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The renormalization scheme recently proposed by White is applied to the d = 1 anisotropic XY
model in a transverse field (AXY). It is found that this scheme offers a distinct improvement over
standard techniques as far as the computation of the ground state is concerned. However, compared
to the Ising model in a transverse Geld, on account of more complicated symmetries the AXY
demands more precautions during the construction of a renormalization-group transformation. The
new method predicts deGnitely better the location of the phase transition in the XY-like region
than in the Ising-like region, but only in the Ising-like region is there any progress for the critical
exponent a.

I. INTRODUCTION

The quantum aspect of many models is quite irnpor-
tant for the theory of phase transitions. This is particu-
larly true at zero temperature where, due to the quantum
QuctuatioIls lIl the ground stRte phRse transitions Dlay
demonstrate a difFerent character &om the corresponding
classical systems. The determination of the nature of the
ground state and its energy is therefore a central point
of quantum many-body problems and few methods exist
which can work with strongly interacting systems. One
of the techniques is the truncation method, introduced by
Drell et c/. for lattice models and used by many authors
to study spin and. fermionic systems. 4 A comparison of
the various approaches was made by Stella et al.5

The truncation method is a block-spin method, which
makes use of the ground-state properties of the systems
at T = 0, where the low-lying states are the most im-
portant. In a standard approach (sa) the lattice is di-
vided into blocks inside which the Hamiltonian is exactly
diagonalized. By selecting a number of low-lying eigen-
states of the block and projecting the full Hamiltonian
on these eigenstates, a renormalized Hamiltonian is con-
structed for the blocks as new units. The interactions
between adjacent blocks are also reconstructed. By re-
peating the operation, the ground state is formed in a
hierarchical way and its energy is calculated iteratively
by accumulating the energies of the blocks. Since the
method constructs an approximate wave function for the
whole system, the ground-state energy so found is neces-
sarily bounded from below by the exact one. The accu-
racy of the method is determined by the number of states
retained in the calculation.

The method is best suited for a number of problems
where the character of the ground state changes dramat-
ically at a critical value of some parameter. As a renor-
malization scheme, the truncation method can handle

Quctuations around a continuous phase transition. It re-
mains to be seen whether a specific scheme does indeed
do this adequately.

The quality of the procedure has usually been judged
on its accuracy in the analysis of such a phase transi-
tion. The systems to which the method has been applied
are the Ising model in a transverse field (ITF) and the
X"Y model in a transverse field (AYTF).2 4 The posi-
tions of the phase transition, the critical indices, and the
behavior of the correlation functions were calculated in
satisfactory agreement with the exact results (for d = I).
Unfortunately, if we consider the accuracy of the energy,
the situation is definitely poorer. For the ITF we 6nd an
energy larger than the exact one by up to 7%, 4%, 1% and
for the XYTF by 20%, 8%, 4% for the method with two,
four, and eight states kept, respectively. It is important
that the energies do not seem to be sufficiently improved
by any reasonable increase in the number of states kept.
Although modi6cations have been proposed, the results
for other systems (especially fermionic ones) are usually
even more discouraging. " This strongly suggests that the
origin of the problems lies elsewhere.

In a series of recent papers White has criticized the
standard technique and proposed a scheme that for the
Heisenberg spin-chain gives amazingly accurate answers
for the energy. He argues that for the standard trunca-
tion method the neglect of all connections to neighboring
blocks during the diagoDalization of the block Hamilto-
nian introduces such large errors that they cannot be cor-
rected by any reasonable number of states kept. White's
idea is to embed the block in a superblock of which the
lowest state is determined. Prom this state the density
matrix for the block is then constructed. The eigenval-
ues of the density matrix determine the importance of
the corresponding states for the truncation.

In a previous paper White's proposal has been tested
on the ITE. We now consider a more general model:
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the anisotropic XY model in a transverse field (AXY),
which besides the ITF also includes in an opposite limit
the XYTE. In a large region of the parameter space
the AXY shows a continuous phase transition and it
is a credible probe in situations with large fluctuations.
Our results concern the d = 1 case where a comparison
with exact results is possible and where also the ideal
superblock (the infinite system) can be handled. We be-
lieve that the conclusions resulting from the d = 1 case
are to be useful for calculating the AXY in d = 2. In
Sec. II we collect some relevant information about the
exact solution. In Sec. III we give a description and a
discussion of the renormalization procedure that will be
applied. In Sec. IV we present the results for various
truncations with two states kept and in Sec. V we ex-
tend the calculation to the cases with four states kept.
The paper ends with a conclusion on the trends of the
results.

~ = mh —J) (btb, +, +b;b,'+, +~btbt+, +~b, b;+i)

—2h ) btb, ,

where N is the number of sites. Next, using the Jordan-
Wigner transformation,

2 —1

b; = exp —iver c&e~ c, ,
t

(4)

bt = ctexp i~) cici

we go over to a quadratic form in the Fermi operators c, .
Neclecting for N ~ oo the boundary term, we obtain

II. THE EXACT SOLUTION OF THE AXY

In one dimension the AX Y has been introduced by
Lieb et aLi (h = 0) and by Katsura. They considered
a chain of N spins governed by the Hamiltonian

~ = —J) [-,'(1+ q) S,*S;,+ —,'(1 —q) S,"S,",]

= Kh —J) (C Ci+i + C +ici + PC C.+i + fc&+ic~)

—2h) etc, .

It is worth remembering that such a transformation is
possible due to the fact that we have a one-dimensional
system with only nearest-neighbor interactions. In or-
der to diagonalize the Hamiltonian we carry out the Bo-
goliubov canonical transformation with A; numbering the
elementary plane waves:

where the operators S;, S,", and S; are spin-1/2 opera-
tors represented by Pauli matrices and p is a parameter
characterizing the degree of anisotropy of the interactions
in the xy plane. The p = 1 case corresponds to the ITF,
while the p = 0 case gives the XYTE. To facilitate the
following considerations, we recall the main facts.

The p g 0 case belongs to the universality class p = 1
(the ITF') for any ratio x = h/J. Therefore, for a weak
field the system behaves as the doubly degenerate Ising-
like ground state. Furthermore for a strong field the sys-
tem reduces to a set of noninteracting sites, which leads
to a singlet ground state. This means that the AXY
(p g 0) should exhibit a critical line for finite values x, (p)
(see Fig. 1). For the XYTF (p = 0), the end point of the
critical line is connected with a phase transition between
a strong magnetic-field region with a singlet ground state
and a low magnetic-field phase without long-range order.
On the x axis the system has an additional line of a
phase transition for 0 & x ~ x, connected with a rapid
change of the Hamiltonian symmetry from an Ising-like
behavior to an XY-like one. To demonstrate these facts
exactly, we first make the transformation

S, =bt+b, , S,". = —i(bt —b,), S; =2btb —1,
(2)

c, = ) Ai, gi, e'""' —i Bi,g„e
k

with

x+ cosk&
2N A(k)

1 f x+ cosk)
A(k) )

'1+

(7a)

'R = Eo + 2J) A(k) q~t gi, ,

with the ground state defined as gA, ~O) = 0. The ground-
state free energy has the form

1
eo —=Zo/mJ =—

27r

This formula has been presented ' by several au-
thors. In limiting cases it can be transformed to a more
useful form. For the ITE Pfeuty has found the energy
as'4

where A(k) = (x + cos k) 2 + p2 sin k. In this way we

have obtained a system of noninteracting fermions:

which produces a so called hard-care boson representation
(at each site the b; behaves as a fermion operator).

2(1+ x) ( 4x

((1+x)2) (10)
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where the symbol 8 means the elliptic integral of the sec-
ond order. He has also shown that the phase transition
appears for x = 1. For the XYTF (x ( 1) the ground-
state energy can be presented in the analytical form

2
eo = —— gl —x + zarcsinz) .

Austen and Plischke have proved (for all d) that x,
2z, where z is the number of nearest neighbors. Hence,
for a chain x, = 1. It is worth noticing that in the
region 0 ( x & 1 the ground-state energy (9) for small

p behaves as ~p p Lnp which implies a singularity of
its second derivative with respect to p and the presence
of a line of phase transitions. Besides, the critical point
at the end of this line (p = 0, x = 1) has also a singular
behavior of the second derivative of ep with respect to x.

III. THE SUPE&BLOCK IDEA

structing the effective states we ought to conserve this
symmetry. For p = 0 (the XYTF) both subspaces un-

dergo an additionaL splitting according to the value of
the total z spin projection: S' = P„ i e,~.

In order to present our interpretation of White's ideas,
we can limit our considerations to the ITF case, when
two states are kept. For simplification we divide the chain
into two-site blocks and the Hamiltonian into an intra-
block part 'Ro and an interblock coupling V: 'R = 'SO+ V.
The intrablock Hamiltonian can be written as a sum of
decoupled block Hamiltonians: 'Ro ——JP,. [—S,i S;2—
x(S;.i + S;z)], where i labels the blocks. In the trunca-
tion method, we use some states only (low-lying states of
a block in the standard approach or high-lying states of
the density matrix in White's approach) for constructing
the renormalized Hamiltonian. For both cases, indepen-
dently of the size of the superblock, the effective states
in the two new subspaces are written as a linear combi-
nation of the original states belonging to the subspaces
with opposite parities.

Both the standard approach and White's approach are
based on a truncation of the energy spectrum and they
are therefore sensitive to the choice of the states that are
used for this truncating in each step of the RG trans-
formation. In the former case, for the formation of the
effective Hamiltonian, the low-lying eigenstates of blocks
are used. White has proposed a new choice of the states,
which is more appropiate for calculating the ground-state
energy. In this paper we are following his idea, but we
would like to throw some more light on it by presenting
a d.ifferent mechanism that leads to the same result.

I et us assume that we know the state of the entire
chain, for example, the ground state ~$0). In practice,
we will usually be restricted to the ground state of some
finite section of the chain, the so-called superblock. If we
want to generate for a part of the chain a set of states,
which are especially appropriate for representing its prop-
erties when the whole chain has the state ~go), we can
use the density matrix. Suppose that ~i) is a complete
set of states of a block and

~ j) are the states of the rest of
the chain. Then we can write ~go) = P . @;z~i)

~
j). The

density matrix is defined as

(12)

White has argued that the eigenvectors of p with the
largest eigenvalues are the optimal states to be kept in
the truncation method.

Before we present some details, let us first take the
symmetry of the Hamiltonian under careful considera-
tion. The eigenvectors S; = ~S;i) . ~S;~) with
i = 1, . . . , 2, which span the Hilbert space of the Hamil-
tonian, can be represented by the eigenvalues of the S;„
(p = 1, . . . , N), as ~e,i, . . . , e;iv), where e,„=+1 or with
the symbols t and $. One can observe that the AXY
Hamiltonian acting on a basis vector does not change

its parity: sign „zr;„=+1. This means that the
Hilbert space of the AXY for 0 ( p & 1 is the direct
sum of two invariant subspaces (even and odd). In con-

I&) = I&t) + qI&&) I&) = IT&) + Ill), (»)

+ gi+4x-& ' (14)

—1 —2xx —2x2 + (1 + 2xx) Ql + 4x
2x2

and the contribution to the ground-state energy takes the
form

where q is a coeKcient depending on x. Since the original
states building up the

~
JJ.) state are equivalent through

particle exchange, their contributions are equal. So, all
approximations keeping two states can be characterized
by a function q(x) (see Ref. 9).

Since White's approach takes into account the inter-
actions of a block with its surroundings, the natural
question can be raised whether or not it is not pos-
sible to obtain the same results in the standard ap-
proach, but with a new, effective magnetic field in the
blocks. This suggests a modification of the perturba-
tion scheme by introducing a diferent separation of 'H

into unperturbed and perturbed parts. Indicating by
Qp and V the previous terms, we might replace them
by 'Rp ——'Hp + 'Ri and V = V —Ai, where Qi is de-
fined as 'Ri ———'Ro + Jg,. [

—S,i S,~
—x (S;, + S;2)]. If

the eBective magnetic field x really expresses the in-
fluence of the neglected surroundings, we may expect
that the lowest-energy states of a block with this new
'Rp correspond indeed to the eigenstates of White's den-
sity matrix with the largest eigenvalues. Therefore, x
may be determined by imposing the condition that the
eigenstates used in White's approach become identical
to the states (13), used in the standard approach with
an effective field. This requirement gives the equation
q, i »~ (x) = qwh»~ (x), which defines the effective field
x(x). For ground-state calculations, the overall scale of
the total energy is irrelevant, so that we can simply as-
sume J = J. The recursion relations then take the form
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1+4»b
Aep ———— 1+

Our calculations have shown that in this way we ob-
tain. exactly the same results (e.g. , the fiow diagram or
energies) as for White's approach. It is interesting to
notice that for the ITE model White's approach works
exactly as the standard one, but with an efFective mag-
netic field. A shortcoming of this conclusion is the fact
that we are not able to find x, when we do not know
the function qwh» (x). It is likely that also for other
cases we can find untypical separations of 'R, which may
reconstruct the results coming from White's approach.
Furthermore, it may be possible that, for determining
the efFective fields that are added to the block Hamil-
tonian, other arguments can be found besides the diag-
onalization of a superblock: symmetry considerations,
self-consistency cond. itions, series expansions, etc. are
possible techniques that may lead to interesting approx-
imations for the effective block Hamiltonian and for the
corresponding renormalization method.

In the rest of this paper, however, we will use White's
method in its simplest version with the density matrix
(12), determined through the diagonalization of the orig-
inal Hamiltonian on a superblock. Since we will report
on a large class of calculations, let us introduce a simple
abbreviation for the applied methods: "[nz]" will refer
to a calculation on a block with n sites and a superblock
with z sites. If z = sa, it means that we have applied
the standard approach (sa), which means no superblock.
[Examples: [35] means a calculation on a three-site block
in a five-site superblock, [2oo] is on a two-site block in
an infinite superblock, and [2sa] represents the standard
approach on a two-site block. If we want to make a dis-
tinction between this approach with a single density ma-
trix and the method with a double density matrix [see
Eq. (18) below], we will add the suffix "s" or "d" (e.g. ,
[35s] and [35d]).]

IV. THE TWO-LEVEL CASE

A. An in8nite superblock

For the AXY, let us first consider the case where we
keep two states. The advantage is that the Hamiltonian
can again be written as a spin Hamiltonian at each iter-
ation (see Ref. 2). It is obvious that in building a suit-
able superblock we should add. spins symmetrically with
regard to the block. However, as it was shown, if we
choose periodic boundary conditions for the superblock,
this will not be important. Moreover, in this section we
consider the best superblock, e.g. , the whole chain. In
this way we want to leave out effects connected with the
finite size of a superblock. In the Appendix we calcu-
late the equivalent form of the density matrix based on
the exact solution, considering the whole chain as a su-
perblock. Because, due to the Hamiltonian symmetry,
it is very likely that the results depend on the number
(even or odd) of sites in a block, we have calculated both
cases. For the two-site block we consider the standard

approach [2sa] and White's approach with the infinite
superblock [2oo]. The states kept for the two-site cases
have been presented in a previous section (13). For the
three-site block we consider also the standard case [3sa]
and White's case with the infinite superblock [3oo].

For a three-site block the states kept are again linear
combinations of the original states belonging to the ade-
quate subspaces:

I 0& =
I &&&& + ei

I &4&& + e214t&& + ei
I &St&

14) = 1444& + oi
I &tt& + o,

I 4&& + o,
(17a)
(17b)

xv &

FIG. 1. The Bow diagram for the AXY mode1.

where the e~ and o~ are parameters depending on the
approximation.

For all cases the How diagrams are in qualitative agree-
ment with the exact results, which we have described
in Sec. II. As far as the critical behavior is concerned,
we have found a finite value of z, (p), where the sys-
tem undergoes a phase transition. Figure 1 shows that,
when the starting Hamiltonian lies on the critical line
x, (p ) 0), the effective Hamiltonian fiows under con-
secutive steps of the RG transformation to the I fixed
point. If we would be exactly at the XY fixed point, we
would always remain there. As we can see in Table I,
the suggestion by White makes the I fixed point value
for x worse than in the stand. ard approach, but it im-
proves the position of the XY fixed point. For p ) 0 the
points in Fig. 1 on the left of 2; go to the fixed point con-
nected with the zero-field Ising fixed point (p = 1, x = 0),
but on the right of x they go to the "infinite" line of
the fixed points (p = const, x = oo). As we reach the x
axis (for 0 & 2: & xxv) we start to observe a behavior
which has been described by Jullien et al. Since the RG
transformation is not able to find a whole line of phase
transitions, we reveal only the XY fixed point and the
zero-field A Y fixed point (p = 0, x = 0) for the three-site
block. In an intermediate region the effective Hamilto-
nian jumps from one position to another and usually it
finally ends up in the infinite fixed point. Sometimes we
can observe some cyclic fixed points.

For both fixed points (I and XY) we have collected
the eigenvalues of the RG transformation and the criti-
cal exponents in Tables II and III (for details see Ref. 3).
The critical exponent o. connected with the specific heat
was calculated from the relation 2 —o. = d* v, where
d* = d + z (with d the dimension of the space). The
critical exponent v describes the behavior of the corre-
lation length v = ln(b)/ln(Ai) and z is the dynamical
exponent b ' = J'/ J = b, '/b, , where b is the scaling fac-
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TABLE I. The z values of the critical points for di6'erent blocks and superblocks with two states
kept. The abbreviations [. .

] are explained in the text.

Fixed point
I

XY

[2sa]
1.277
1

[3sa]
1.155
0.943

[2oo]
1.328
1

[3oo]
1.243
1

[34s]
1.360
1

[34d]
1.459
1

[35s]
1.316
1

[35d]
1.405

tor. As we can see, White's approach gives usually worse
results than the standard approach. The only exception
is the critical exponent n at the ITI" Gxed point, where
signiGcant progress has been obtained.

Now we devote more attention to the differences be-
tween even and odd blocks. For the three-site block,
when the starting Hamiltonian lies on the p axis (x = 0),
the effective Hamiltonian stays always on this line. For
the two-site block, the RG transformation produces an
efFective magnetic field (2." g 0) and the efFective Hamil-
tonian leaves the axis, although at the end it reaches
the same zero-field Ising Axed point as for the three-site
case. It affects strongly the Bow diagram. The result is
that energies for the two-site cases are worse than for the
three-site cases. What is more, they have a nonphysical
maximum around x = 0.1 (for 0 & p & 0.7). The three-
site block ([3sa], [3oo]) is free from such an abnormality.

We are convinced that for the two-site cases the new
states have been built incorrectly. In constructing

[ Q)
we are forced, in order to conserve parity, to combine an
original state with a maximal number of sites up [ g't)
with one with a maximal number of sites down

[ $$).
As a result, e.g. , the RG transformation for the two-site
case is not invariant under sign reversal of the magnetic
field. Likewise, if we look at the formula (13) we can see
that only the efFective state [P) depends on p (because of
the coefFicient g) while the state

] JJ.) remains always the
same. In this way we obtain an incorrect fIow diagram
and an erroneous energy from the iterative construction.
It is worth noticing that this does not depend on the su-
perblock idea. The [2sa] case as well as the [2oo] case use
the same assignment (13); only the form of the coefFicient
q is different. So, it is simply a failure of even blocks, and
in the truncation method with two states kept only odd
blocks give the proper result for the AXY. That is why
we do not present energies for the two-site cases.

In order to test White's scheme for the spin-spin cor-
relations we have investigated. the following functions de-
scribing the short-range order: G = (S, S;+i) and
G, = (S;S;.+i) . Because for simplicity we consider them
only at zero magnetic Geld, they are functions of the de-
gree of anisotropy p. We have calculated them for the
[3sa] and the [3oo] cases. These spin-spin correlations

can be obtained from a scheme proposed by Sznajd and
Zittartz, where we accumulate contributions to the cor-
relation functions at each step of the RG procedure av-
eraging over all possible distributions of the bonds. The
results can be compared with exact values calculated by
Lieb et al. for the antiferromagnetic chain, which, due
to the symmetries of the Hamiltonian, is equivalent to
the ferromagnetic one, up to a unitary transformation.
It is worth noticing that having the G ~ and t » we can
obtain the ground-state energy immediately &om the re-
lation eo ————(1 + p) G —

2 (1 —p) G». The G, func-
tion is ind. ependent f'rom them because of the absence of
8' 8 +y terms in the Hamiltonian. This seems to explain
why White's approach, which produces the best results
for the energies, gives also better values for G than the
standard approach (see Fig. 2). For G„ the standard
approach seems to be a better approximation.

We show the energies for the three-site cases in Figs.
3—5 for the ITF, the "intermediate" AXY, and XYTI
with p = 1, 0.5, and 0, respectively. As a point of refer-
ence we have taken the values for the exact energy com-
ing from Eq. (9), and we present in our figures only the
differences. As we can see, White's approach yields deG-
nitely better energies than the standard one. The worst
progress was obtained around the lines of the phase tran-
sitions: x, (p) and the x axis. The deficiencies are likely
to be connected with an increase of the quantum fluctu-
ations. In these regions even an inGnite superblock is not
able to provide the correct results. Because the XYTI
is known to be equivalent to the classical d = 2 Ising
model for z ) 1, here the ground-state energy (per site)
is always equal to the magnetic field ~ = —x. In this
region, due to the fact that we retain the lowest-energy
states (equivalent to the highest states of the density ma-
trix), the errors of the energies are zero for the truncation
method in any approach. This fact corresponds with the
generally better accuracy of the XY Gxed point than that
of the I fixed point.

At the end of this section we would like to discuss the
relation of the discarded weight of the density matrix
to the accuracy of the method. Since each eigenvalue
A; of the density matrix represents the probability of a
block being in the state [A;), the following relation is ful-

TABLE II. Eigenvalues and critical exponents at the I fixed point.
Exact [2sa]

1.596
0.466
1.482
0.552

—0.299

[3sa]
2.313
0.25
1.311
0.631

—.0.137

[2oo]
1.659
0.446
1.369
0.532

—0.098

[3oo]
2.243'
0.393
1.36
0.464
0.009

[34s]
2.153
0.355
1.433
0.397

—0.002

[34d]
2.234
0.289
1.367
0.465

—0.002

[35s]
2.227
0.367
1.372
0.423
0.040

[35d]
2.280
0.304
1.333
0.476
0.032
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TABLE III. Eigenvalues and critical exponents at the XY fixed point (calculated on the left-hand
side).

Exact

0.5
2

0.5

[2sa]
2

1.5
1
1
0

[3sa]
4

2.2
0.793
1.262
0.207

[2oo]

1
1
0

[3oo]

1
1
0

[34s]

1
1
0

[34d]

1

[35s]
3

1

[35d]
3
3

1
0

filled: g,. A; = 1. If we keep m states, the deviation
of P = P,. A; from unity measures the accuracy of
the truncation to m states. White has shown that P
is an excellent estimator of the accuracy for the Heisen-
berg chain. In our case, the AXY model behavior is
more complicated, due to the anisotropy and the mag-
netic 6eld. During the RG transformation, the effective
Hamiltonian fiows in the parameter space (2:,p) and P
may vary substantially under this How. Nevertheless P
seems to be still a good estimator for the errors in the
results. The closer P remains to unity, the smaller are
the errors of the energy. For the ITI', the "intermedi-
ate, " and the XYTF regions, the minimal P (x, p) is
around 0.97, 0.99, and 0.8, respectively. In fact, as we
have already mentioned (see Figs. 3—5), the errors for the
XYTI" case are in general the largest. We can also notice
that P decreases around the critical line x, (p).

B. Finite superblocks

I.et us now consider 6nite superblocks, which are cer-
tainly more easy to realize. In order to observe su-
perblock size effects, we use an odd (three-site) block
with even (four-site) and odd (five-site) superblocks.

It is worth noticing that in the x = 0 region the ground
state of the odd superblock is a doublet. If we should
choose only one state, we would immediately break the
system symmetry. This suggests that we may assume

that the superblock is in a mixed state which is made
up of the lowest states from both parities. Because this
assumption is in agreement with the global Hamiltonian
symmetry, it is interesting to check how it a8'ects the
results in the whole region of parameter space. Accord-
ing to White's proposal, we can build a double density
matrix in the following way:

p=W p, + R'p,
where p, (p ) comes &om Eq. (12) with ~Qo) equal to
the lowest state of an even (odd) subspace of the su-
perblock Hamiltonian. When AE = ~E, —E ~/J is
the dimensionless difference between both energies and
E, ( E (E, & E ), the coefficients have the form

1 exp( —D)W, =
( &) and W = i ( ~) (or opposite).

This simple choice satisfies the normalization condition
and seems to be reasonable.

The calculations have been performed both for single
density matrices ([34s], [35s]) and for double density ma-
trices ([34d], [35d]). As we can see in Table I, the po-
sitions of the I fixed points are always worse than for
the standard approach and for White's approach with
an infinite superblock. Contrary to this, for the LY

10.

0.8

~ 0.6

~ 0.4 .

0.2

Ines G„„

0.
0.5

hjJ

1.5

0.2 0.4 0.6
gamma

0.8

FIG. 2. The spin-spin correlations for zero magnetic field. .
The triangles represent the [3sa] results, the stars represent
the [3oo] results, and the solid circles correspond to the exact
results.

FIG. 3. The energy difFerences for p = 1. Here and in the
following figures E = In[(e,a,~&~q~a —me~~, t) x &0 + &].

add the unity to avoid (eventually large) negative values of E,
when the difFerence is smaller than 10 . The triangles repre-
sent the [3sa] case, the stars the [3oo] case, the diamonds the
[4sa] case, and the solid circles represent the [46s] case. These
last two cases were obtained with the multisite approach, re-

ported in Sec. V.
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10.
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h/J
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FIG. 4. The energy differences for p = 0.5. See Fig. 3 for
the meaning of E and of the symbols in the figure.

fixed point each superblock gives the exact position of
the phase transition. Looking at the critical exponents
for the I fixed point (Table II) we see no progress for z
and v, but again some progress for o.. The values of the
critical exponents for the XY fixed point collected in Ta-
ble III are identical to those of an infinite superblock [3oo]
and they are in bad agreement with exact results. As we
can see by taking both the positions of the phase tran-
sitions and their critical exponents into account, there is
no difference between singlet and doublet cases.

The situation is diferent for the energies. They are
presented in Figs. 6—8. For the ITF case double density
matrices give a distinct progress in the energies around
the I fixed point compared with the single density matri-
ces. Figure 7 shows that this tendency takes place along
the whole line x . This suggests that for the Ising-like
phase transition region it is more profitable to build a
density matrix from Eq. (18), where we take both pari-
ties of a superblock into consideration. Notice that these
states are always the lowest states of the Hamiltonian.
At the I fixed point it gives also a high accuracy for the

FIG. 6. The energy differences for p = 1. The diamonds
represent the results for. the four-site superblock and the stars
those for the five-site superblock. The results on the dashed
lines were obtained with the single density matrix and those
on the dotted lines were obtained with the double density
matrix.

critical exponent o..
For x 0, our assumption about the advantage of

a double density matrix seems to be partially confirmed.
For the "intermediate" case the energies coming from the
[35d] approximation. are decidedly better than for the
[34s] case. The absence of critical lines causes the RG
scheme to work without problems and our assumption
is confirmed. For the AYTI' case the energies coming
from the odd superblock with a double density matrix
([35d)) are close to the energies obtained from the even
superblock with a single density matrix ([34s]) but both
are not in good agreement with the exact results. For
a small magnetic field (x ( 0.5) our energies are always
worse than for the standard approach [3sa]. An even su-
perblock with a double density matrix [34d] gives here
poor results because, although its ground-state is a sin-
glet, the second state is a doublet and we are forced to

10-

2-

0-
0.2 0.4

h/J

0.6 0.8
0I-.

0 0.5

h/J

1.5

FIG. 5. The energy difFerences for p = 0. See Fig. 3 for the
meaning of E and of the symbols in the figure.

FIG. 7. The energy differences for p = 0.5. The meaning
of the symbols is the same as for Fig. 6.
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TABLE IV. The x values of the critical points for the cases
with four states kept.

Fixed point
I

XY
C

[4sa]

0.936
0.926

[46s]

0.918
1

[46d]

0.998
1

e (x)
—1 —2:2/4 for x -+ 0

= —z —1/4x for x m oo . (20)

The standard approach ([4sa]) fails for both limits,
whereas for the approach with two states kept only the
x ~ 0 limit is appropriate.

VI. CONCLUSION

The origin of the shortcoming of the standard method
is due to the fact that eigenstates of an isolated block

as for retaining two states, White's approach gives the
exact value for the XY fixed point. For the [46d] case
the position of the I fixed point is in excellent agreement
with the exact result. Because a double density matrix
seems always to shift the position of the I fixed point to
the right (see Table I), it is not clear if this accuracy is
now accidental or not.

The results of this calculation were included in Figs. 3—
5, where we presented the differences of the energy with
respect to the exact values. As we can see for the case
with four states kept, White's approach gives a strong
improvement over the standard technique, however, as
usual the worst progress is along the lines of phase tran-
sitions. As in the preceding section for the ITF region
(below the critical field), a double density matrix is again
more appropriate, but now the differences in energy are
definitely smaller. In almost the whole remaining space
the [46s] approximation gives better energies than the
[46d] one. This shows that for the case with more states
kept there is no special virtue in taking a double density
matrix.

In general around x = 0.25 all calculations suffer from
a nonphysical maximum in the energy in the XYTI" re-
gion. In our opinion the reason is that there the above
assignments are unsuitable for intermediate magnetic
fields. This discrepancy comes from the relation between
block states and multisite states and is independent of
the superblock idea.

If we consider P, for the [46s] approximation the con-
dition P = 1 is again fulfilled, as it was for the [34s] case.
It means that for the density matrix only four states have
nonzero (positive) eigenvalues and all of them are taken
into account. As a consequence, the results obtained
seem to be in satisfactory agreement with the exact ones.
However, we should remember that for the [34s] the same
condition did not guarantee a high accuracy. This shows
that P is a better estimator for the approximations with
a larger number of states kept.

It is worth stressing that for White's approach with
four states kept the behavior of the energy for the ITF
agrees with the exact expansion in the neighborhood of
the trivial fixed points: x ~ 0 and x ~ oo,

are chosen to be kept in the truncation. In this way all
connections to neighboring blocks are neglected during
the diagonalization. We have tested White's proposal
for a model with two lines of phase transitions in the
ground state (the d = 1 AXY) and we have confirmed his
statement about a greater accuracy of the energy. This
accuracy increases rapidly when we keep more states in
each renormalization step. The least progress is obtained
close to the lines of phase transitions.

For the ITF model with two states kept we have ar-
gued the equivalence of White's approach to the stan-
dard approach with an effective field. This equivalence
can be generalized to other models. It may lead to the
application of alternative criteria for determining an ef-
fective field and for performing an efficient truncation
renormalization procedure. It can certainly be seen to
be a promising method for extending White's procedure
to nonzero temperature applications.

However, on account of complicated symmetries, the
AXY model demands more precautions during the con-
struction of a RG transformation. We have shown that
for the method with two states kept there is no distinctly
best approximation for the whole AX Y model. The most
optimal approximation seems to be obtained when the
numbers of spins in a block and in a superblock are odd
and when we build a density matrix from the lowest two
states of a superblock belonging to opposite parities. At
the same time we have found that using a double density
matrix does not lead to appreciable improvements in the
case when a larger number of states is kept.

We did not discuss cases in which more than four states
are kept. One knows that keeping more states automati-
cally needs larger blocks and this leads obviously to more
accurate results. (For example solving with an infinite
block gives an exact result. ) In our opinion, RG methods
are the most interesting if good results can be obtained
from small blocks, which means here that a small number
of states are kept. That is why we presented results only
for the cases with two and four states kept. For more
complex applications, it will be worthwhile to remember
that the best choice will depend on the particular rela-
tion between the lowest states of a block and the lowest
states of a multisite. As we have shown, if we are able to
match these lower states, the accuracy of the energy will
be very high.

In this paper we have presented the eigenvalues of the
RG transformation and critical exponents for the method
with two states kept. We have checked that White's ap-
proach does not improve the critical exponents in com-
parison with the standard approach. The only exception
is the value of the critical exponent o. at the I fixed point.
Since a is connected with the specific heat, which is pro-
portional to the second derivative of the free energy with
respect to a magnetic field, its significant progress is likely
to come from the high accuracy of the ground-state en-
ergy around the I fixed point. As it was discussed, we
are not able to calculate critical exponents by using mul-
tisites, but we still consider this to be an open problem.

After this study, there is some hope to obtain new rea-
sonable results by applying White's approach to quantum
systems where exact results are unknown. For example,
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it seems to be promising for calculating the ground-state
energy in the d = 2 AXY model. Contrary to the
original White method, where the treatment of a two-
dimensional system is currently a nontrivial problem in
the development of the density-matrix method, for our
algorithm we need not introduce any essential modifi-
cation. We merely have to decide on two-dimensional
blocks and superblocks, which can fulfill the lattice sym-
metries. For planar systems also calculating the spin-spin
correlations seems to be more interesting and fruitful.
Although the size of the matrices is here a substantial
inconvenience, the calculations are now in progress.

We then obtain

p» = L1+L2L3+L4,2

p» ——L1 —L1 —L2L3 —L4,2 2

p44 ——(1 —Li) + I 4 + L2L3,
p14 —L4 ) p23

(A3a)
(A3b)

(A3c)
(A3d)

For the three-site block we have eight states labeled by

(ttt), (tN), (Nt), "., (ill) o 1, 2, 3, .",8. D ~ t.
the Hermiticity and parity symmetry of the Hamiltonian

only 14 diferent elements of the density matrix p are
nonzero:
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APPENDIX

P22 = P33

p44

P41 = P14

P32 = P23

pm, ~

= (0lnin210)
—= (0~ (1 —n, )n2 ~0),
—= (Ol(1- )(1- 2)lo)-=(OIb', b'. Io)
—:(0[btib2)0),
= 0 for the rest.

(Ala)
(A1b)
(Alc)
(Ald)

(Ale)
(A1f)

From the exact solution for the entire chain (the in-

finite superblock), we know the ground state. Then, in

order to calculate all elements of the density matrix, it is

more convenient to use expectation values of the Fermi

operators c; and occupation number operators n;, which

is equivalent to using formula (12). First we present

it for the two-site block, where we have four states la-

beled by (tt), (tf), ($t), ($$) or 1, 2, 3, and 4. Due to
the Hermiticity and parity symmetry of the Hamiltonian

only five difFerent elements of the density matrix p are
nonzero. ~0) is the true ground state of the AXY in
6= 1)

P11

p7V = p44

P55 = P22

ps'

P1V = P71

P61 P16

p76 = p67

p74 = p47

P82 = P28

P32 = P23

p83 = p38

P52 = P25

pm, ~

-=(ol . .Io),
—= (O~n, (1 —n, )(1 —n, )~0),
—:(0 i (1 —n )n (1 —n3) io),
= (0~(1 —ni)(1 —n2)(1 —n3) Io)
—:(Oi(1 —ni) n2n3io),
= (0~ i(l —n2) 3)0),

t t
P4] p] 4 (O ~n] b2b3 ~0)-=(OIb', .b.'Io),

= P64 = P46 = (O~bib2(1 —n3)~0),
= (O~b', (1 —n2)b3~0),

P85 P58 = (0~(1 ni)b2b3~0)

= P53 = P35 = (Olbib2nslo),
—= (OIbi(l n2) b3~0),

=—(0)b, ,b,'[0),
= 0 for the rest.

(A4a)

(A4b)
(A4c)

(A4d)

(A4e)

(A4f)

(A4g)

(A4}1)

(A4i)

(A4j)
(A4k)

(A41)

(A4m)

(A4n)

(A4o)

1 f x+ coskb
2 q A(k)

sin A: sin 2k

2~ 6 A(k)

=1 x+ cosk)
L7 = — dkcos2k

i
1+

271 0

1 x+ cosk)
!dkcos2k

i
1—

2' 0 A(k)

(A5a)

(A5b)

(A5c)

(A5d)

We then obtain

These elements can be expressed as combinations of in-

tegrals from formulas (A2) and

L1 —— ( x+ cos k)""~ '+
( x+ cosk)

dkcosk
i

1
27t 0

1 x+ cosk)
dkcosk

i
1+

27K' 0
7r 4

sin k

2m 6 A(k)

(A2a)

(A2b)

(A2c)

(A2d)

These elements can be expressed as combinations of in-

tegrals: p11 = L1L7Ls —2L'3 L4L6 + L1L6

+L4(2Li + L7 —Ls) —L3Ls + 2L, L2L3

+L1 + L2 L7 + 2L2L4L 6 )

p33 ——Li + LTLS + L6 —p11,2 2

p44 ——Li —2L1 I2L3 —I7LS —I4
—L6 + p11

p55 = L1+ L2L3+ L4 —p11 )
2 2

p66 ——L1 —2I1 2L2I 3 —2I 4 + p11,2 2

pss = 1 —3Li(1 —Li) + 2L2L3 + LvLs + 2I4
+L6 —p11,

(A6a)
(A6b)
(A6c)
(A6d)
(A6e)

(A6f)
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p]4 ——L4(L] —Ls) + L,Ls,
a~6 = I-3L4 —LiL6 —IzL4,
P25 = Lairs+ L2+14,
p35 = L4L6 —L&I2+ 1318,

(A6g)
(A6h)

(A6i)

(A6j)

pss ——Ls(1 —Lg) —LzL4+ LsL4,
p4s

——Ls(1 —Lg) —L4Ls —L2L7

p47 = Ip(1 —Lg) + Ls + L4,
p58 L4(1 LT) L1L4 + L3LQ

(A6k)

(A61)

(A6m)

(A6n)
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