —e, by noting that

- (q~) (qi)' +
q' —(qi)

r~ + q2 r + q2 r + m+ q2
(22)

which means that it is only the modulus q =
~q~ and one angle () = arccos(qi/q) which appear explicitly in the

denoininator of the propagator [Eq. (6)]. Carrying out in Eq. (21) the angular integration in the plane perpendicular
to the easy (qi) axis, one obtains

(4)
t' r m g Al A 3 (Al' 1- 1 5

10 - Ii + 12 +» + -I —-I + -I('r 'r 'r 'r:) e' 2 ( jK 3 3 3 (23)

where the integrals I;(r/K, m/r, g/v2) are defined in Appendix A. It is not necessary to calculate exactly the I s
within the &amework of the GMS scheme. All one needs is to determine those contributions to the integrals which
diverge for e -+ 0, m ~ oo, and/or g -+ oo. In these limits, the divergences are simple poles in e, while they are
logarithmic in m, g, and (m+ g). Their calculation is presented in sufhcient detail in Appendix A. The result for the
divergent contributions to I'pygmy is

(4)g; ( r m g A ) AI' ' i0; —,—,—,—i= ——
r, K rC K') r'

3S~ (A 5 8 1 (r+g& 17 (r+m) ll t'r+m+g i———ln ——ln + —ln 24
4 (r'j 3 e ( r2 ) 18 q

v2 ) 18 q
r2

Having in mind the definitions of u and Z„[Eqs. (17c)
and (19c)], one obtains the following expression for the
constant ai.

t'~m ~g~ 2 31 g
K v ) e 2o tc

I

(23) is finite for e ~ 0 and in the limits m ~ oo and

g ~ oo and, hence, I'ii&& is renormalized in the sense(4) ~ ~

of the GMS scheme. This holds for arbitrary values of
o. As already mentioned in Ref. 34, in order to obtain
the logarithmic corrections in the uniaxial-dipolar limit,
one has to choose o' = 1. Now the Wilson P function is
calculated as

ll (m+ gb
ln 1+

12o ( K )
(25)

( ~m ~g)
K K ) OK

(26)

This choice of ai guarantees that the four-point function with the result
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( i/m i/gl 2 3 1 17 1
u, ' —Eu+ u +-

K K ~II 12 1 ~rn

11 1 2 3+O(eu, u )12 1 + gm+g
K

(27)

The flow of the renormalized coupling constant u under
a transformation k ~ pk of all lengths is described by
the flow equation

du(p) ( ~m ~g)
dp ( rp rp/

whose solution at e = 1 is

1+.
K

1+v
KP

1+ ~m
K

gm+g
KP

1+ gm+g
K

u (p) = —+ — lnp 3 Kp

u 2~g

17 Kp
ln

12 ~m

11 Kp
ln

12 vl'm+ g
(29)

where u(p = 1) = u .
The character of the RG flow of the renormalized cou-

pling constant u(p) reflects the structure of the critical
region and provides, even before the calculation of p g,
for abundant information about the diferent crossover
regimes discussed qualitatively in Sec. II (cf Fig. 1). The
backbone of the structure consists of the four nontrivial
Axed points which are defined as the zeros of the Wil-
son P function. These are (i) Heisenberg, u~ ——e/2 for

rp )) mi/2, gi/; (ii) Ising, uI ——2e/3 for m / &) rp »
g /; (iii) isotropic dipolar, uiD ——12'/17 for gi/ ))
rp )) m /; and (iv) uniaxial dipolar with uUD ~ oo

(uUD 1/pin p with p ~ 0 for m /, g /2 )& It;p). When
both m and. g are nonzero, the renormalization flow goes
ultimately to uUD, thus establishing the asymptotic dom-
ination of the joint influence of dipolar interactions and
uniaxial anisotropy. The critical region for the crossover
problem is characterized by the condition

system and we have to consider u as a free parameter
of the renormalized-field theory. Consequently, neither
the width of the critical region nor the precise trajectory
can be exactly predicted. The choice of u = u~ provides
for an as large as possible critical region while on the
other hand for u = 0 the critical region vanishes, corre-
sponding to the unstable Gaussian fixed point. In view
of the uncertainties with respect to the choice of u, it
might be rewarding to pursue, within the more general
and quantitative context of the results in this paper, the
semiempirical procedure of fixing the initial value of u(p)
by fitting to a relevant set of experimental data.

Since the coupling constant u (p), diverges in the
asymptotic limit p ~ 0, it is convenient for graphical
representations to use the effective renormalized coupling
constant

u (p)~(p) =,1+ „
(31)

g=1. 0 x10 LL=Q. 500

which is 6nite in the entire parameter region. The asymp-
totic values of ut(p) are ul(p) u(p) for p )) g / /r and
ul(p) (p, tr —1) for p « g / /r. The second limit can
be identified by considering our result for p,g in the re-
spective limit [Eq. (76)]. In Fig. 2 the efFective coupling
constant ut(p) as given by Eqs. (31) and (29) is displayed
for g = 10 and different values of m (whereby r = 1
and u = u~). The curve with m = 10 exhibits a
well-expressed crossover for p —m to short-range Ising
behavior dominated by uI. For p = g, uI(p) goes over
to zero, signaling a mean-field critical behavior with log-
arithmic corrections as verifled below. For smaller values
of the anisotropy parameter m the plateau of effective
Ising behavior becomes smaller and Anally disappears.
The influence of the initial value u of the coupling con-
stant on the flow of ul (p) is illustrated in Fig. 3. The curve
with u = uH is the same as in Fig. 2. One notes that
although both the width of the critical region and the
character of the corresponding trajectories are sensitive
to the initial value of u(p), the trajectories are totally
independent of it inside the critical region as given by
p « u/~u —u~~. The influence of the parameters u and

(30)
U id—
UI

- 10

which guarantees universality of the flow in the sense
that there u(p) is independent of the initial value u and
the crossover scaling functions are universal. In fact,
p (& 1 corresponds to the physical expectation that only
large wavelengths are important in the vicinity of a phase
transition, while p « u/]u —uH

~

corresponds basically to
the condition that the system in consideration be critical
even if anisotropy and dipolar interactions are switched
oK and the system be initially close to Heisenberg criti-
cality. Now we have to recall the fact that u is related to
the coupling constant A of the initial Hamiltonian as well
as to the arbitrary momentum r [Eq. (17c)]. Therefore it
is not possible to estimate the value of u for a given bare

0.5-

0 I I IIISI I I IIISI I I IIIII I III' I I IIISI I I IIIIII I IIIISI I I IIISI I I IIISI I I IIISI I llllSI I I IIISI I I IIISI I I IIIS0. I ' I ' I ' I ' I ' I ' I ~ ' I ' ~ ' I ' I ' I

—12

1OQIP P

FIG. 2. The fIow of the effective coupling constant
ut(p) = u(p)/(1 + ~g/rp) for g = 10 ', u = u~ = 1/2,
and difFerent values of m.
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g=1. 0 x 10 m=1 . 0 x 10 I'ii (0; r, m, g, A) = r + gNii + AZ (r, m, g) (34)

where

E {r,m, g) = @ (r, m, g) —4' (0, m, g) .

w(p)

0. 0 I I IIIIII I I IIIIII I I IIIINI I I IIIIII I I IIIIIII I I uld I I IIII' I I l sill I I IIIINI I I IIII I I Illa' I I leal I I lllll I I IIII
I ' I ' I ' I ' I ' I '

I
' I ' I ' I ' I ' I I

—12

1 0/iII P

The renormalized temperature 7 and the coupling con-
stant u were already defined in Eqs. (17b) and (17c) in
which at the same time the renormalizing factors Z@2 and
Z„were introduced. These are represented as series in u
[Eqs. (19b),(19c)] with

/'~m ~g) t'~m ~g)
K K K K

FIG. 3. The Hom of the effective coupling constant
w(p) = u(p)/(1+ ~g/mp) for g = 1Q and m = 1Q . The
curves have been calculated for different values of the coupling
constant u = k/6 with A; indicated next to each curve.

By dimensionality, one has

r."' (a;.—. . . ~) = ' r(')
I

—;—",—,g, —"
I (37)

v on the effective exponent p g will be discussed in Sec.
IV C.

IV. EFFECTIVE EXPONENT
FOR THE ZERO-FIELD EASY-AXIS

SUSCEPTIBILITY

The temperature dependence of the inverse easy-axis
susceptibility yzz is described by the e8'ective exponent
p,s defined in Eq. (1). The tensor y p is to be calcu-
lated &om the two-point vertex function taken at zero
momentum according to

—",r. (.—,m, ,I = z (
—",—,—') .

The dimensionless renormalized vertex to first order in u
is therefore given by

(2) ~ m g ~+ gag
11)R K2 ~2 ~2 ~2

(~m ~gl+ ci
K K ) K

(2)y p (r, m, g, A) = —I'
p (A: = 0) —N b p, (32)

The renormalized vertex transforms as

as follows &om Eq. (14) and Ref 48. To th. e order of one

loop, the component of I'
& along the easy axis is given

by

I'i(,) (k = 0;r, m, g, A) = r+ gNii+ A@ (r, m, g) (33)

and the demagnetization factor Nii cancels in Eq. (32).
The function @(r,m, g) contains the contributions from
the perturbation integrals.

A. General considerations

The derivation of p ~ presented here is in fact very
general and holds for any system with crossover behav-
ior provided that the parameters {here m and g) which
bring about the crossover need not be additionally renor-
malized. Now we proceed to derive in some detail an in-
termediate expression for p, ir [Eq. (53)] which, beside its
generality, is important for further analytical treatment,
i.e. for the derivation of the final result given in Eq. (62).

Shifting to the true reduced temperature r according
to Eq. (18), one rewrites the two-point vertex to the order
of one loop as

~(p) = —,exp —~y I u(*)» I (41)

where the Wilson p@~ function is de6ned by

0ln Zp~
Py2 = —K

OK m, ,g, A

(42)

2 P(2) I~0.
r (P) m (P) g (P)

( )&I (40)ll, R ( ~ ~2 ' ~2 ' ~2

under an arbitrary change of the length scale with the
factor p: k; ~ pIc;. As to the "Howing" arguments in
the right-hand side of the last equation, (i) there is no
need to additionally renormalize m {Ref.28) and g (Refs.
31, 34) which means that their flow follows from naive di-
mensional analysis as given in Eq. (20); (ii) the coupling
constant u(p) satisfies the flow equation (28) which was
already solved with the result given in Eq. (29); (iii) the
RG flow' of v(p) has to be determined as usual from2 '4s
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With Eqs. (17c) and (19b) and to first order in u,

6~m ~gl Bc,
Py2 —EtC Cy —uKr) Or

The 1/e pole of ci is the same as in the case of short-range
spin systems, ' i.e.,

d (2) f m g l gNii
' K2p2 ' K2p2 ' ) K2p2

() c)p2 ( rp rp)
p2u (p) 8 I' m g+

Sq Op q ~p ~p) (51)

Therefore, neglecting terms of order eu, one has

The contribution containing the derivative Bu(p) /gp is
neglected, since it is of second order in e. Now note that

A+ 2 Ocy
Qp2 Q —tCK

6 B~ (45)
0 (~m ~g) ~ 0 (~m ~gb

Dp ( Kp Kp ) 2p c)K g Kp Kp)

Imposing the matching condition r(p) = pc, one obtains,
from Eq. (40) and Eq. (20),

so that according to Eqs. (45), (50), and (51) all terms
containing Oci/Br in Eq. (49) for p,s cancel out exactly
to the order considered. As the second term in Eq. (51)
is also needed to O(u ) only, p is set equal to ri~ /r with
the result

and, from Eq. (41),

~2p2 r2p2 Pea = & +

where

++2 m g
12 r'r

g ~)

~dz ( ~m ~g)
p = —exp —p4, 2 u z (47)

r»(1, =. , g)
S. 0- (54)

Since p~~ is of order u, the approximation p r/K
holds up to the order u . Now one rewrites the expression
(32) for the inverse easy-axis susceptibility in terms of the
renormalized dimensionless vertex function I z& & as

(48)

and uses Eq. (46) and the definition (1) to derive the
expression

din p2 d
din~ dine.

The result for p, ir as given by Eq. (53) simplifies the fur-
ther calculations considerably, because it is now evident
that, as stated in Sec. III, the renormalizing factor Z@2
or, which is the same to this order, the coeKcient cq need
not to be calculated explicitly. Obviously, the same holds
for the simpler cases of crossover calculations of p g stud-
ied earlier. Hence, Eq. (53) represents both an extension
and an improvement over existing one-loop calculations
of the effective critical exponent of the zero-Beld longi-
tudinal susceptibility. The problem can now be seen to
lie with the determination of the renormalizing factor Z„
and the integrals hidden in Z [Eqs. (34) and (35)j. As Z„
and u(p) were already calculated in the previous section,
it remains to deal with the said integrals.

B. Calculation of the efFective exponent

(49)

To this end, one has to step back and recall that to the
order of one loop the two-point vertex I'~~ is given by

In view of Eq. (47), the first term in the last equation is

din p2 1 /' ~m ~g=1+ —p42 u pdl nr 2 ( ' rp ' rp) (50)

where r ~ /K was substituted for p at the upper limit
of integration in Eq. (47). This is justifiable to one-
loop order. 2 For the second term in Eq. (49), one uses
Eq. (39) and obtains up to first order in u and e

I'(„) (Ie = 0; r, m, , g, A) = r + glV„

+ ) +11m@
a,P=].

xGO (q, r, m, g) (55)

Shifting the temperature scale to r according to Eq. (18)
and carrying out the summation, one obtains
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1
I ii (0;r, m, g, A) = r+ gNii + —A Go (q, rm, g)

2

—G,"(q, O, m, g)

G~o~ (q, r, m, g)6 e

—Go' (q, o, m, g) (56)

As in Sec. III, we restrict our attention to n = d = 4 —e .
It suffices to set n = 4 in Eq. (56) to the order considered.

The dimensionless vertex I yy can now be written as

(2) ( r m g A) r gNiiI'
i

0; —,—,—,—
l

= —+' ~2 ' ~2 ' ~2 ' ~e ) ~2 K2

+—'Z ™—g 57

S = Sp + Sg + S2, (59)

where Sp is the part containing the "usual" integrals A
and J. For a system without dipole interactions (g = 0),
one has, identically, Sq ——S2 ——0 . In this particular
case,

The integrals A(x) and J(2:,y) are well known and are
given in Appendix B. The calculation of the quantities
AJi 2(x, y, z) is complicated and is sketched out in Ap-
pendix C. These perturbation contributions contain no
divergences of the type 1/e which in fact confirms the
statement concerning the pole structure of ci [cf. Eq.
(44) above]. Therefore, the assumptions which lead to
Eq. (53) for p,& are fulfilled and the equation itself can
be used further. In doing this, the quantity S defined in
Eq. (54) is represented as

with
So = — A (1) + J (1, —) (6o)

and with the integral J from (B6) one finds the result of
Ref. 28, namely,

1 1 m (+~I
p, ir = 1+ ————ln 1+ — u

~

2 4 w m (r) (61)

+2 J2
™—g (58)

For the case g g 0, the calculation of Si and S2 is de-
scribed in some detail in Appendix C. One finally obtains

6a+ 9 a f loa + 3& 9 + 6a
1 + — ln[gy2 + y (a + 1) + a + gy2 + y (a + 1)] ——ln (a + y) +

l72y 6y & 48y )ll
-+

72y

3ay + (48a + 4a)y2 + (46a + 45a + 1)y+ a4 —2a2+ 1
+

72a2/y+ a + l~y[gy + a + l~y+ g(y + a) (y + 1)]
—3ay + (24a —4a)y + (28a + 21a + l)y + (a + 12a —2a + 1)y —6a —9a+

72a~y g(y + a) (y + 1)[gy + a + 1~y + g(y + a) (y + 1)]

7as+7a2+ a+ 1 ( a —ll 3a + 4a+ 1 ( a —11 (~r)
v, I+ (p)72a2y ( ' a+ 1) 36ay q

' a+ 1) (62)

where the abbreviations

y = ma=—) (63)

I

parameter one. The parameter a is then equal to 1, while
the elliptic integrals are trivial and cancel each other be-
cause of the relation E(&p, o) = I" (&p, o). The effective
exponent is then

p = arcsin
y2+ y(a+ 1)

y2+ y(a+ 1) + a (64)

are used, while E(p, k) and E(y, k) are the elliptic in-
tegrals of the first and second kinds, respectively (see
Appendix D or Ref. 52).

Equation (62) with u(p) taken from Eq. (29) represents
the full analytical solution to the crossover problem in
easy-axis ferromagnets with dipolar interactions in terms
of p ~. It simplifies considerably if the anisotropy and the
dipolar interactions are equally strong, i.e., m = g, thus
reducing the crossover problem to an e8'ectively single-

5 1
p, ir = 1+ ——ln(1+ y)24y 6y

5
ln 1 + y + gy (y + 2)

24y
1 27 + 23y —3y2 15y

—1+—
72 1 + y + gy (y + 2)

1 92+ 52y+ 3y2 y (~r)+-
721+y+V'y(y+2) y+2 & ~ ) '

which coincides with the result of a recent study of this
particular case.

The general result for p g is plotted in Fig. 4 for some
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provided that m )) g. As v becomes smaller, there fol-
lows a second crossover to uniaxial dipolar critical be-
havior pl ~ GAUD . Asymptotically, for w ~ 0, the ef-
fective exponent takes on the mean-field value of unity.
This crossover transition is, however, very slow because
of the logarithmic corrections to the mean-field behav-
ior which come into play in this regime. As seen in Fig.
4(a), the p, ir curves are nonmonotonic for m && g. Un-
der the same condition, there exist two extrema, a min-
imum and a maximum. As the value of m decreases
and approaches that of g, the first (Heisenberg-to-Ising)
crossover is shifted to smaller temperatures and, besides,
the extrema are wiped out. The successive crossovers
overlap and a direct monotonic crossover &om Heisenberg
to uniaxial dipolar behavior takes place (p~ ~ GAUD).

Consequently, for m —+ g+ there is no range in the vari-
able v where Ising-like behavior shows up. For m = g,
the crossover is a straightforward one.

The case with m & g is depicted in Fig. 4(b). Heisen-
berg criticality dominates once again for w )) m, g with

ff f~ For m = 0, one finds a single crossover

pyD to the isotropic dipolar value with a char-
acteristic dip which has already been reported for this
particular case. ' ' The dip exists also for small values
of anisotropy (m « g) without an appreciable change in
its location. However small m might be, it brings about
a second crossover AD ~ GAUD to the asymptotic uniax-
ial dipolar behavior which proceeds slowly with w ~ 0
because of the logarithmic corrections. In this regime
(m « g), the p, ir curves exhibit a maximum and a min-
imum. The extrema and the successive crossover tran-
sients overlap for m —+ g, indicating a unique direct
crossover pH ~ GAUD

—+ 1. For m = g, finally, the situa-
tion is the same as in Fig. 4(a).

representative values of the parameters. In this context,
it is helpful to recall the values of the asymptotic criti-
cal exponent p characteristic of the four nontrivial fixed
points (cf. Table I) which are indicated at the right mar-
gin of the figures.

The case with m & g is presented in Fig. 4(a). For
high temperatures w )) m, g, p g is equal to the Heisen-
berg exponent pH regardless of m and g. A crossover to
Ising critical behavior pH ~ pl takes place for 7 m,

TABLE I. The coupling constant u' and the exponent p
to O(e ) for the four nontrivial fixed points. The last column
contains the estimate at d = 3(e = 1). The quantity p is
nonuniversal and is given in Eq. (77).

Heisenberg
Ising
Isotropic dipolar
Uniaxial dip olar

u~ = t/2
ui = 2e/3
uio = 126/17
SCUD M oo

p~ = 1+ e/4 1.250
py = 1+ e/6 = 1.167

piD = 1+9e/34 1.265
QUD: 1 + p/ (in 7'( ~ 1

FIG. 4. The efFective exponent p Ir for m & g (a) and for
m & g (b). The parameters are chosen as u = uH ——1/2,
r = 1 and diferent values of m shown next to each curve.
The curves with m = 0 and m = 10 in (b) have been
calculated using the expansion (68) up to the order (m/v)

C. Influence of e and u

The result (62) for the effective exponent should be
universal within the critical temperature region. Con-
sequently p,H within the critical region has to be inde-
pendent of the irrelevant parameter u = u(1) which is
connected to the bare coupling constant A via Eq. (17c).
Additionally, the inBuence of the free parameter v. which
has been generated through the renormalization proce-
dure has to be investigated. Below the inQuence of u
and e on the effective exponent p ~ will be discussed and
conditions for the range of the critical temperature region
where the crossover function is believed to be universal
will be given.

The terms in the square brackets of Eq. (62) are func-
tions of the physical quantities w, m, and g and the pa-
rameters u and v enter only via the coupling constant
u (p) given in Eq. (29) which has to be investigated for
p = ~v/K. We first consider the case of small anisotropy
and dipolar parameters, i.e., m « K and g « K . In
this case the part of u i (~w/II:) depending on the f'ree

parameters u and v reads

~~ (1 1 ) (+7.m ~~gl
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~~ (1 1 ) (q7.m ~7g)
u u~ K v uH

For the critical temperature region it follows

(u —u~)' (67a)

w (( v

with uH ——1/2. The condition that the efFective expo-
nent should be independent of u and r now results in the
relation

find u (v 7/v) —+ 0 which corresponds to the mean-field
behavior with p ff ~ 1. In the case of u = u~ this
efFect results in a maximum of p, ff found at 7
The maximum can be seen clearly in the dashed curve of
Fig. 5 and has been discussed previously in the context
of dipolar Ising systems. It has to be pointed out that
the locus of the maximum is not part of the universal
crossover function since it depends on the choice of the
&ee parameter v.. However, within a phenomenological
interpretation of the theory, it is possible to choose K, in
such a way that this locus fits experimental data. This
has been done in Ref. 34 resulting in K = 1 for the dipolar
Ising ferromagnet I iTbF4.

m=1. 0 x 1G g=1, 0 x10

which has already been mentioned as Eq. (30). As dis-
cussed in Sec. III, v and u are free parameters within
the framework of renormalized-field theory and therefore
the width of the critical region remains undetermined.
The crossover theory is, however, meaningful only if the
crossover transitions take place inside the critical region.
It is then clear, in connection with Eq. (67b), that the
case m, g (( K discussed above is the most interesting
one.

The in8uence of r and u upon the efFective exponent
p ff is demonstrated in Fig. 5. The curves are plotted for
m = 10 and g = 10 and difFerent values of u. The
solid curves correspond to K = 1 and the curve for u =
uH ——1/2 is already known from Fig. 4(b). It is obvious
&om Fig. 5 that the value of u determines the width of
the critical region and inBuences strongly the efFective
exponent outside the critical region. Inside the critical
region given by Eq. (67a) the effective exponent p, ir is
independent of the choice of u as predicted above. The
dashed curves in Fig. 5 correspond to K = 0.1. According
to Eq. (67b), the boundary of the critical region is shifted
to lower values of the reduced temperature 7 for smaller
values of v.

It must be mentioned that even with the choice u = u~
the range of the critical region is not infinite. According
to the How equation (29), in the limit 7 ~ oo we always

V. LIMITINC CASES
OF THE GENERAL TWO-PARAMETER STUDY

A. ~&P~

Uniaxial anisotropy cannot be "felt" in this regime.
Depending on the ratio between r and g, one obtains
isotropic short-range (Heisenberg) or isotropic dipolar
behavior corresponding to n = d.

In Eq. (62), 7 &) m is equivalent to y » a. Expanding
in the small parameter a and surmounting the difIiculties
which result from the singular behavior of I' (p, k) for
a = 0, y = 7r/2, one uses (D4) and (D5) to obtain

4y —ln(y+ 1) 5
ff —1 + alna

8y 24y

——
~

15 ln y + 3 ln (y + 1) + 6 ln 2—
72

(i i'+o
) )

7y &a
y+ lp y

(68)

Now that one has gained an impression as to what
features are latent in the general result (62) for p, ir, it is
worthwhile to discuss analytically the important limiting
cases which substantiate unambiguously the correctness
of the procedure and the richness of the result. In doing
this systematically, important new results concerning the
asymptotic logarithmic corrections are derived.

When the anisotropy is switched ofF (m = 0 and, hence,
a = 0),

1, 15

1, 10

1 g ( ~l (vt~)
&.,=1+- 4--in~1+-

~ u]8 7 ( g) (iI;) (69)

1.05

P P I I IIIIIII

—10

I I I I I IIII I I I I I IIII
I I

I I I I I IIII I I I I I III
I

1 0 /III'r

which agrees with the result of Ref. 31. Taking the cor-
responding limit for u(p) in Eq. (29), one finds that (i)
for r )& g, p,s —+ 1+ u(~~/v. )/2 = 1+ e/4
(ii) for r (( g, p, ir ~ 1+9e/34 = piD (Refs. 7, 15) (cf.
Table I).

FIG. 5. The effective exponent p,g for m, = 10 and
g = 10 . We used u = A,'/6 with A,'indicated next to each
curve. The solid curves correspond to K = 1 and the dashed
curves correspond to ~ = 0.1.

In this regime the system behaves like an Ising system
with a single order-parameter component (n = 1). The
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infinite anisotropy is given by m )) g, w which implies
that the quantities Go (q), AJ2, and S2 &om Eqs. (56),
(58), and (59) vanish simultaneously. Now one expands
the remaining part of S in powers of a i = g/m, . It
follows that

1 —y y + 2y+ ll/8
4 (y+ 1)

+

C. ~~O:
The general nonuniversal "logarithmic" exponent p

Arbitrary m and g can be considered in this limit. One
expands the expression in the square brackets of Eq. (62)
in powers of y = w/g to hand that

1 G+1. Ol+1
&.e =1+

3 a 4a

+y + 1/4 f 1 + 2/y
8 (gy + 1 + ~y) ( ijy + 1 ~y j

1
Vff =1+

3
1 (~i ( (r) -~ (~~i
«gr ~&g) y ~ r

ln ~ —ln K2
(72)

which is in agreement with previous calculations for this
case. The critical region is attained for p (( 1 or w ((
K2. Then

32(y+1) ~ ~y

Taking once again the proper limits for u(p) in Eq. (29),
one finds from Eq. (70) that (i) for ~ )) g (y -+ oo),
p,~ m 1+u(~~/v. )/4 = 1+ e/6 = pl,. (ii) for ~ (( g
(y -+ 0),

/2 (76)

It follows from the last equation when examined together
with Eq. (29) for u(p) that in the critical region (w (( v, )
the leading term of the effective critical exponent is given
by Eq. (75) with '

4 gl + g/m
9 1+ —', Qg/m ——,"Qg/(m, +g)

The implication of the last equation is that the true
asymptotic critical behavior of the easy-axis susceptibil-
ity is of the mean-field type with logarithmic corrections
as in Eq. (74) with the "logarithznic" exponent p modi-
fied by the simultaneous account of anisotropy and dipo-
lar interactions. The limiting cases of extreme anisotropy

(p = 4/9) and of vanishing anisotropy (p = 8/17) derive
from Eq. (77) by taking g/m + 0 and g jm ~ oo, respec-
tively. It is to be seen that the "logarithmic" exponent is
a quantity which depends explicitly on the values of the
material parameters m and g, in contrast to the universal
critical exponents which depend on the dimensionality of
spin and space only.

4 1
Jef 1 +

9 [in~[
(73)

VI. DISCU SSION

and p, ff ~ 1 as ~ ~ 0. This is the typical mean-field be-
havior with logarithmic corrections in dipolar Ising sys-
tems. The known result for the leading term in the sus-
ceptibility of such systems is of the form

(74)

and, hence,

1
Jef —1 +P (75)

According to Eq. (73), the "logarithmic" exponent p
which follows &om our general result equals 4/9, while it
has been reported to be 1/3 in all previous studies of this
aspect of criticality in dipolar Ising systems.
The seeming discrepancy is due to the fact that the inte-
grals involved in E [Eq. (58)j were previously calculated
directly at d = 3 in contrast to d = 4 —r in the present
work. In fact, if one performs an e expansion in, e.g. ,
Eq. (5.7) of Ref. 34, one obtains p = 4/9 in accordance
with what we find.

A. Parameters

r = s,k~ (T —To) /J,
g = 2aiG/Ja

m = c(Ji —J, ) /J .

(78a)

(78b)

(78c)

The abbreviations

A discussion of the parameters vn, g, and w appearing
in Eq. (62) is in order if one wants to use the result
for p, ff. The relation of the parameters of the eR'ective

Hamiltonian (2) to microscopic quantities was given in
Refs. 7, 13. There the discussion was limited to cubic
lattices. The applications of our model which will be
discussed below concern noncubic lattices and the more
complicated case of compounds with di8'erent magnetic
atoms. However, the relations of Refs. 7, 1.3 will be used
since they are the simplest possible approximation and
we are only interested in an order-of-magnitude estimate
for the parameters. It was found that
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a cd
2d

2a4G
QcE 2 (79)

T —Tc
T~

(84)

and si ——3/S (S + 1) have been used. S is the spin quan-
tum number, a is the lattice constant, c is the number of
nearest neighbors, and

where t is the usual reduced temperature. Since the pa-
rameters enter Eq. (62) as the ratios w/g and m/g only,
one is justi6ed to make the substitutions

1 r' 2asG l
Tp — „~cJ +

sik~ ( a~ (80)

is the mean-field critical temperature, while the constants
ai, aq, and a4 for cubic lattices are given in Ref. 7.
G represents the dipolar coupling constant which reads
G = pp (g, p~) /8vr in SI and G = (g,p~) /2 in the cgs
system. g, is the Lande factor and p~ is Bohr's magne-
ton. Ji is the exchange integral which couples the easy-
axis spin components, while J~ (Jz ( Ji) couples the spin
components in the transverse directions 1 ( j & n. The
anisotropy of the spin-rescaling factor J which would for-
mally lead to an anisotropic A p in the fourth-order term
in Eq. (2) is neglected in the present paper. It leads to
the emergence of irrelevant quantities only.

The quantities defined in Eqs. (78) have the dimen-
sion of inverse length squared (I/L ). Since it is more
convenient to discuss the crossover scheme using dimen-
sionless coupling constants, all parameters can be scaled
by u = sik~Tp/J. One obtains

T TptMF-
Tp

which is the reduced temperature in the mean-6eld ap-
proximation. Considering the relation ai/a = 4z./v
which is valid for all cubic lattices, with v being the
volume per atom, one obtains the dimensionless dipolar
coupling constant

g p,pS(S+ 1) (g, y,~)
3I T, (82)

m Jg —J- Tp —Tp
mo = ——

Cd Ji Tp
(83)

Tp is the "critical temperature" of the perpen-
dicular direction which can easily be determined
experimentally.

The shift of the critical temperature from the mean-
field value was introduced in Eq. (18) resulting in a new
temperature scale F with r/w = (T —T,) /Tp with the
real critical temperature T . Typically, for ferromag-
nets T, = 0.7Tp (Refs. 6, 53, 54) and, hence, r /~2 =
(T —T,) /T, . The renormalized temperature scale v is
related to P by Eqs. (17b) and (19b). The renormaliza-
tion factor Z&

——1 + ciu is a constant of order unity,
because u e and ci 1/e according to Eq. (44). Con-
sequently, it is plausible to make the identification

with the parameters given in the SI system. The cou-
pling constant gp is related to the shift amplitude g dis-
cussed in Ref. 6 via gp

——3g as follows &om Eq. (80) with
a3 —ai/3. With Tp = cJi/sik~, it follows then for the
anisotropy parameter

memo ~ gMgp, and (85)

All results will then hold in the form given so far, pro-
vided that the additional substitution e —+ R with K =
r/u is carried out in Eq. (29). In the critical region, how-
ever, the effective exponent must be independent of the
choice of the arbitrary momentum K, or K. This is the
ground to insert the dimensionless quantities gp and mp
for g and m below; accordingly, w is then interpreted as
the experimental temperature scale t.

B. Gd and Feg4NdgB

Ki
Tp A' (86)

Taking the experimental values of K~ = 1.20 for the
anisotropy constant, A' = 0.171 K for the Landau pa-
rameter, and Tp = T, one 6nds mp ——1.2 x 10 for the
anisotropic coupling constant.

Gadolinium is a material with a comparatively low
anisotropy (mp ( gp), while Fei4Nd28 represents the op-

Since in Gd the total orbital momentum of the f elec-
trons is zero (I = 0), no crystal-field effects are expected.
However, a small magnetocrystalline anisotropy is ob-
servable near T, (Ref. 55) and is attributed to the effect of
dipolar interactions on the spins located on a lattice with
a nonideal c/a ratio. s The coupling constants gp and mp
can easily be estimated using Eqs. (82) and (83) in the
case of Gd. The mean-field critical temperature Tp is de-
termined by the approxiinate relation~ Tp = T,/0 with
0 = 0.68—0.80 for S = 1/2 to oo. For Gd, taking T, =
293.6 K,ss 9 = 0.8, S = 7/2, g, = 2, and v = 33.0 A.s,
one obtains gp ——1.3 x 10 . With the paramagnetic
Curie temperatures Tp = 295.5 K and Tp: 294 ~ 0 K,
it follows that mp = 5.1 x 10 for the anisotropic cou-
pling constant. These values are not in perfect agree-
ment either with the values of gp ——3g = 4.0 x 10 and
mp ——1.4 x 10 of Ref. 57 or with gp = 1.6 x 10 and
mp ——2.5 x 10 obtained in Ref. 56 by a somewhat dif-
ferent method. Since an order-of-magnitude estimate of
the parameters gp and mp is suKcient for the interpreta-
tion of p g, the different approaches and their results are
not discussed here in further detail.

The volume per atom, v, for Fei4Nd2B is approxi-
mated with the help of the relation v = p~g, S/M, (0).
With S = 1, which is a plausible approximation for iron,
g, = 2, and with a saturation magnetization ppM (0) =
1.86 T at T = 0 K, one obtains v = 12.5 A. . From
Eq. (82), T, = 583.7 K (Ref. 40), and 8 = 0.7 it follows
that gp ——2.0 x 10 . Since the "critical temperature" of
the perpendicular direction Tp has not been determined
experimentally, we estimate mo via the relation
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posite case with high anisotropy (me ) go). Hence, the
results for Gd should be discussed according to the right-
hand side of Fig. 1 corresponding to a crossover behavior
via the isotropic dipolar fixed point, while the behavior of
Feq4Nd2B should follow the scheme of the left-hand side
of Fig. 1. In Fig. 6, the effective exponent p,g is plotted
for the cases of Gd and Fe~4Nd2B with the parameters
mo and go estimated above and for different values of u.
Surprisingly, one observes almost identical critical behav-
ior in both exemplary cases. For u = u~ ——1/2, which
corresponds to the widest extension of the critical region
according to Eqs. (67), the curves indicate a direct transi-
tion &om the Heisenberg exponent pH to the mean-field
behavior with logarithmic corrections p g —+ 1. This
should be attributed to the proximity of mo and go in
both cases: It does not allow the intermediate critical
behavior to show up.

Experimental results for the exponent p of Gd and
Feq4Nd2B are listed in Table II. For the case of Gd, we

TABLE II. Recent experimental results for the exponent p
in Gd and Fe~4NdqB.

Method

ac susceptibility
ac susceptibility
Arrott plot
Scaling plot

Range of ~t~

Gd

2 x 10 3-3 x 10
4 x 10 —1 x 10
3 x 10 -6 x 10
3 x 10-'—2 x 10-'

1.33
1.23
1.24
1.19

Error Ref.

+0.02
+0.02
+0.06
+0.06

57
56
59
59

Arrott plot
Scaling plot

Feg4Nd2B

1 x 10 —3 x 10
1 x 10 —1 x 10

1.20 +0.02
1.17 +0.02

39
39

TABLE III. The critical exponent p obtained to the first
order of the e expansion compared to the results which are
believed to be the most accurate at d = 3 (Refs. 3, 15).

present, apart &om the results of recent susceptibility
studies, ' some novel data obtained by analysis of
the magnetization curves in the ferromagnetic (T & T,)
and in the paramagnetic (T ) T,) regions. The exper-
ixnental technique there is the same as applied for the
investigation of Feq4Nd28. It is obvious from Table II
that there is a remarkable difference between the p val-
ues reported for Gd by different authors which exceeds
the estimated experimental error. The situation becomes
even Inore confusing when earlier data, summarized in
Ref. 60, is considered. According to the crossover scheme
discussed above, Gd and Feq4Nd28 should exhibit mean-
field behavior p,g —+ 1 in the asymptotic limit t ~ 0.
Consequently, the experimental values of p do not rep-
resent asymptotic exponents and have to be discussed
as effective exponents valid in the investigated tempera-
ture range t;„& ~t~ & t „The c.orresponding value of
t;„was explicitly given in the case of the susceptibility
studies ' and was calculated &om the minimum tem-
perature step between two isotherms in the case of the
magnetization studies.

A direct comparison between theoretical and exper-
imental results is hampered by the low order of the
calculation. In Table III, the one-loop values of p are
compared with those exponents which are currently ac-
cepted to be the most accurate estimates in three dimen-
sions. There is considerable difference between the nu-
merical values of the two sets of data. It must, however,
be emphasized that already the one-loop order provides
for a reliable qualitative picture of the critical behav-
ior. This statement was confirmed by a lot of previous
studies ' ' ' ' of crossover phenomena in anisotropic
or dipolar models. It turned out that the shape of the
crossover function remains almost unchanged when go-
ing &om the first order to higher orders in e or to series
expansions. The only substantial difference between the
different orders of calculation was a nearly homogeneous

FIG. 6. The effective exponent p g calculated with the ma-
terial parameters of Gd (a) and FeI4Nd2B (b). The curves
were obtained using I4 = 1 and u = k/6 with the value of k
indicated next to each curve. The solid rectangles correspond
to the experimental results of Refs. 56, 57, 39 and the dashed
rectangles to those of Ref. 59.

Model
Heisenberg
XY
Ising
Isotropic dipolar

(n = It)
(n = 2)
(n = 1)
(n = d)

Q(e)
1.250
1.200
1.167
1.265

d=3
1.387
1.316
1.240
1.372
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shift of the exponents associated with the various fixed
points. To give a qualitative interpretation of our result
for p,g of Gd, we first note that all the experimental
data shown in Table II were obtained in the tempera-
ture range of 4 x 10 & ~t~ & 3 x 10 . Examining
Fig. 6(a) over this interval, it should be expected that
the efFective-exponent values are located in an interval
from a little bit below the Ising exponent pl up to some-
what above the AY exponent p~y. . Looking at Table II
again, it is satisfying to see that the experimental results
are indeed found between a maximum value of p = 1.33
which is close to the "exact" value of p~y- ——1.316 of the
XY exponent and a minimum value of p = 1.19 which is
below the "exact" value of pl ——1.240 of the Ising expo-
nent. For Feq4Nd28, an efFective exponent located below
the Ising exponent pl is to be expected in the experimen-
tally investigated interval of 1 x 10 & ~t~ & 1 x 10
as suggested by Fig. 6(b). The results shown in Table II
are in agreement with this prediction and lie below the
value of pr ——1.240.

Finally, we want to interpret our results in a more
quantitative, still purely phenomenological way. Starting
from the observation of previous studies that the calcu-
lation to higher orders in e is compatible with a mere
shift of the exponents for the difFerent fixed points, we
characterize this shift by a phenomenological equation.
Considering the data of Table III, the approximate equa-
tion
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APPENDIX A: INTEGKALS OF I'

The integrals required for the calculation of I'zziz ac-
cording to Eq. (23) are

with

2g (r + m + q'} cos' 0
Xi (0, q) =

(r+q2) 0

g (r + m+ q'} cos' 0
X2 (0, q) =

(A2a)

(A2b)

1 gsin0cos0
n (A2c)

I (r, m, , g) = q" sin" 0 X (0, q) d0dq,
2K Q p

(Al)

pl loop = 0.672 ('7ex«t 1) + (87)

2g (r + q'} sin2 0
X4(0, q) =

(d —1) (.+ + q')' ~ '

g (r + q'} sin' 0

(d —1) (d+ 1) (r + m+ q2) 0

(A2d)

(A2e)

is obtained under the constraint that the mean-field ex-
ponent is independent of the order of the calculation (i.e. ,

pq toop
——pex«t ——1). Here pq ~ p represents the result of

order e and p, ,q stands for the best available estimate.
The experimental exponents of Table II are inserted as
p „,t into the above equation and the resulting values
of p] $ p are interpreted as the experimental data scaled
down to the one-loop order. These "shift-corrected" ex-
perimental exponents are plotted together with our the-
oretical curves shown in Fig. 6. Each data point is rep-
resented by a rectangle whose height corresponds to the
experimental error and whose length corresponds to the
investigated temperature region. We obtain a satisfac-
tory agreement between theoretical and experimental re-
sults in both cases of Gd and Fe&4Nd28 as displayed in
Fig. 6.

To summarize, we have shown that unexplained or con-
tradictory experimental results for critical exponents can
be understood if they are interpreted as efFective expo-
nents of the investigated temperature region and are com-
pared to crossover calculations. Due to the low order of
our calculation, the comparison is, more or less, a quali-
tative one. A study up to the order of e would be suK-
cient to directly map experimental onto theoretical data.
There is, however, little hope that this can be done in
the complicated case of anisotropic dipolar ferromagnets
discussed in the present paper.

and

n = (r + m + q'} (r + g + q'} —gm sin' 0 .

Apart Rom the integrals I, two simple integrals

1
Io(r) =

q (r + q')'

and

1
Ip (r, m) =

~ (r + m+ q')' (A5)

Idio. d
(A6)

and

r m Sg Sg fr +ml
K~ K2 e 2 ( r2 j (A7)

are involved in Eq. (23). Within the framework of the
GMS scheme, the knowledge of only the diverging parts
of the integrals suKces to carry out the renormalization of
the vertex functions. Divergences in the integrals appear
in the case d ~ 4, i.e., e —+ 0, as well as in the cases m —+

oo and g ~ oo. According to Eq. (B2), the divergent
parts of (A4) and (A5) read
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The calculation of Iq will be discussed in some detail as
an example for the integrals Iq —I5. The 0 integration
can be performed by means of the substitution x = sin 0
and Eq. (3.181) of Ref. 61:

1
x (1 —x)' (1 —xz) dx

0

= B (b, c —b) F ( o, b; c;z), (AS)
I

which is valid for Re(b) & 0, Re(c —b) & 0, and ~z~ ( l.
F (a, b; c; z) is the hypergeometric function. The usual
abbreviation

B(* g) = I ( ) I 4J)/I (*+0)

has also been used. One makes use of the series represen-
tation of the hypergeometric function with the result

; r (-;+1+n)

2g (gm)"
(r + q2) (r + g + q2)"+' (r + m + q2)"

(A10)

Each term of the sum is 6nite in the limit d ~ 4. Since the integrals have to be calculated to the order e, it is
sufficient to set e = 0 or d = 4 in Eq. (A10). The sum is rewritten as

Ig ——I~ + I~

with the Iie being the first term (n = 0). For this term it follows that

(A11)

I, ' '
(r, m, g) = —ln(r + g) .

4
(A12)

The terms of the sum (A10) with n & 0 are integrated by the standard method using the "Feynman-trick. " This
introduces two further integrations over xq and x2. The result is

S~ g (gm) I'(2n+ 1) I'(2n+ 2)
2 I' (n + 1) I' (n) I' (n + 3) 4"I (n + 1)

x ] x2 (1 xi x2)
+

o [r+x,g+x,m]" (A13)

It is straightforward to obtain the relation

forp —m) 1,

for@ —m=1,
for p —m = 0,

~ ~

~

x . m! (p —2 —k)!„dx = — ) x
(gx+ a)" (m —k)! (p —1)! g&+i (o+ gx)r

T 'p
p j !gT7l+1 ~+g~

+ . '„ ln(gx+ a)
x ——ln(gx+ o,)1grn - g

(A14)

by partial integration. The upper limit of the sum is
n=m —2forp —m=0ando. =m —1 forp —m) 0.
To integrate the terms of the sum (A13), Eq. (A14) has to
be applied twice, leading to a triple sum of complicated
structure. However, within the framework of ihe GMS
scheme, one is only interested in the diverging parts of
the sum. It turns out that only logarithmic divergences
appear for m ~ oo or g ~ oo. Additionally, contribu-
tions of the type

I

The infinite sum in the square brackets can be calculated
using Eq. (5.2.13.12) of Ref. 62. With (All) and (A12),
the divergent part of I~ finally reads

I'L. ™,g =S„l ~~

r v v ( K )
3 (r+m+gl——Sg ln
4

1—[ln (r + m, + g) —ln (r + m)]
g

can be neglected, since they are Rnite in both limiting
cases. For the divergent part of (A13) one obtains

Sg (2n + 1)!Ii ' '" r, m, g 2 - (n+ 2)!n!4"n=1

x [ln(r + m + g) —ln(r + m)

(A16)

The calculation of I2 can be performed along the same
lines. It follows that™g —S

1
~~"+

7 t'r+m+g)——Sg ln
)

—ln(r + g)] . (A15) "E~ ) (A17)
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In calculating I3—I5, one fj.nds that a contribution to the
divergent part arises only Rom the n = 0 term in the
series representation analogous to Eq. (A10). Conse-
quently, no sums have to be calculated and one obtains ln — +0 e (B6)

As usual, the abbreviation

and

Sg (r+ m+ g'( (r+ mb
ln —ln

48 q vP y q r.2
(A18) Sg = 2 (4 )

' I'
I

—
i

(d)
&2)

has been used.

(B7)

Idiv ldiv Idiv
12 4 5 3 (A19)

APPENDIX C INTEGRALS OF
One can calculate the vertex function I'~~&~ at A: = 0
by inserting Eqs. (A6), (A7), and (A16)—(A19) into Eq.
(23).

To find the inverse susceptibility yii &om Eqs. (32),
(37), (57), and (58), one must calculate the quantities

APPENDIX B: SOME INTEGRALS
IN DIMENSIONAL REGULARIZATION

AJi = J, (r, m, g) —Ji (O, m, g),
A J2 = J2 (r, m, g) —J2 (0, m, g)

(C1a)

(c1b)

The integrals given below can be calculated via stan-
dard methods48 and are listed here to ensure self-
sufIiciency of the present study. The calculation of the
four-point function in Appendix A requires the integral

(Bl)

with the integrals

J (r, m, g) = q sin" OY (O, q) dedq,
271 Q p

(C2)

with

whose e expansion is

Ip —= ———1+in — + 0 (B2)

g (r + m + q') cos' e.(,q) — (,) „

For the calculation of the susceptibility according to Eq.
(58), one needs to know the two integrals

& 2(r+q2)»n20
Y2 (0 q) =

I(d —1) (r + m+ q2) 0 (C3b)

whose e expansion is

A —= ———ln —+0 ~

and

J —,—=
m 2+ ~+m

resulting in

(B3)

(B4)

(B5)

and 0 from Eq. (A3). These integrals are of the same
type as the integrals I discussed in Appendix A and they
can, in principle, be calculated along the same lines. The
essential difference is that in the case of the I 's we were
only interested in the diverging part, while the J 's have
to be calculated exactly to determine the susceptibility

or the effective exponent p ~. The series technique
presented in Appendix A is not eKcient to obtain an
exact solution. That is why a different way of calculation
is presented below. Only the treatment on Ji will be
discussed in some detail since J2 can be calculated in the
same way. The 8 integration is performed using Eq. (A8)
and the substitution x = cos 0. It follows that

Ji (r, m, g) = +~- I'('. ') I'(l) . g ( + + q')2 2 l d —1
22' I'(-, + 1) ~~ o (r+ q') (r+ m+ g+ q')

( 3 d —gmxI 1, —;—+1; dq ~2 2 (r+q2)(r+m+g+q2)) (C4)

where I" (a, b; c; z) is the hypergeometric function. In four dimensions (d = 4), both Ji and J2 diverge for an infinite
cutoff radius A —+ oo. The quantities AJ, however, are finite for A ~ oo and these are the quantities which have to
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e calcujated to the order e with e = 4 —d. Therefore, within the &amework of the e expansion, we can perform the
calculation directly at e = 0 or d = 4. At d = 4, Eq. (C4) can be simplified using the relation

and the substitutions

F]1,—;3;z
/

=3

)

2z=q

1+ gl —z
(C5)

(C6a)

m+g
p =

2
) and

m —g
2

(C6b)

It follows that

(C6c)

Sg . *+"+"(u —r —p) (u+ &) u2 —A2
1, (r, m, g) = —g lim 1+* - .+~ (u —~)'(u+~)

dtL . (C7)

This result is rewritten as

Ji (r, m, g) = [Li (r, rn, g) + I 2 (r, rn, g) —2 L3 (r m g) j
Sg

2m2g

with the integrals

x+r+ p,

Ii (r, m, g) = lim (u —r —y, ) (u + 4) (u + p) du,
X~OO

*+"+"(u —r —p, ) (u+ A)' (u —b, )rrng = hm die )a~oo (u —~)
x+r+ p ~2 Q2

Ls (r, m, g) = lim (u —r —y, ) (u+ 4) (u+ p), , du .
r+p

(C8)

(C9a)

(C9b)

(C9c)

L z and L2 can be calculated straightforwardly, while L3 is more complicated. It gives rise to the elliptic integrals and
can be calculated using Eqs. (1.2.23.2), (1.2.23.4), (1.2.61.12), and (1.2.61.10) of Ref. 62. The lengthy result for A Ji
as defined in Eq. (Cla) will not be given here. After obtaining b, J2 from a similar procedure one can finally calculate
p, ir according to Eqs. (53) and (59). One requires the quantities

S = — AJ 1, —,— (C10)

The result (62) is obtained after a lengthy but straightforward calculation by using So from Eq. (60) as well.

APPENDIX D: DISCUSSION
OF THE ELLIPTIC INTEGRALS

The result (62) for p, ir involves the elliptic integrals of the first and second kinds which are defined as 2

'ip 1
F(p, k) = dn,

o gl —k2 sin n

and

(D1)

In the case of Eq. (62),

E(p, k) = Ql —k'sin'n dn .
0

(D2)
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G —1k= a+ 1

while rp is given by Eq. (64). In the limit a ~ 0, the arguments of the elliptic integrals become k ~ 1 and y -+ z/2.
It is obvious from Eq. (Dl) that F (y, k) is divergent in this case. It turns out that the divergence is logarithmic and
is canceled exactly by the other logarithmic terms of Eq. (62). Consequently, p, ir is finite in the limit a -+ 0.

To perform an expansion of the elliptic integrals in powers of a and a/y the integral is broken into two parts: the
complete elliptic integral F (vr/2, k) and the small quantity h (p, k) = F (z/2, k) —F (p, k). To treat the complete
elliptic integrals F (vr/2, k) and E (7r/2, k) some well-known expansions in powers of k = v 1 —k2 are exploited.
One Anally obtains the result

a' + O (a') .

For the expansion of E (rp, k) it follows that

F (p, k) = —— I+ a+ —a + —a + 0 (a ) lna1 12 13 4

2 4 4

+ jn2+ —ln
~ i

+ — 21n
~ i

+ 4ln2+t'yi I &y 1
a

2 i y+I) 4 (y+I) y (y+ I)
I f y 3 —4y —10y + 4y + 4y+—41n

~ i
+ 81n2—

32 j,y+ ly y' (y + 1)'

1 2 3
E((pk) = —a+ —a ——a +

2 4

y4ln
~

+
~y+ Ir

1, ( y+—' 12ln
16 iy+ I)

1+4y+ 2y

y(y+ I)

a'+ O (a') . (D5)

4 5 I ( y—a +O(a ) lna+1+ — 21ni i+4ln2—
16 ky+ I)

3 + 16y + 32y2 + 24y3 + 6y48ln2—
y' (y+ I)'

+ 24ln2— 5 + 27y + 65y + 106y + 144y + 65y + 16y
y' (y+ 1)'
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