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Macroscopic quantum coherence (MQC) and tunneling (MQT) of the total moment of a ferromagnetic
particle are considered in the presence of a magnetic field, and the topological quenching, or spin-parity
e6'ect in the tunneling rate that has been found in recent papers is shown to follow from a selection rule
due to an underlying rotational sym. metry in both cases. The oscillation in the tunneling rate with mag-
netic field is considered more carefully for the MQT porblem. In addition to the rotational symmetry,
this oscillation is shown to require that the intermediate state obtained immediately after the magnetiza-
tion has tunneled out of its metastable orientation have a narrow decay width. The tolerances on the de-

cay width and misalignment of the magnetic field are derived, and the decay of the intermediate state is
qualitatively discussed, along with its implications for the free induction decay of the moment in a small

particle.

I. INTRODUCTION

The phenomena of macroscopic quantum tunneling
(MQT) and coherence (MQC) have been actively studied
for almost 15 years now. ' The two kinds of systems
which are regarded as the most promising are those based
on Josephson junctions ' and small magnetic particles. '

The macrovariable is the phase difFerence of the Cooper
pairs on the two sides of the junction [or the related
quantity, the embraced fIux in the rf superconducting
quantum interference device (SQUID)] in the former and
the total magnetic moment (or the Neel vector if the par-
ticle is antiferromagnetic) in the latter. It has recently
been pointed out that magnetic systems can in princi-
ple display interference efFects that are intrinsically ab-
sent in the Josephson-junction-based systems. These
efFects are ultimately rooted in the difFerent quantum na-
ture of spin as opposed to position and momentum, and
have been related to the Berry phase in the spin
coherent-state path integral. '

In this paper we reexamine two problems studied in
Refs. 8 and 9, and provide a somewhat more prosaic ex-
planation' for the interference efFects in terms of sym-
metries of the Hamiltonian. ' For both problems, we
consider a small ((50 A radius), single-domain, fer-
romagnetic particle, with hard, medium, and easy axes of
magnetization along x, y, and z, respectively. ' If the
temperature is low enough to freeze out spin wavesz we
need only consider the dynamics of the direction M of
the total magnetic moment M, which can be viewed as a
single large spin J, proportional to ~M~. The simplest
model Hamiltonian with the correct anisotropy structure
is

&0=k,J„+k2J
where k& )k2 & 0. If, as in Ref. 8, we now apply a rnag-
netic field 8 along the hard axis x, we displace the easy
directions from z toward x, and the problem is one of
MQC, i.e., resonance between degenerate states. If, on
the other hand, following Ref. 9, the field is applied along

—z, the problem is one of MQT, i.e., escape from the
metastable direction z toward the absolutely stable one,

In Ref. 8, it was shown that the tunnel splitting oscil-
lated as H varied, vanishing at 2J values of the field, in-
cluding zero and negative values. ' We recover this re-
sult in Sec. II by an analysis reminiscent of electron
paramagnetic resonance and Mossbauer spectra studies.

Similarly, in Re.. 9, Chudnovsky and DiVincenzo sug-
gested that the escape rate I would also oscillate with H,
although the period of the oscillations was not obtained.
This is a less obvious conclusion and one which the
present author specifically ruled out in Ref. 8. What is
the source of these opposite conclusions? We will show
that it is the way in which the states of the system in the
deep well (i.e., that centered on —z) are treated. In Ref.
8, these states are implicitly taken to form a continuum
following the usual discussion' of MQT for a point parti-
cle moving in a one-dimensional potential such as

V(q) = Aq Bq— (1.2)

This potential is unbounded below and is in general only
an approximation to the true potential, which must be
bounded below for any real system. The approximation
is nevertheless believed to work on the grounds that the
system will not return to the state near q =0 or even to
the exit point once it has escaped, so that it is enough to
focus on small values of q. Here Eq. (1.2) (or a similar
formula) is an adequate approximation for the purpose of
studying the small-t behavior of a wave packet created
near q =0 at t =0. This approach is also implicit in the
initial treatment of magnetic MQT.

In Ref. 9, on the other hand, the deep well states are
taken to be discrete, and the oscillation derives from a
selection rule for transitions between an initial state in
the shallow well to a nearly degenerate final state in the
deep well. As the magnetic field is increased, this transi-
tion is alternately allowed and forbidden —that is the os-
cillation. Strictly speaking, however, this treatment is
valid only for an isolated particle, in which case it is
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meaningless to talk of an escape rate. ' In particular, the
"no return" assumption does not hold if the particle is
treated as an isolated system. For energy conservation
then implies that an initial state with M~~z either has very
little overlap with the deep well states and thus very little
amplitude to tunnel or, if this amplitude is large, will
Aip-Sop back and forth. In either case, the system cannot
truly escape from the z direction. If the particle is not
isolated, its energy is not conserved, and all energy levels
except that of the ground state near —z acquire a
nonzero width. If the levels are broadened so much that
adjacent levels overlap, then the states in the deep well
effectively form a continuum, and we recover the stan-
dard picture of MQT, with no oscillations in I .

The opposite conclusions in Refs. 8 and 9 can thus be
viewed as arising from very different assumptions about
dissipation or coupling of the particle to its environment.
The escape rate does not oscillate with H if the dissipa-
tion is strong, while it does if the dissipation is weak.
Once this is realized, the interesting issues are clearly to
determine what constitutes "strong" or "weak" dissipa-
tion, whether the weak dissipation limit ean be achieved
in reality, and what other practical obstacles are likely to
be present to the observation of escape rate oscillations.

We study these questions in Sec. III. To orient the dis-
cussion, we first examine (Sec. III A) the simpler problem
of a lightly damped point particle moving in a one-
dimensional asymmetric double well. We model damping
by assigning energy widths to the deep well states. We
find that even here there can be an oscillation in I as the
energy difference between the two wells is varied. There
is obviously no selection rule at work in this case, and the
oscillation merely rejects the fact that if the deep well
states have a narrow enough decay width, the initial state
in the shallow well will have a shorter lifetime if it is al-
most exactly degenerate with a state in the deep well,
than if it is not degenerate. The oscillations in this case
are due to the structure in the density of states in the
deep well. This type of oscillation is not as interesting as
that due to the selection rule and will also be present in
the magnetic particle if the selection rule is absent, or is
not exact, for example. We will discuss how these two
oscillations might be distinguished shortly, but it is ap-
parent that requiring them to be observable leads to
essentially the same condition on the dissipation.

The simple model of Sec. III A suggests that we distin-
guish between three types of states: the initial state with
M~~z, a group of intermediate states in the deep well with
M g z, but nearly degenerate with the initial state, and the
anal state with M~~

—z. The picture of escape for a light-
ly damped particle is then that M tunnels from z to an in-
termediate direction, precesses about z while losing ener-
gy gradually, and eventually rings down to —z. Oscilla-
tions in I (of either kind) will be observable only if the in-
terrnediate states have lifetimes in excess of the inverse of
the intermediate level spacing. We find this level spacing
and thus obtain a condition on their lifetime in Sec. III B.
The selection rule oscillations will also be wiped out if the
symmetry in question is broken by a strong enough per-
turbation. We show in Sec. III C that a misalignment of
the magnetic Geld by a rnilliradian constitutes such a per-

turbation for a particle with 10 or so moments. We do
not know if the magnetic axes of such a small particle can
be determined with this accuracy or if stray magnetic
fields, due to impurities outside the particle, e.g. , can be
eliminated to the very high degree required, but in gen-
eral we are somewhat less sanguine about the feasibility
of this experiment than the authors of Ref. 9.

We consider the decay of the intermediate state for real
magnetic particles in Sec. III D. The answers here are
less clear-cut, and it is hard to reach general conclusions.
The intermediate state can be viewed as one where all the
individual magnetic moments in the particle precess
homogeneously about z. It decays toward the state with
M~~

—z primarily via the creation of magnons with
nonzero wave vector. Such magnons, however, cost a
minimum energy -L for a particle of linear size L.
Depending on the exchange and coercive fields for a
given particle, their creation may or may not be energeti-
cally allowed, and even if it is, the number of states into
which the uniformly precessing state can decay may be
very small. It is therefore conceivable that the intermedi-
ate state decay width ean be small enough to yield an os-
cillatory structure to the decay rate of the initial state,
even if the selection rule is vitiated by stray or misaligned
fields. If these oscillations are ever observed, they could
be easily distinguished from those due to a selection rule
by deliberately applying a small misaligning Geld.

The possibility of a slow decay rate for the uniformly
precessing mode has important implications for the relax-
ation of the magnetization in a dilute assembly of small
particles, even in the absence of MQT. I.et us imagine
that the easy axes of all the particles are parallel to z, say,
and that they are all magnetized along this axis initially.
If the external Geld is now reversed, the initial orientation
of the moments of some of particles may be absolutely
unstable as a result of nonuniformity in particle sizes and
magnetic properties, but if the decay toward —z is to
occur via tunneling or thermal activation across a succes-
sion of small barriers, the relaxation of the net magneti-
zation of the system could easily acquire the characteris-
tics of slow relaxation in glasses and cloud the interpreta-
tion of MQT.

We conclude this section with one final comment.
Chudnovsky and DiVincenzo note, and we concur, that
the MQT rate in ferrornagnets is small unless the external
Geld is close to the coercive field. A large applied field,
however, precludes the observation of the Kramers selec-
tion rule that forbids tunneling from z to —z for half in-
teger J and H=0. Chudnovsky and DiVincenzo then
state that this effect may be easier to observe in antiferro-
magnetic particles with a small uncompensated moment.
We shall have nothing to say about antiferromagnetic
particles in this paper, except to note that the problem is
now much closer to MQC than MQT. It is this author' s
view that MQC is a far more delicate phenomenon than
MQT in general. This is supported by quantitative calcu-
lations of the effect of Ohmic dissipation in the Josephson
junction systems. The same shunt resistance affects MQC
(Ref. 19) much more than MQT. ' In the particular case
of magnetic particles, nuclear spins are an important
source of dissipation, and the same nuclear spin envi-
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defined by coupling the system to a bath. We will find
that the bounded or discrete character of the deep well
states is irrelevant if the dissipation is large. By contrast,
if the dissipation is su%ciently weak, we will find that this
system also shows oscillations in the escape rate as the
bias Vo between the wells is varied. In this case, the in-
teresting question is the period (in Vo) of these oscilla-
tions. With this background, we will then study the iso-
lated magnetic particle quasiclassically and obtain the os-
cillation period. We will then study the sensitivity of the
oscillations to misalignment of the field and conclude
with a discussion of the decay width of the excited levels
in the deeper well.

A. Particle in an asymmetric one-dimensional double well

Let us consider a particle moving in a well as shown in
Fig. 2, and let it have eigenstates as depicted. We sup-
pose first that Vo is such that the exact eigenstate

~ go) is
localized mostly in the left-hand well and that the g„),
~tP„+ i ), etc. , states are localized mostly in the right-hand
well. Suppose now that the particle is prepared at t =0
in a state ~y; ) =

~ $0) and orthogonal to the other
predominantly left-well states. It is physically obvious
that it cannot escape into the deeper well for ever. ' For-
mally, we can show this as follows. Up to an over all
phase, the amplitude for finding the particle in ~y; ) at a
time t is

A(t)=/c [ + y /c
/

e
n%0

(3.1)

Il+2
n+

jAE

FIG. 2. An asymmetric double well, showing some of the en-
ergy levels.

where c„=(g„~g;), and we have separated the largest
term

~ co ~
from the sum. Writing

~ co ~

= 1 —5, where
5 « 1, we have

~

2 (t)
~

~ 1 —25 )0 for all t
To define a decay or an escape rate, we must provide a

mechanism for energy loss. In classical terms, a particle
oscillating in the right well with some amplitude should
eventually be able to come to rest. Let us again prepare
the system in the state ~go) at t =0 and ask for the prob-
ability P(t) to find it in the same state at a latter time t.
We can understand the essential behavior of P(t) as a
function of the damping strength and bias without con-
structing or studying detailed models for the damping.
Let us first imagine that the barrier between the two wells
is high so that we can regard the two wells as uncoupled.

The state
~ $0) is then the ground state of the left well and

cannot decay. Damping will induce a small real shift of
the energy eo, but we are not interested in its vahie and
we simply absorb it in the definition of .eo. On the other
hand, the states ~g„), ~g„+i ), etc. , in the right well will

decay, and the energy levels e„,e„+i, . . . will acquire
widths y„,y„+„.. . . (The shifts of the real part can
again be viewed as having been absorbed in the
definitions of e„, e„+„etc.) Let us now turn on the cou-
pling between the wells and write the amplitude per unit
time (which could be calculated by WKB methods, e.g., )

to tunnel from ~go) to ~P„) as —ib,o„/R. Note that dis-
sipation will reduce the value of ho„, but we can again
view this effect as having been included in the definition
of ho„. We assume that the initial state has essentially
zero overlap with any excited states in the left well, and
in this way we arrive at the effective Hamiltonian

r

5O„EO

6O„ e„iy „/—2

n+1 l yn+ i/2 (3.2)

Let us also assume for the moment that y„»Ao„, etc.
This is likely to hold in most situations, as the 6's are
tunneling matrix elements and thus exponentially small.
None of the energy denominators are then small, and the
eigenvalue Eo=eo can be found by perturbation theory.
The decay rate, in particular, is given by

XnI o= —21mEO=+ b,o„—
(eo —e„) +y„/4

(3.3)

This is an entirely unsurprising result. If we recall that
the density of states g (e) in the right well is given by

(3.4)

then Eq. (3.3) is precisely what one would write by analo-

gy with the current across a tunnel junction between two
normal metals.

Equation (3.3) shows that as the bias Vo is varied, the
decay rate will peak whenever one of the levels e„coin-
cides with eo. The distance between peaks, or the period
of oscillation, is the energy level difference hE between
neighboring levels. The peaks will be completely washed
out, however, if y„ is comparable to or bigger than AE.
In other words, the decay maps out the density of inter-
mediate states in the deep well. If the levels are
broadened so much that they begin to overlap, then indi-
vidual levels are no longer discernible, and we effectively
decay into a structureless continuum. The important
quantity thus is the degree of damping of large amplitude
oscillations in the deep well.

The second point is that as long as y„»Ao„, there is
no shift of order Ao„ in the real part of Eo; i.e., there is
no coherent flip-flop between the left and right wells,
even when eo coincides with e„. To see this, let us put
e„=@0in Eq. (3.2), in which case we can keep only the
2X2 block in the upper left corner. The eigenvalues of
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this block are

i y„+'II/ —y„+165O„
0 4

(3.5)

If y„»4bo„, the eigenvalue En=co 2—iso„/y„. There
is no shift in the real part, and the imaginary part is in
accordance with Eq. (3.3). On the other hand, if
y„«460„,the energy eigenvalues are

eo+b c„iy „/4—, (3.6)

from which it follows that we obtain a damped resonance
with

P(t) =cos (b,o„t )e (3.7)

B. The isolated magnetic particle

The absence of a MQC resonance when y„»450„can
be also be qualitatively understood as follows. Imagine
that the particle is prepared in the state ~fo). It tunnels
out at some later time, and the resulting wave packet
makes one back and forth transit of the deep well. Be-
cause of dissipation, though, the particle returns to the
vicinity of the exit point with an energy that is decreased
by an amount of order at least y„. Since y„&)kp the
wave packet on return can no longer mix strongly with
the state ~$0), and there is little probability for it be re-
trapped in the initial state.

We thus arrive at the following picture for the time-
dependent behavior of an asymmetric double well system:
(a) If y„=0, we are dealing with an unphysical closed
system, and there is no escape as t ~ ao . (b) If
0 & y„«46,„,we get damped coherent oscillations such
as those in Eq. (3.7) if ~eo

—e„~ & 260„, while we get essen-
tially exponential decay with the rate (3.3) otherwise. In
this case we get dramatic changes in the behavior as the
basis is swept through a resonance. (c) If
4b, II„&y„« ~e„e„+I~,the—re is never any coherent os-
cillation between the wells, but the decay rate, again
given by Eq. (3.3), shows oscillations as the bias is varied.
(d) If ~e„—E'„+I

~ &&y„, the oscillations in the decay rate
are also washed out.

The different conclusions of Refs. 8 and 9 regarding the
MQT escape rate thus hold depending on whether one is
case (d) or (c), respectively. Case (b) is essentially MQC
and extremely difficult to obtain in this author's view, for
reasons well discussed elsewhere. '

This energy is sketched in the easy (y-z) plane in Fig. 3,
along with a few energy levels. Let us first suppose that
the lowest-energy state that is localized primarily in the
shallow well, ~pc), is not too close in energy to any of the
states in the deep well. It is apparent that
~fo) = ~J ) E V+. It is also plausible (and we shall show
below) that the states in the deep well alternatively be-
long to V+ and V . As H is increased, the states in the
deep well will move down in energy, and different states
will come into resonance with ~gc). Since the latter can
only mix with the V+ states, however, it follows that the
interval hH between successive resonances is given by

AH = (E„+2 E„)/2g Pt—IJ=b E /g Pz J . (3.11)

For the particle of the previous subsection, of course, the
energy interval between successive resonances would be
AE, not 24E.

We can now state the sense in which Chudnovsky and
DiVincenzo's suggestion of an oscillating escape rate is
true: As the bias magnetic field is varied, the mixing or
resonance between the state ~tPO) and the states of the
deep well takes place with an energy interval that is twice
what one would get for a particle tunneling through a
spatial barrier. Every other resonance is absent.

But, as discussed in Sec. III A, to go from the above re-
sult to an oscillation in the true escape rate requires in-
cluding dissipation and showing that the deep well levels
are not broadened by more than 26E. Before doing this,
we show the V+, V alternation of the states in the deep
well and also calculate AE. We also note, as in Sec. II,
that this oscillation is a consequence of the rotational
symmetry of &T, and we will find below the amount of
misalignment of the field required to destroy it.

To show the alternation of levels, let us replace k& by
k2 in Eq. (3.8). %T is then diagonal in the J, basis, and
the energies in the deep well are ordered according to the

E(0,z/2)

To understand the eigenstates of %T, let us write its
mean value in the coherent state ~8, $) as E(8,$). Drop-
ping terms of order J compared to J,we have

E(8,$)=(kIcos P+k2sin P)J sin 8+gp&HJ cos8 .

(3.10)

Let us now return to our magnetic particle. To the
Hamiltonian (1.1) we add a term for a field along —z,
giving

&T=k,J„+kzJ~+gPtIHJ, . (3.8)

(The subscript T stands for tunneling. ) This Hamiltonian
is invariant under 180 rotations about z, and so it is
best to work in the J, basis I ~m ) I. The energy eigen-
states again divide into two disjoint subspaces V+, with Q

I=J,J—2, . . . E. V+,
m =J—1,J—3, . . . HV

(3 9)
FIG. 3. Magnetic particle MQT potential E (8,$) in the easy

plane, showing energy levels as in Fig. 2, along with the sub-

space to which they belong.
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dP BE(0,$)
dt BO

integrating which gives

(3.12)

m values and, consequently, alternately belong to V+ and
V . We now turn on the perturbation (k, —k2)J . Lev-
els belonging to V+ and V can now cross, but since &T
possesses no symmetries other than the 180' rotation
about z, these crossings are accidental and cannot all
happen at the same value of ki —k2. Indeed, continuity
arguments suggest that the crossings will only occur for
states with energies near the top of the barrier. Thus, ex-
cept for isolated "hiccups, " the desired alternation of lev-
els in the deep well is proved.

To find the energy level difference AE, we exploit the
correspondence principle to relate it to m, the frequency
of periodic motion with energy near E„ in the deep well,
by b,E =%co To. find co, we regard E (8,$) [Eq. (3.10)] as
a Hamiltonian with conjugate variables p and Jirtcos8.
This gives a semiclassical equation of motion:

dangerous component as compared to H, as the y direc-
tion is the medium direction of magnetization and the es-

cape takes place in the y-z plane. We wish to obtain a cri-
terion for H which will ensure that the selection rule is

not wiped out.
Although it is possible to formally solve this problem

for any value of H„we will concentrate on the limit
when H, =H„as otherwise the WKB exponent So for
tunneling out of the initial state becomes very large for
any reasonably sized particle. For a particle with total
spin J =10 and A, =0. 1 (nearly easy plane anisotropy),
e.g., So & 30 if 1 —h & 0.023. In this case the exit angle is
very small, and J,=J. We can replace the commutator

[J,J ]=i 61, by the position-momentum commutator
[P,Q]= i', if w—e identify J„= Pand—J =JQ. Add-

ing the field along y, the Hamiltonian (3.8) is equivalent
to the following Hamiltonian for a particle moving in one
dimension:

~T=(k, —k2)P +k2J (1—h)Q ——Q —2 Q
C

For E =gpsHJ in Eq. (3.10), the required integration is
elementary, and we get

bE =irido=2k, J[A(1—h)(1 —Ah )]' (3.14)

where A, =k2/k, as before and h =H /H„' —H,
=2k&J/gp~ is the value of the field at which the barrier
in Fig. 3 disappears completely.

Combining Eqs. (3.11) and (3.14), we get

=—[(1—h)(A. ' —h)]'
H, J (3.15)

C. Field misalignment

An important issue in any attempt at experimental
verification of the forbidden transitions is field misalign-
ment. Let us suppose that the field has a small com-
ponent H «H, along y. This is clearly the more

The limit h =1 is particularly interesting, for otherwise
the barrier between the two wells is large and the tunnel-
ing rate is very small. The WKB exponent in the tunnel-
ing rate varies as J(1—h) as h ~1, and for J=10,we
require 1 —h = 10 to get an appreciable tunneling
rate. Taking these values of J and h, A. =O(1), and
H, =10 G, we get EH-0. 1 G. One may hope to get
larger b,H ( —1 G) for smaller particles, with J5 10, but
of course that makes the experimental problem harder.

This calculation also answers another question asked
by Chudnovsky and DiVincenzo. For half integer J and
H=0, there is no tunneling between z and —z by Kra-
mers' theorem. This effect will be destroyed when the
field is large enough to make the ground state in one well
degenerate with the first excited state in the other well,
i.e., when gptiHJ=bE(h =0). From Eq. (3.14), it fol-
lows that the tolerable limit on the field is 2H, /A, ' J,
which agrees with Ref. 9 in its J dependence and also
fixes the scale factor.

(3.16)

Let us denote the amplitudes for tunneling out of the

Q =0 state along the +Q and —Q directions by A+ and

A, respectively, and also introduce the ratio
/2+ ~. When H~ =0, A+ = A ~ exp( —SU/

3irtcoo), where U is the barrier height and coo is the small
oscillation frequency near Q =0. (Note that the tunnel-

ing rate —
~ 3+~, and so S0=16U/3irtcoo. ) For H %0,

the leading corrections to A + are given by still regarding
the potential as a quartic for positive and negative Q, but
with unequal barrier heights U+. Writing
hU= U —U+, we get

/A+ =exp( Sb, U/3ficoo) . — (3.17)

The selection rule can be understood as due to interfer-
ence between the semiclassical trajectories which exit
from the J, =J state along positive and negative J, and
meet in the x-z plane in the classically allowed region.
When H =0, g=l, and perfectly constructive or des-

tructive interference occurs if the final state belongs to
V+ or V, respectively. If H~XO and g((1, the in-

terference will be practically nil, and we will get substan-
tial tunneling into the V state. It is easy to show that

b, U=4[2(1 —h)]'i k~J (Hy/H, ),
co0=2J[k~(k, —k~)]'~ (1 h)'—(3.18)

(3.19)

Taking g* =0.1, we find that even with k, = 10k @, the
field must be aligned to better than 0.1 mrad for J=10 .

Let us take g) g* as an operational criterion for the ob-
servability of a selection rule based oscillation in I,
where g* is a small number, but not too close to zero. A
good choice is g'=0. 1. This leads to the following
tolerance criterion for the misalignment:

1/2H 3i/2 k, —ki
(3.20)
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In absolute terms, with H, =10 6, we require H & 1 G.
A field of this size could easily be produced by a few

paramagnetic impurities lying within, say, 5 A of the
particle's surface, and so this point must be carefully at-
tended to in any actual attempt to see this effect.

A different criterion for the observability of forbidden
transitions can be obtained as follows. Let us consider
the two states that are localized in the deep well in the
absence of any field along y and that are closest in energy
to the initial, metastable state, and let us denote them by

) and ~g+) depending on which subspace V or V+
they belong to. Let us now consider &'= gpss—J H as
a perturbation to Eq. (3.8) and write

(3.21)

If this matrix element is comparable to or exceeds the en-
ergy difference hE in Eq. (3.14), then the states ~1t ) and

~1t+ ) will be strongly mixed by the perturbation, and all
transitions will be allowed.

To find the matrix element &'+, let us write the gen-
eral eigenfunction of &T as

~ g ) =g c
Schrodinger s equation is then equivalent to a three-term
recursion relation for the c 's which can be solved by a
discrete WKB method. The quasiclassical wave func-
tion for periodic motion with energy E within the deep
well is given by

1/2
2'(E)
n.u(m)

cos@E(m) (3.22)

where

4z(m)= f P(m';E)dm'+em, +-
t

(3.23)

H ~ [k, (ki k2)]'~—
H, 2J k2

(3.25)

This is a slightly weaker condition than Eq. (3.20) and
should therefore be discarded in favor of the latter.

Further, m =J cos8, u(m)=dmldt along the classical
trajectory, co(E) is the frequency of this trajectory, m, is a
turning point, and P(m;E) can be found from the energy
conservation law (3.10).

The matrix element &'+ can now be found as a
Fourier component of the classical motion following Ref.
29. We leave the details as an exercise for the reader and
only quote the result:

2k 2J Hy ~/2Q) ~

~&'+
~

= f sin8(t)sing(t)sin(tot )co dt .
H, o

(3.24)

(We have chosen the initial condition /=0 at t =0.) For
E=gp&HJ in Eq. (3.10), this integral can be found in
terms of complete elliptic integrals. The general result is
uninteresting, but in the limit H=H„ the condition
~&'+

~
& hE can be shown to be

D. Decay width of the intermediate state

We now qualitatively discuss the decay of the inter-
mediate state. In semiclassical terms, this state corre-
sponds to a precession of the net magnetic moment about
z (Ref. 30) and is entirely analogous to a state with a
large number of k =0 magnons in a ferromagnetic reso-
nance experiment. The problem of its decay is thus con-
ceptually similar to the well-studied one of ferromagnetic
relaxation. ' Nevertheless, standard golden rule calcula-
tions of its width are rather dificult. Neither the interac-
tion matrix elements nor the density of states factors can
be simply calculated for a small particle. The second
problem is particularly serious. Of the various relaxation
processes relevant to ferromagnetic resonance in insula-
tors, the ones important now are magnon-magnon
scattering. Because of small particle size, however, the
creation of a k%0 magnon may be energetically forbid-
den. For a particle of linear size I., the smallest nonzero
wave vector is k;„=m IL. Let us suppose that a magnon
can be created with an attendant decrease of n in J, . The
change in energy [denoted 5E to avoid confusion with
Eq. (3.14)] is then given in field units by

Hex k nina
—nH,

Ay 2
(3.26)

where H,„ is the exchange field and a is the lattice spac-
ing. Taking H,„=5X 10 G, the first term in Eq. (3.26) is
1—5X10 6 for a particle with 10 —10 moments. The
important interactions correspond to n=1 or n=2, and
so with H =H, =10 G, the second term in Eq. (3.26) is
comparable to the first, and we conclude that we are close
to the threshold for magnon creation and may be either
above or below it. A reliable estimate of this threshold is
complicated by several factors. First, the exchange fields

H,„are not known precisely and may be quite nonuni-
form. In particular, they may be considerably weaker
near the particle surface, and given the large surface-to-
volurne ratio, the lowest excitations may be closer to sur-
face magnons. Second, in bulk, the magnon energy de-
pends on demagnetization factors and magnon ellipticity
or direction of propagation. Indeed, without these
efFects, the magnon dispersion relation would have zero
bandwidth, and k =0 rnagnons would never decay into
other magnons. Some vestiage of these effects must sure-
ly persist for all small particles, but continuum calcula-
tions are suspect, as are simple-minded assumptions for
the shape of the particle. Third, anisotropy fields, which
can be of comparable magnitude to demagnetizing fields,
are also unknown and inhomogeneous. If 6E &0, it fol-
lows that the decay of the interrriediate state may itself
require tunneling through a barrier. This possibility has

important implications for magnetic relaxation in an as-
sembly of small particles, as it suggests a means for slow
nonexponential decay.

Let us now discuss the decay mechanisms themselves.
In bulk matter, k =0 magnons can decay via two-
magnon processes, which do not conserve crystal
momentum and thus require some disorder, or via three-
and four-magnon processes, which are rooted in the dipo-
lar interaction and which underlie the Suhl instabilities.
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Consider two-magnon processes first. For a particle with
only 10 moments, a significant fraction ( —10%) is at the
surface, and it seems quite likely that the local anisotropy
and exchange fields will differ significantly from the bulk
value and from moment to moment. The exchange in-
teraction, however, conserves total spin and cannot
scatter the homogeneous precession mode, and so we
must look to the anisotropy fields. Haas and Callen '

note that variations in single-ion anisotropy, arising from
differences in the local environment of the magnetic ion,
have a characteristic rms value of 10 G in ferrospinels.
This number is quite comparable to the equivalent energy
difference in Eq. (3.26), so that even if the number of in-
homogeneous states into which the homogeneous preces-
sion mode can decay is small, and even if the inhomo-
geneous states themselves have small decay widths, the
uniform mode can mix appreciably with the nonuniform
ones, effectively spreading out the density of accessible in-
termediate states in the deep weH in Fig. 3.

The three- and four-magnon processes appear to be less
important. Their interaction matrix elements are charac-
terized by dipolar fields, which are of order 10 G and
thus weaker than the random anisotropy fields considered
above. Magnon-phonon and electromagnetic interactions
are even less important. Phonons within the particle lie
too high in energy to be excited. Stresses near the parti-
cle surface could give rise to low-lying local phonon
modes, but their quantitative effect is hard to evaluate.
The particle as a whole can emit elastic dipole radiation,
and the corresponding energy width y,»„can be estimat-
ed following Ref. 32. We get

Velas

hE
2n J(co) "/ME~2 2

'RQ)
(3.27)

where J(co) is the spectral density found in Ref. 32, Uo is
the particle volume, E~E is the strain-induced anisotro-
py, and c, is a sound speed. Taking a particle radius of
50 A, KM@=10 ergs/cm, and c, =3X10 cm/sec, we
get y,&„/b,E—10 . The electromagnetic radiative
width can also be found and is utterly negligible.

IV. CONCLUSIONS
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In summary, we have shown that the oscillations in the
MQC tunnel splitting and MQT escape rate suggested in
Refs. 8 and 9 are a consequence of simple symmetries of
the Hamiltonian, although these oscillations can be easily
destroyed by misaligning fields and, in the case of MQT,
by short lifetimes of the intermediate states. We have
concentrated on the MQT problem as it seems more
amenable to experimental realization to us. Better calcu-
lation of the decay times of the intermediate state is high-
ly desirable and seems to us to be an especially promising
area for further work, with interesting implications for
magnetization decay beyond the narrow question of
MQT.
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