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Thermomagnetics of reversible transverse susceptibility
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Thermal relaxation is taken into account in analysis of the reversible transverse susceptibility (RTS) of
an interacting particulate system described within the mean-field approximation. Particle orientation is
given by a texture function with independent in-plane and out-of-plane components. The shape and lo-
cation of the RTS peak at coercivity critically depends on temperature, texture, and on the interaction
strength while the peak at the anisotropy 6eld gradually merges with the coercivity peak at a strong-
coupling field. There are only two peaks remaining in RTS measurement for either a strongly coupled or
a well-aligned system. Thus, peak-detection techniques fail to distinguish the anisotropy field and coer-
civity.

I. INTRQDUCTIGN

Recently it was shown that measurements of reversible
transverse susceptibility yield valuable information not
only about the fundamental magnetic material properties,
but also about the characteristics of the magnetic record-
ing performance. ' However, the phenomenon of rever-
sible susceptibility (RS) is very complex and not yet fully
understood, despite numerous attempts to develop a
first-principles calculation of RS in ferromagnetic materi-
als. Assuming coherent rotation of magnetic moments in
single-domain particles, the magnetization curve M(H)
of a uniaxial crystal, with H oriented in the hard direc-
tion, has a singularity at the saturation point, i.e., when
the applied field equals the anisotropy field Hk. For a
randomly oriented system, the magnetization curve
shows a smooth dependence on applied field, with no ap-
parent vestiges of the singularity at H =+Hk. However,
it has been shown that the singular point behavior be-
comes apparent again in the successive derivatives
d"M/dH" plotted ' as functions of H. Usually, the
detection of singular behavior of reversible transverse
susceptibility (RTS) is much easier than that of reversible
parallel susceptibility and despite its simplicity it is ver-
satile and capable of relatively high sensitivity. ' There-
fore, a lot of effort has been devoted in the past to
analysis and measurement of RTS in ferromagnetic ma-
terials.

The method, however, does not yield the same infor-
mation about magnetic anisotropy as the torsion pendu-
lum measurements. In particular, the RTS anisotropy
peak vanishes in a system with either large particles or
with strong interparticle coupling. Various approaches
have been evoked to account for this failure of the RTS
measurements. Expressions for the RS tensor based on
coherent rotation of the magnetic moments of single-
domain particles predict that the RTS function y, of an
assembly of noninteracting single-domain particles has
three cusps: at the anisotropy fields +Hk and at the coer-

civity H, . Investigations of the effects of distribution of
anisotropy field strength and of texture in a noninteract-
ing system show that the cusps of the theoretical curves
are smeared out. In particular, the cusp at H, is
suppressed while the peaks at the +Hk remain. The
discrepancy of RTS peaks between experimental and
theoretical data has been attributed to unrealistic as-
sumptions in the basic model, " such as neglecting
thermal relaxation effects and interparticle coupling.

Both relaxation and texture effects have been reported
to suppress and shift the RTS peak at coercivity in nonin-
teracting systems, ""while the position and the height
of the anisotropy peak are not affected at all. For an in-
teracting binary system with high symmetry, it has re-
cently been found that the singular part of RTS is pro-
gressively suppressed with increasing interaction strength
and the authors argued that the RTS will possibly remain
finite at a nucleation field corresponding to a highly or-
dered state. Though the argument is only qualitative, it
suggests that interactions between particles must be tak-
en into account in analysis of experimental RTS curves.
Recently, a mean-field model without thermal relaxation
has been proposed to investigate the inhuence of interac-
tions on RTS. ' In samples with random distribution of
easy axes this model results in a gradual merging, as in-
teraction strength is increased, of the RTS peaks at coer-
civity and at anisotropy field. '

Here we extend the mean-field model of Ref. 10 and
study the combined effects of interactions and of thermal
relaxation in particulate recording media with specified
texture. In Sec. II we briefly review the calculation of a
hysteresis loop for a thermally relaxing bistable system
and write down the corresponding expressions for the
RTS function y, (M). In Sec. III we present sample hys-
teresis loops of interacting arrays and compare two
different algorithms for their computation. We find that
negative coupling requires at least a three-level master
equation description; a two-level master equation system
is only appropriate for the positive interaction strengths
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to which we confine ourselves here. We also brieAy dis-
cuss the relaxation dynamics of magnetization at nonzero
coupling strength. Addressing finally the RTS functions
we find that within a mean-field theory the RTS peaks at
+Hk are suppressed by strong coupling and that the peak
at H, is critically influenced by both the medium texture
and the coupling strength; thermal effects inhuence the
coercivity peak only. Our results therefore show that
determination of anisotropy constants from RTS peak
detection is only valid in weakly interacting particular
media.
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Z
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Easy Axis

II. THE MODEL

In this section we present our mean-field model, surn-
marize brieAy the methods used to calculate the hys-
teresis loop, and define the reversible transverse suscepti-
bility of a thermally relaxing system.

We consider an array of identical single-domain uniaxi-
al particles whose magnetization M reverses by coherent
rotation. Each particle has energy E =KV sin 8
—VM H, ', where V is the (activation) volume and K is
the anisotropy constant. The effective magnetic field H,&

includes both the applied field and the interaction field
from other particles, 0 is the angle spanned by the
particle's easy axis and its magnetization M, ~M~ =M, by
assumption, and M, is the saturation magnetization. The
orientation of easy axes within the array is given by a tex-
ture function with independent in-plane and out-of-plane
components allowing to model a realistic medium. The
texture function used here is of the form

1f(8k, dk)= exp
(m/2 —8k)

Xexp
2o-

g 20y

where A' is a normalization constant and the easy-axis
orientation is defined by the spherical coordinates Ok and

Pk, 8k is the angle between the applied field and the pro-
jection of the easy axis onto the media plane (Fig. 1). The
parameters o.z and o.

&
control the distributions in and out

of the plane, respectively.
Interparticle interactions may either be taken into ac-

count via a microscopic approach' ' or via the phe-
nomenological mean-field approximation. ' ' The mi-
croscopic computation requires, as a rule, too much com-
puting power and for the purposes of RTS calculation it
becomes almost impracticable. We adopt therefore the
mean-field approximation in which a representative parti-
cle of the array is acted upon by the field
H,z=H+a(M) where H is the applied magnetic field,
(M) is the instantaneous mean magnetization of the ar-
ray and o, is a coupling constant. Calculations of a hys-
teresis loop within this model have been reported previ-
ously' ' for Stoner-Wohlfarth particles without
thermal relaxation efFects. However, in a thermally re-
laxing system interactions provide for the slow relaxation
dynamics manifesting by either quasilogarithmic or
stretched-exponential behavior. ' Thus, in order to study
the temperature and time dependence of the magnetic
properties we should take into account both interaction

FIG. 1. Schematic diagram of a uniaxial ferromagnetic parti-
cle with main bias field H and small perpendicular field h.
Easy-axis orientation is defined by the spherical coordinates Ok

and Pk, 8„ is the angle between the applied field and the projec-
tion of the easy axis onto the media plane, x-z plane.

and thermal relaxation effects.
In this work we treat an array of many identical parti-

cles as having two levels' ' ' which are occupied with
probabilities n, and n2=1 —n, , respectively. Its evolu-
tion is given by the master equation"

Ei i
= K]2ni+K2in2 = 7j2 (2)

M [H(t) ~8k, pk]
2

=M, g n;[cosP; sin8;, sing; sin8;, cos8, ],
where (8;,P,.) denotes the metastable orientation of mag-
netization, corresponding to the local minimum of the en-
ergy function, and n; is the fraction of particles whose
magnetization is in this direction. For an isolated parti-
cle P, =Pk and $2=m+Pk by symmetry, while
8;=8;[H(t)] at all times. Only if 8k =0 does one recover
the axially symmetric result 0& =0 62 =7T,

where ri, =dn;/dt and K~=K; . =foexp( —
Q, /k~T) is

the rate of thermally activated transitions from the ith to
the jth level. For the prefactor we choose the value"
fo=e Hz, k~ is the Boltzman constant, Tis tempera-
ture, and Q; is the barrier height to be overcome on
departure from the ith well. We shall assume that the ap-
plied field driving the hysteresis loop is in the z direction,
H=[O, O, H(t)], H(t)=HO cos2m ft, where f is the sweep
rate and the amplitude Hp is greater than the nucleation
field H„of the system. For +=0 and 0I =0 one may set
Hp 2K/M =—H„and the barrier heights are given by
the well-known formula' Q;=XV(1+H/H„). For
any other alignment of the easy axis the barrier heights
can only be determined numerically. If n&0 the nu-
cleation field H„(a) is not a priori known and in calculat-
ing the hysteresis loop we take the amplitude Hp
sufficiently large for all particles within the array to have
initially only one local minimum, i.e., we solve Eq. (2)
with the initial condition n, [H(t =0)~8k, gk]= 1. There
exists then no other possible metastable orientation of
magnetization and n2[H(t =0)]=0. The time-
dependent, nonequilibriurn magnetization of an array of
identical particles with easy axes in the (8k, g&) direction
becomes"
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BE 8@5xp+ h =0,
p Bx Bxp ~+a

(4)

where the partial derivatives are to be evaluated at the
unperturbed minimum. From Eq. (3) it then follows that
the RTS function is given by

cosP; cos8;58;
—sing; sin8;5P;, g=x,

gyp=Ms Vh g li
y 8 58i=1

+cosP; sin8, 5$, , g=y .

The perturbations 5n;, calculated from Eq. (2), were
shown to be negligible. "

The discriminant of the linear system (4) is the Hessian
of the unperturbed energy which vanishes whenever one
or the other local energy minimum is annihilated (this
does not necessarily hold for systems with more than two

M=M, [0,0, n i
—n2].

The nonequilibrium magnetization (3) is thus expressed
in terms of the four functions 8;[H(t)] and P, [II(t)]
which denote the instantaneous position of local energy
minima and in terms of the two occupation probabilities
n, [H(t)]. In a noninteracting system only the occupa-
tion probabilities depend on the system's past, while the
energy minima are found by simply minimizing the func-
tion E( 8, $) at a given field. Within the mean-field
theory the mean magnetization of the system is found by
averaging the magnetization (3) over the easy-axes orien-
tations (8k, gk) and in this case the instantaneous posi-
tion of the local minima does depend on history since
each particle experiences the mean field
H,s=H+a(M). In implementing the mean-field ap-
proximation we proceed as follows: By virtue of our ini-
tial conditions there exists, for any easy-axis orientation,
only one local energy minimum at t =0 and we use the
easily calculated mean magnetization (M(0) ) to approxi-
mate the mean field an instant dt later, setting
H,gt)=H(t)+a(M(t dt)). —The updated value of the
mean magnetization is then used to approximate the
mean field at t =2dt, etc. The theory is thus not entirely
self-consistent since the response to the coupling field is
always delayed by the integration step dt of the
differential equation (2). Nonetheless, hysteresis is a
memory effect, in particular where thermal relaxation is
concerned, ' ' ' and the present approach is certainly
preferable to the iterative procedure proposed by Ather-
ton and Beattie' ' which will be discussed in the next
section.

Let now an infinitesimal perturbing field h of frequency
fl, ( ))f) be applied perpendicular to the driving field H,
h = h ( t ) [cosy, sing, 0], h ( t ) =h sin2nf t. The energy
function acquires an additional term, E~E+h (t)6'
where 6 = —VM, cos(P —y) sin8. The position of the un-
perturbed minima is given by the equations E =0

a
(E„=BE/Bx, x =8,$) and their shift 5x due to the

a
perturbing field is obtained by expanding these equations
to the first order in h:

local minima ). For noninteracting particles the explicit
solution of Eqs. (4) and (5) was given by Aharoni et al.
who, however, assumed that n&=1 np=0 if H) H„,
and n, =0, n 2

= I if H & —H„(the Stoner-Wohlfarth
model without thermal relaxation). In reality, however,
coercivity is much smaller than the nucleation field due
to thermally activated magnetization reversals so that the
vanishing local minimum is, as a rule, " not occupied,
limH ~ n& =0, while lim& H y, = ~. Only in the

n n

Stoner-Wohlfarth model or for particles whose easy axis
is perpendicular to the driving field" is the vanishing lo-
cal energy minimum occupied arbitrarily close to the nu-
cleation field. In Sec. IV we present calculations of the
mean RTS function (y«) and discuss its dependence on
the coupling strength, temperature, and texture.

III. HYSTERESIS PROPERTIES

In investigating the dependence of hysteresis loop on
the amplitude of the driving field, most models consider
only an isolated particle without thermal agitation and
their results are thus only approximately applicable in the
low-temperature limit to weakly interacting systems, i.e.,
to micronsize particles. Relaxation effects exponentially
increase with the reduction of size (e.g., the ultrafine par-
ticles used in high-density magnetic recording) and
thermally activated magnetization reversal currently at-
tracts increasing attentions. ' ' Furthermore, interac-
tions among the magnetic moments strongly inAuence the
rate with which a nonequilibrium system decays towards
equilibrium. ' Therefore, to understand the hysteresis
properties one cannot neglect either the relaxation or the
mutual interaction effects.

Dipole-dipole interactions between particles are usual-
ly treated within a microscopic approach' ' or within
the phenomenological mean-field model. ' ' The
mean-field theory allows the simple coherent rotation
model to be extended to interacting particles and pro-
vides a compromise between accuracy and convenience.
Quantum mechanics has since shown that the interaction
between atomic magnetic moments is due to the ex-
change force, but on the scale of individual particles or
domains it becomes purely phenomenological. '

Within the mean-field model numerical calculations of
the hysteresis loop are usually carried out iteratively,
iterating from the loop of assembly of noninteracting par-
ticles. ' ' At applied field H(t) the effective field is
iterated initially with H', z~(t) =H(t)+a(M(t) )' ~

0 and
then self-consistently derives the ith iteration result, the
(M(t) )". However, this algorithm only yields a steeper
magnetization curve at coercivity for a)0, while the
coercivity is never inAuenced by interaction strength
since (M(t) H) o=0 for H(t)=H, . ' Therefore, the
well-known linear relationship between coercivity and
packing density cannot be demonstrated. Another pos-
sible numerical process, as described in the previous sec-
tion, is H,s(t)=H(t)+a(M(t dt)) . Though not en-—
tirely self-consistent, it satisfies the requirement of causal-
ity and is, for small enough dt, physically more realistic.
The former algorithm maintains only the history of the
noninteraction system, disregarding evolution due to in-
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teractions, while the latter approach keeps track of all
history since saturation. It rejects the true hysteresis of
the interacting system, with coercivity shifting outwards
with increasing positive interaction strength (Fig. 2). We
have also calculated hysteresis loops for negative cou-

ling and found coercivity to be independent of &x&0
since the two-level system (2) does not allow for the pre-s-
ence of a stable antiferromagnetic configuration. At least
a three-level master equation system is required for a & 0
and coercivity then shifts inwards with increasing cou-
pling strength. 25

Using the proposed algorithm we have also calculated
magnetization relaxation in an ensemble with randomly
distributed easy axes at constant field. In an initially sa-
turated system, in the absence of applied field, all parti-
cles experience only the interaction field, a( M ) and Fig.
3 shows the resultant slowing down of the relaxation dy-
namics. ' For n &0 the relaxation is initially very slow
but faster later on as the mean magnetization decays and
the interaction field decreases. Relaxation is thus slower
than expected from a simple exponential model, while for
a (0 (described here within the two-level formalism) the
decay is accelerated (Fig. 3). In a perfectly aligned sys-
tem of Ok =0, in zero applied field, the equilibrium mag-

27netization M( ~ ) satisfies the equation
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IV. REVERSIBLE TRANSVERSE SUSCEPTIBILITY

FIG. 3. Slow relaxation of a particle assembly with randomly
distributed easy axes. Here f =0.1 and KV/ks T = 30.0.

M(~) KV M(ce)
For a Stoner-Wohlfarth particle without thermal agita-

tion it has been shown that RTS is given by the expres-
sion '

where a=aM, /Hk, which has only the trivial solution
M( ao ) =0 if E( kii T/2ICV. Parasitic nontrivial solutions
appear for larger a and the mean-field theory loses con-
sistency.
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FIG. 2. Hysteresis curves for the mean-field Stoner-
%'ohlfarth model with uniformly distributed easy axes.
Memory of the interacting effects can only be demonstrated
with the newly proposed algorithm. Here e =aM, /Hk, f=0. I,
and XV/k~ T= 1OO.

+0 M /3+ ~ ff ~ +E~ ~ ~/~k
m =M/M . For c,@0 this is an implicit equation whichS'
can be only solved by numerical methods. For a collec-
tion of randomly oriented easy axes, the RTS function
can be obtained by integrating' the above equation over
8 and P

' the texture distribution function (l) may alsoan
8be introduced so as to model a realistic medium.

If we consider the decay of the interacting magnetic
systein as described by Eq. (2), then its RTS should be
modified in accordance with Eq. (S). In order to under-
stand the resultant complex RTS curves we shall study
some simple cases first.

Obviously, the RTS function approaches zero at strong
applied fields H and also if the magnetization is perpen-
dicular to the applied field, that is, if it is parallel to the
per urerturbing field h. A thermally relaxing isolated particle
yie s,ields, as shown in Fig. 4, RTS curves consisting of two
branches associated with the two populations n

&
and n2

on either side of the barrier. For inclination angles
Ok ~45 the n i branch of RTS curves g, increases from
zero at very strong fields (rightinost of Fig. 4) and then
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smoothly drops off to zero again, passing through a max-
imum (Fig. 4). Although y, does not drop off to zero for
angles Ok (45 it still has a peak value at
H„(8„)& H &H„ for 8„~8, . The critical inclination an-
gle is numerically found to be 0, =32'. If Ok &8, then
the eak ofe pea o y, disappears and the RTS curves become
monotonous (Fig. 4). The y, of n t branch always
diverges at —H„ for any angles of applied field. The
same behavior of n2 branch exits for the field sweeping
reversely. In the hysteresis loop initially n

&
~ 1 and

nz —+0 and the n& branch dominates by virtue of Eq. (5).
At T=0 the RTS switches branches only at H„(—8k)
where it diverges. However, due to thermal agitation this
switching process takes place at smaller reversing fields.

The majority of switching events takes place at the criti-
cal field —H, & —H„and the RTS curves switch from
the n

&
to the n2 branch. The exact behavior depends on

the inclination angle Ok. For a small Ok there is a peak at
coercivity, while at large 8k one observes a dip

H, ~— H, —(see Fig. 4). The divergence of y, at
H„(—8k ) is removed for all inclination angles apart from

the singular case of Ok =90'. The branches are exactly the
same for either n& or n2 at Hk =90 regardless of thermal
agitation, and thus the divergence of g at anisotro
field 1e always exists for any temperature at this singular an-
gle.

Consider now the inAuence of coupling strength; For a
randomly distributed system we find that with increasing
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FIG. 4. The RTS functions of an isolated article m k'
p 'cle making an inclination angle Ok of the easy axis with respect to H. The ri ht

curve in the figures is the n, branch and the left curve is the n branch
espec o . e rig t
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e two ranches are always the same and y, diverges at the anisotropy field Hk regardless of thermal agitation
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c. the peak in the RTS curves at the anisotropy field grad-
ually merges with the peak at coercivity and then van-
ishes [Fig. 5(a)]; we shall show below that the shift varies
linearly with coupling strength. ' It can, therefore, be
concluded that the conventional peak detection method
of RTS only yields the correct anisotropy field in a dilute
system, while in a strongly interacting system it will ei-
ther yield an incorrect anisotropy field or indicate its ab-
sence. A similar result has been observed in a barium fer-
rite system. It is worth mentioning that the peaks at
+IIk remain unaffected by temperature variations which
suppress and shift the peak at coercivity [Fig. 5(b ]. The
coercivity peak results from a sudden population change
which is sensitive to all environmental factors. On the
contrary, the anisotropy peak is mainly due to the pres-
ence of particles with large inclination angles (e.g., the
divergence of y, at 6)k =90') where the barrier height is
almost the same from either direction and both minima
are u ath s almost equally populated at any temperature.

11It is known that real particulate media are usua y
oriented during the coating process so that the texture
function (1) must be considered. To understand its
inAuence in real media we should, in general, consider a
distribution function of noncylindrical symmetry. It has
been shown that in a noninteracting system the peak of
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y, at H, gradually decreases, while the peak at Hk be-
come more pronounced, as the particles become better
aligned and the number of particles with large Ok in-
creases. As discussed above, in an interacting system the
anisotropy peak not only grows but also gradually merges
with the coercivity peak as the coupling strength in-
creases (Fig. 6). The coercivity peak thus becomes almost
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V. DISCUSSIONS AND CONCI. USIONS

The mean-field description of RS o6'ers a me

rithm proposed h p

inc u e interparticle interac
'

e ere can approximate ly take into account
ic e ects in interactin s stem

e emp oyed here holds for positive coupling
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strength only; for negative coupling the demagnetized an-
tiferromagnetic state is favored at zero applied field and
one needs at least one additional level to describe the
system dynamics.

We find that both texture and temperature can change
the peak position at coercivity while the peaks at the an-
isotropy field maintain their position, though their shape
is altered. We also find that a determination of the mag-
netic anisotropy field by means of the location of the peak
in the transverse susceptibility curve can only be justified
in a weakly interacting particle system. The anisotropy
field of highly packed (strongly correlated) materials can-
not be directly determined from the RTS data, however,

its value can be deduced from the linear expression of Eq.
(7). In very strongly coupled systems all information
about the anisotropy constant vanishes in RTS data.

Particular care must be taken in interpreting RTS data
with only two peaks remaining: In a well-aligned system
these peaks are associated with the anisotropy field but in
a strongly coupled system they are associated with the
coercivity.
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