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We present results for the time evolution of a one-dimensional system consisting of an electron,
described by a tight-binding Hamiltonian and a harmonic lattice, coupled by a deformation-type
potential. We solve numerically the nonlinear system of equations of motion for this model in
order to study the effects of varying the electronic effective mass for several initial conditions and
coupling strengths. Different types of localized and extended states are formed with features that
are absent from the traditional polaronic states and depend very strongly on the initial electronic
con6guration and effective mass in a very often unexpected manner. We find that, in general, an
increase of the initial electronic energy decreases the ability of the system to form localized states.
However, a large effective mass favors localized polaron formation for initially localized electrons,
but this is not always the case for initially extended electronic states. In the latter case, increasing
the effective mass of an electron initially close to the bottom of the band makes localization more
difBcult, while for an initially highly excited electron, localized polaron formation is possible only
when the electronic effective mass and the atomic masses of the lattice become of the same order.
Finally, for a small parameter range, we find an impressive recurrence, a periodic and a complete
exchange between the electronic and vibrational degrees of freedom of a small part of the initial
electronic energy.

I. INTRODUCTION

One of the fundamental problems in condensed matter
physics is the interaction between electrons and lattice
vibrations. Many basic properties of solids, such as elec-
trical resistivity, depend on this interaction which is also
responsible for processes such as superconductivity and
polaron formation. A variety of different analytical ap-
proaches has been used to understand the behavior of
electron-phonon systems, all of which involve certain ap-
proximations with commonly employed perturbative and
adiabatic approaches. In the case of a single electron in-
teracting with vibrational degrees of freedom, the general
picture emerging from these studies is the electron self-
trapping for sufBciently large electron-phonon coupling,
i.e. , the creation of an electronic state bound to the lat-
tice distortion potential resulting from the presence of
the electron. The polaron (the quasiparticle consisting
of the electron and the induced lattice distortion) then
moves as an entity in the crystal. The results depend
on the approximations used which, in turn, depend on
the parameter range under study. For instance, when
the effective mass of the electron, m*, is not large and
the electron-phonon coupling a is small, a perturbation
approximation in o. results in a change of the electron ef-
fective mass by a factor of (1-I) . As o. increases, per-
turbation theory breaks down, predicting an enormous
effective mass. Variational procedures and the method
of canonical transformation that eliminates electron co-

ordinates give an effective mass multiplied by (1 + —)
for intermediate coupling. In the case of a large effec-
tive mass (relevant to narrow-band materials) and strong
coupling, the electron hopping energy between adjacent
sites (J) is treated as a perturbation and the concept
of the small polaron is introduced, i.e., of the electron
localized at a few sites. Even though many of these the-
ories give some definitive and correct predictions, there
are other very important aspects of the problem that are
not successfully addressed, if addressed at all. Some very
interesting regions of parameter space have not been fully
explored due to the limitations of several approximations.
The discovery of high-T, superconductors has generated
a new interest in narrow-band electron-phonon systems.
There are several attempts to describe the intermediate
regime. Exact cluster solutions for different values of the
adiabatic parameter and the coupling strength show that
the adiabatic Holstein small polaron and the I ang-Firsov
canonical transformation are in agreement with the ex-
act solution in the adiabatic and nonadiabatic regimes,
respectively. However, a full description of the dynamics,
i.e. , the time evolution, of the electron-phonon systems
is not possible within traditional methods, especially for
highly excited states. Another interesting question is
how disorder affects electron-phonon systems, especially
near the phase transition point of propagating to local-
ized eigenstates. To answer some of these questions, a
different approach has been developed in recent years.
Over the last few decades, there has been an enormous
activity in the relatively new field. of nonlinear physics.
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A large number of systems in very different disciplines of
physical sciences has been described by nonlinear models.
The significant progress in nonlinear mathematics, to-
gether with the development of computers which allow
extensive numerical simulations, opens new possibilities
in understanding nonhnear systems. Since nonlinearity,
introduced by the coupling of the electron to the lattice,
is present in electron-phonon systems, one expects to ob-
tain some insight into the dynamics of the problem using
nonlinear techniques. This approach has proved fruitful
in the treatment of the interaction of an intramolecular
excitation with the lattice vibrations in proteins ' as
well as the coupling of the latter to the off-diagonal elec-
tronic matrix element in polyacetylene. Recently, some
interesting numerical results of an electron propagating
in a quasiperiodic one-dimensional model and interact-
ing with lattice vibrations were presented. ' Among
other surprising findings, some strong deviations from
the expected thermodynamic behavior were observed in
the case of a highly excited electron. Indeed, it was found
in Refs. 13 and 14 and was verified by the present work,
that the traditional assumption that the electron gradu-
ally transfers its energy to the lattice within a few lattice
times, reaches the bottom of the band, and the system
reduces to a ground state problem, is not always cor-
rect. In fact, in most cases of highly excited electrons,
long-lived metastable states have been reached, and for a
small part of the parameter range, an impressive recur-
rence phenomenon was found. In this paper, we present
some of the results of a systematic numerical study of
this electron-lattice system throughout the entire physi-
cally interesting parameter space. Special emphasis has
been given to the effects of increasing the electronic effec-
tive mass. For certain parts of the parameter space, we
found the behavior expected from approximate theories,
but more often than not, our results show a richer, and
sometimes unexpected behavior, especially in the range
of parameters which is still unexplored or poorly under-
stood. Apart from the rather obvious role of the electron-
phonon coupling in the final outcome, we found that the
final state reached by the system depends very strongly
on the electron mass and the initial electronic state. One
might naively think that "heavy" electrons are more lo-
calized than "light" electrons, but, as we will show here,
this happens only for specific initial conditions, while for
others, it is exactly the opposite situation or none of the
above.

In Sec. II, we present our model, discuss the assump-
tions involved, and show how it relates to other existing
models in some limiting cases. We also give an outline
of our methods of calculation and a brief description of
our numerical simulation. Section III consists of four
subsections: in Sec. III A we present the results for the
case of small electronic effective mass (adiabatic case),
in Sec. III 8 for intermediate mass, in Sec. III C for large
mass (nonadiabatic case), and in Sec. III D we give a sim-
ple interpretation of the results. Throughout Sec. IV, we
elaborate on the antithermodynamic recurrent behavior
found for a region of the parameter space and for certain
initial conditions, and finally, in Sec. V, we conclude with
a short summary of our results.

II. MODEL

The system under study is a one-dimensional, one-
electron (i.e. , our results are independent of particle
statistics) model with the lattice vibrations being treated
classically. More specifically, the Hamiltonian describing
our system consists of an electronic part (H, ), a lattice
part (Hg), and the interaction part (H, ~):

H =H, +Hg+H, g .

The electronic part (H, ) is a tight-binding electron, with
nearest neighbor interaction matrix elements (—1), i.e. ,

H. = ).e-ln)(nl —~).ln)((n+ II+ (n —II) . (2)

The diagonal matrix elements (e„) can be the same (pe-
riodic lattice) or different [e.g. , e = ep cos(2vrcrn), where
~ is an irrational number, in the quasiperiodic case, or e„
can be random numbers, in the disordered case]. During
this work, they have been kept constant for all sites n
(e„=0) in order to isolate the effects of electron-phonon
coupling and the electron's effective mass without the
complications arising Rom disorder. The results for a
disordered system will be presented elsewhere. The local
orbitals ln) are centered around the sites n (n = I, ..., N)
of the lattice with interatomic distance a. The eigenfunc-
tions and eigenvalues of H are

lk) = ) e*"" ln),
N

(3a)

E = —2Jcoska .

The lattice part (Hg) describes N coupled classical har-
monic oscillators,

1 . 2 K 2H, =, ) &„+—,) („„—„), (4)

H. , = g) ln)(nl(u„+, —u„,) . (5)

In Eq. (5), y is the strength of the coupling and the
deformation potential (2ay) is symmetrized.

where p = Mu and u are the momentum and the dis-
placement of atom n, respectively, M is the atomic mass,
and K is the spring constant between nearest neighbor
atoms. Hg supports acousticlike eigenvibrations with

eigenfrequencies u)~ = M l
sin "z l:—2upl sin "2

l
(the

maximum frequency is 2uo and the speed of sound is
c = (gapa). The consideration of acoustic vibrations in
this one-dimensional model naturally leads to a deforma-
tion type of electron-phonon coupling, which is a short-
range interaction and takes into account that the elec-
tron energy is affected by the strain produced by acoustic
modes. Other models consider Frohlich (polar) coupling
or piezoelectric coupling. Deformation coupling occurs
in all crystals and in our model it has the form
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Throughout our calculations, we use J, M, and tg =
gM/K as the natural units of energy, mass, and time,
respectively. This choice leaves us with two parame-
ters: (i) the adiabatic parameter 6, measured in units
of JgM/K, or equivalently the dimensionless quantity

= —', where t = 5/J and tI are the char-
K K

acteristic electronic and lattice times, respectively; (ii)
the coupling strength y, measured in units of v'JK, or
equivalently the dimensionless quantity y/QJK which

2
is the square root of A = ~&, similar to the one ap-
pearing in superconductivity. The unit of length ao is
gJ/K in this natural system of units. The adiabatic
parameter tr = t, /tr, i.e. , the ratio of the characteristic
electronic time over the lattice time, gives a measure of
the eBective mass of the electron relative to the lattice
atoms mass. Thus, a small value of t, /tr is relevant to
the case where the electronic mass is small compared to
the atomic masses (t, /tr 0.01 is typical for most met-
als). A large value of t, /tr is relevant to a large electron
mass (in very narrow-band materials the ratio t, /tI may
approach or even exceed unity). This becomes clear by
writing

1 (t, ao)'
2 i, te a)

where m, ' = 5 /2Ja is the electronic effective mass. A
small value of m*/M means that t, /tr is small or that the
lattice constant a/ao is large and a large m*/M implies
either a large t, /tg or a small a/ao. By varying t, /tg from
0.01 to 10, we show how the changes of the electronic
eR'ective mass a8'ect the behavior of the coupled electron-
phonon system. The value of the coupling y is varied

2
between 0.2 and 4 (realistic values of A = ~+& range from
0.1 to 1.7, for metals). Typical values for our natural
units are I = Am„, where A is the mass number and
m„ is the atomic mass unit, and K = 50 N/m, so that
the unit of time is of the order tg 10 sec.

The Hamiltonian (1) cannot be diagonalized exactly,
and so there are two alternatives: Either use approxi-
mate theories suitable for each parameter regime or solve
numerically the equations of motion that follow from (1).
We choose the latter one in order to include all the dif-
ferent aspects of the problem.

The equations of motion for our system are derived
from the Hamiltonian (1) with the electronic wave func-
tion written as I@,(t)) = P c (t)In). We should point
out that we follow a semiclassical approach and we do
not attempt a rigorous quantum mechanical treatment
of the lattice vibrations. There is a significant amount
of work related to the derivation of quantum mechan-
ically consistent equations of motion for this type of
Hamiltonian. The main difhculty is that the ansatz
states used for the electron-phonon system do not satisfy
the Schrodinger equation, except for some special cases.
In this work we simply write down the equations of mo-
tion for the electronic and the vibrational degrees of free-
dom and we examine the time evolution of this system
of difFerential (in time) difFerence (in space) equations:

t9c~
XS X(un+1 un 1—)Cn J(Cn+1 + C~ —1)Bt

= K(u-+1+ u-- —2u-) + ~(l c-+1I' —
I
c--1I'),

Ot

E.(t) = (@.(t) III.I@.(t))

=-J) . .'(t)[--.(t)+ -- (t)] (10)

(b) The lattice energy [Et(t)]:

E.(t) = —,). :(t)+ —,[ -"(t) — -(t)]'

(c) The interaction energy [E, g(t)]:

E.— (t) = ). .'(t) -(t) [ -+.(t) — -- (t)]

(d) The participation number [P(t)]:

P(t) = ).I
-(t)l'

The quantity P is very convenient in characterizing the
electronic wave function. Its value gives a measure of how
many sites participate in the wave function at a given
instance. It takes values ranging from P = 1 (when the
electron is localized at a single site) to P = N (when the
electronic wave function is uniformly extended over the
whole length of the specimen).

The numerical solution of Eqs. (7)—(9) for relatively
large times and atomic chains requires heavy computa-
tion. In order to obtain a realistic picture for the system,
it is necessary to run simulations for hundreds of atoms
and thousands of characteristic lattice times (tg). Typical
runs include N = 300—600 atoms and times of the order
of 10 t& or 10 tp. It is also necessary to cover a large
portion of the parameter and initial condition space. For
these reasons the use of parallel computers becomes im-
perative (almost all of the simulations were performed
on nCube machines). For the time integration, we use a
fourth-order Runge-Kutta method with a step equal to
10 4tg or 10 sty (with this step size, energy is conserved
with a relative accuracy of at least 10 ). Throughout

0thp„= M
Bt

Our primary goal is to study the morphology of the so-
lutions as a function of time. For this purpose, we ex-
amine the time dependence of the electronic amplitudes
c (t) = (nI@,(t)), the lattice displacements u (t), and
the corresponding atomic velocities, u (t) . In addition
to the solutions, we monitor some meaningful quantities
that provide very useful information about the system.
These are the following.

(a) The electronic energy [E,(t)]:
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2

K
—(lc-+il'+ lc--il'+ 2lc-I') —«-

+J(c„+i+c„ i) = 0, (14)

with u„+i —u„= —~~(~c„~' + ~c„+i~'), —s = E-
—P&(ug+i —ug) . For the case of a large polaron where
the characteristic length far exceeds the lattice constant
a, the continuum approximation is justified and it gives
the continuous nonlinear Schrodinger (NLS) equation

/c„/ —s+ 2J
/
c„+J(4y2 2 ) ct2c„

q K "
) Bn'

= 0. (i5)

One solution of Eq. (15), for electronic states decaying at
infinity and for the normalization condition f c2dn = 1,
is

the simulations, periodic boundary conditions are used

(catv+i ——ci, univ+i ——ui). Initially the lattice is at rest
and undeformed (i.e. , we restrict ourselves to the zero-
temperature case), while the electron is either localized
at a single site or placed very close to an eigenstate (3)
with energies E, —2, —1, and 0.

After describing our model, it is interesting to point
out some of its limiting behaviors. An approxima-
tion quite often used in electron-phonon systems is the
so-called adiabatic approximation. When the lattice
atomic mass (M) is much larger than the electron's effec-
tive mass (m*) the motion of the electron is very rapid
compared to the motion of the lattice. It is possible
then to attribute an infinite mass to the atoms (or a zero
phonon frequency) and consider a very heavy lattice that
cannot follow the instantaneous electronic motion but re-
sponds to the probability that the electron is in a partic-
ular site. This practically translates to the fact that the
kinetic energy of the lattice can be safely neglected &om
the Hamiltonian (1); then, following Holstein's treatment
of the large polaron, , by minimizing the energy with
respect to the u 's, it is straightforward to derive the fol-
lowing discrete nonlinear Schrodinger (DNLS) equation:

Equation (17) can also be obtained from Eqs. (7)—(9) un-

der certain assumptions by letting ~" 0 ~ M , "
g2

0, which is the adiabatic limit when ~", " 0 or the,
sometimes called, antiadiabatic limit when M 0. The
latter becomes physically meaningful in the case of large
w~, when the lattice modes can follow instantaneously
the motion of the electron (sometimes the lattice is said,
rather confusingly, to follow the electron motion adiabat-
ically) .

Within the continuous limit, Eq. (17) reduces to the
time-dependent continuous nonlinear Schrodinger (NLS)
equation which admits three branches of solutions: soli-
ton (self-trapped) solutions, Bloch-like solutions, and the
so-called "cnoidal wave" solutions, which are periodic in
space and time, propagating type of solutions. The
choice of the solution by the system depends on the
initial condition. The properties of the NLS equation
and its several discretizations have been studied exten-
sively since the NLS equation appears in many difFerent
problems of several branches of physics, such as plasma
physics, nonlinear optics, Ginzburg-Landau theory of su-
perconductivity, magnetic chains, and also in Huid me-
chanics, biology (Davydov solitons), electrical networks,
etc. Obviously the NLS equation is very important in
its own right but one must keep in mind that in cou-
pled electron-phonon systems it is only an approximate
description of the system in the adiabatic and continu-
ous limit. Our model exhibits a much richer behavior as
expected due to the full consideration of the lattice vibra-
tions in a wide range of parameters. It is a more realistic
description of the electron-phonon interaction problem
and. since it is nonintegrable, in general, it possesses dy-
namical properties that are absent from the integrable
NLS equation or, for that matter, &om some integrable
DNLS equations. Our results fully include the efFects
of lattice vibrations, discreteness, dispersion, and nonlin-
earity (and, potentially, of disorder) in the whole range of
parameters (from the adiabatic to the antiadiabatic and
from the weak to the strong coupling regime) and initial
conditions.

III. RESULTS AND DISCUSSION

2KJ
(i6)

The result (16) describes a self-trapped solution of Eq.
(15) with the energy of the localized electron (—s) low-
ered by y /K J relative to the corresponding ground
state energy —2J of the delocalized Bloch electron of (3).
In addition to the solution (16), Eq. (15) possesses two
other hierarchies of solutions, i.e. , Bloch-like solutions
and other periodic solutions given by Jacobian elliptic
functions.

The time-dependent DNLS equation corresponding to
(14) is

2

ih
'" + —

(Ic„+iI' + lc--i I' + 2lc- I') c-
Ot K

+J(c„+,+ c„ i) = 0. (17)

We studied the problem for difFerent values of t, /tr, of
the electron-phonon coupling (y), of the size of the chain

(N), and for several initial conditions. The polarons can
be classified according to the final state of the system
in three broad classes: (a) extended (E) states charac-
terized by an electronic wave function that extends over
all sites without a pronounced peak, a large participa-
tion number (P & N/3), and a small value of ~E, i~ in
comparison with Eg, (b) localized (L) or self-trapped po-
larons characterized by an electronic wave function that
has one or more pronounced peaks and decays away &om
them, and a small participation number (P & N/5); (c)
intermediate (I) polarons characterized by a wave func-
tion that has one or more peaks but does not seem to
decay away from them and a participation number that
ranges between N/5 and N/3.

Since in this work we are interested in studying how
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becomes smaller, and the changes to the initial energies
[E,(0), Et(0), E, t(0)] much more significant (for y = 2,
(Et~ and ~E, ~~ can take values of the order of 1). The
kinetic energy of the lattice cannot be neglected and the
adiabatic approximation cannot be used. This transition
&om the large polaron in the weak coupling region to the
small polaron in the strong coupling region is the typical
behavior in the adiabatic limit.

A similar picture emerges for the low-lying excited
states but this changes completely as the initial electronic
energy gets considerably higher: It becomes impossible to
obtain localized polarons unless the value of the coupling
y reaches very high and unrealistic values. According to
the expected behavior of a highly excited electron, po-
laron formation should become possible after a gradual
transfer of the electronic energy to the lattice (within a
few lattice times tg) until the electron reaches the ground
state. But what happens instead is that this transfer of
energy slows down and eventually it seems to stop (on
the average) without the electron being thermally equal-
ized with the lattice. This seemingly antithermodynamic

behavior is, in most cases, associated with a very com-
plicated, almost chaotic time evolution. However, for the
excited state close to E,(0) = —1 and for a small part of
parameter space, we found a very regular behavior: The
electron initially placed close to this highly excited eigen-
state, after transferring a small fraction of its energy to
the lattice, absorbs back the transferred energy and the
system returns to its initial state. We will elaborate on
this remarkable recurrence phenomenon in Sec. IV. For
the excited electronic states with E,(0) —1 and for
weak coupling, the electron hardly interacts with the lat-
tice. For a relatively small range of the coupling strength
(1.35 ( y ( 1.57) the recurrent behavior is observed and
for strong coupling (y 2) the system is driven to an
intermediate state. Such an intermediate state is shown
in Fig. 2. The value of the coupling constant is y = 2
and, as in the case of Fig. 1, N = 300, t, /tt = 0.01224.
The electron initially placed close to the eigenstate with
E,(0) = —1 transfers most of its energy to the lattice
and reaches close to the bottom of the band [Fig. 2(d)].
However, the interaction energy [E, t 0.1, Fig. 2(c)]
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remains very small relative to the lattice energy [Et 1,
Fig. 2(b)] and the electronic wave function [Fig. 2(a)] is
not really localized. The result is an intermediate state
reached at t 2000tg. For even larger values of the cou-
pling constant (y & 2.5) the final state is a localized
polaron.

As the energy of the initial electronic state further in-
creases, the electron-lattice interaction energy becomes
smaller, even for very strong coupling. For instance,
when E (0) 0, the system practically remains in its
initial extended state for any realistic value of the cou-
pling strength.

In all the cases mentioned so far, the electron was ini-
tially placed very close to an eigenstate of H, . In Fig.
3, we show the time evolution of the system when the
electron is initially confined to a single site [E,(0) = 0],
with y = 2, t, /tt = 0.01224, N = 377. After t = 5000tt
a steady state has not been reached yet. The electron,
after spreading across the specimen in a short time (of
the order of t&), transfers little of its energy to the lat-
tice at a slow rate. The interaction energy remains close
to zero and the participation number fIuctuates around
P 190. There is no indication of localization and the
system is clearly in an extended state.

In general, in the adiabatic case, i.e., when the elec-
tronic effective mass is small, the behavior of the system
can be briefly described as follows.

Depending on the energy and the electron-phonon cou-
pling, the system reaches an extended, localized, or in-
termediate state. For any initial state, it is apparent
that increasing y favors the confinement of the electron.
Whether or not self-trapping of the electron will occur
depends on the initial state: It happens easily (even for
very weak coupling) for the initial state being the ground
or a low excited state and it gets harder as the initial en-
ergies get higher, becoming impossible for any realistic
value of the coupling constant y close to the center of

the band. This picture is in agreement with Ref. 14 and
quite different from the conventional one.

B. Intermediate electron mass (t /tt O.l)

Increasing the ratio t /tt by a factor of 10 does not
change the behavior of the system dramatically but the
picture becomes different from the case of the small elec-
tron mass of Sec. IIIA. As in Sec. IIIA, when the elec-
tron is initially at the bottom of the band [E,(0) = —2]
or at a low-lying excited state, a weak coupling is suK-
cient for the creation of localized polarons. As the initial
electronic energy increases, a larger coupling is required
in order to obtain localized states. The main difference
between the intermediate mass and the small mass cases
is the possibility of localized states for highly excited (at
the center of the band) intermediate mass electrons, as
opposed to the small mass electrons considered earlier.
But the values of the coupling strength necessary in or-
der to obtain localized polarons still remain very high.
When E (0) —1, localized states appear for y & 2. At
the center of the band, i.e. , E,(0) 0, a very large value
of y & 3 is required. An example is shown in Fig. 4.
The initial electronic energy is E,(0) = —0.008 333 1 and

y = 3, K = 377, t, /tt = 0.1 [here, instead of starting
with an almost eigenstate (3a), i.e. , c = e'", the~N
imaginary part of c (0) is taken to be zero; the initial con-
dition (3a) gives a very siinilar behavior]. The electron
transfers a significant amount of energy [Fig. 4(d)] to the
lattice [Fig. 4(b)] and interaction [Fig. 4(c)] energies,
without reaching the bottom of the band, and the par-
ticipation number [Fig. 4(e)] drops to about P 50, as
opposed to the corresponding case with t, /tt = 0.01224,
where the system just stays in the initial state.

If an intermediate mass electron is initially localized at
a single site, the final state is localized if y & 3.5 and the
energy transferred is larger than the small mass case.

C. Large electron mass (t, /tt & 1)

O ~
o+

FIG. 3. The time evolution of the electronic wave function
~c (t)~ in the case of an extended state for a system with
N = 377, t /t~ = 0.01224, y = 2 (strong coupling), and
initial electronic state localized at a single site [E,(0) = 0].
The unit of time is tg.

The case where the effective mass of the electron be-
comes of the order of the atomic mass is relevant to
narrow-band materials and presents substantial differ-
ences from the small electron mass case of Sec. IIIA.
The process of localized polaron formation when the
electron is close to or at the bottom of the band ini-
tially [E,(0) —2] becomes slower (more than the ex-
pected two orders of magnitude due to the increase of
t, ) and a weak coupling (y ( 1) seems to be inadequate
for self-trapping. In Fig. 5, the electron is initially at
E,(0) —2 and N = 377, y = 1.5, t, /tt = 1. The local-
ized polaron formation is not fast and abrupt but instead
there are relatively smooth Huctuations around an inter-
rnediate state [Fig. 5(a)] before the electron becomes
localized through a steplike process after t 3800tg
[Figs. 5(b)—5(e)] and the participation number drops to
P 20 [Fig. 5(e)]. When t, /tt becomes extremely high
(t, /tt 10), the process becomes even slower and re-
quires unrealistically large coupling (y & 3).



51 ELECTRON-PHONON INTERACTION, LOCALIZATION, AND. . . 15 045

When an electron with t, /tI 1 is initially in higher-
energy states, localization is more diKcult than the
ground state, but it is remarkably easier compared with
the corresponding small mass electron case, where it was
impossible for any realistic value of the coupling strength.
More specifically, when t, /tg 1, 2 and the electron is
excited close to an eigenstate with E, (0) —1, a lo-
calized Anal state is reached if y & 1.5, 1, respectively.
When t, /tr 10 and 1.5 ( y ( 2.5, the system under-
goes a transition to an intermediate state with some of
the electronic energy (E,) transferred to the lattice (Et)
and then returns to an extended state with E —1 and
E E, ~ 0 while for y & 3 the final state is localized.
In the case of E,(0) 0, localized states are achieved
for t, /tg 1 and y & 2.5 (strong coupling) while for
t, /tg 10 the result is an extended state for any cou-
pling strength.

A very different behavior between the cases t /tg & 1
and t, /tt 0.01 is also observed when the electron is
initially confined to a single site [E,(0) = 0]. The heavy

electrons in this case end up localized for strong coupling
(y & 2 for t, /tr 1). In fact, the heavier the electron
(i.e. , the larger t, /tg), the smaller the coupling required
for self-trapping. In Fig. 6, an electron with t /tr = 1,
initially localized at a single site, and interacting with the
lattice with y = 2, remains localized at a few neighbor-
ing sites. The electronic wave function [Fig. 6(a)] does
not spread across the chain (as in the corresponding case
of Fig. 3 with t /tr = 0.01224) and the participation
number [Fig. 6(e)] remains close to P 12. There is a
signi6cant transfer of energy from the excited electron at
the center of the band to the lattice [Fig. 6(b)] and to
the interaction [Fig. 6(c)] energy but the electron does
not reach the bottom of the band; instead, it stays at
E, —1 [Fig. 6(d)]. A similar situation with t, /tg = 2
and y = 1.0 is shown in Fig. 7, but in this case the
coupling is not strong enough and the localized state is
relatively short lived (at t = 5000ti, shown in the fig-
ure, the participation number is already P 50 and
it further increases with time, reaching P 190 when
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the system reaches a steady state, not shown here). In
Fig. 8, t, /t& = 10, y = 2, and the extremely heavy elec-
tron essentially is trapped by the two neighboring sites
only with P between 1 and 2. The lattice energy be-
comes extremely high (E, 7) in a very short time and
so does the interaction energy (E, t —6). The elec-
tron energy Buctuates around E —1 and the electron
remains in this excited localized state without reaching
E, = —2 (bottom of the band). This situation, shown
in Fig. 8, might not describe a realistic system due to
the extremely large value of t, /tt, but it exhibits dra-
matically the eKects of increasing the electronic efFective
mass.

D. Interpretation of the results

The general picture that emerges &om our results
about the polaronic states formed in this coupled
electron-lattice system for several initial electronic states,
efFective masses, and coupling strengths is summarized in

Fig. 9: Figure 9(a) corresponds to the case with the elec-
tron initially placed close to the eigenstate with E, = —2
(ground state), Fig. 9(b) to E, = —1, Fig. 9(c) to
E 0, and Fig. 9(d) to the case where the electron is
initially localized at a single site. For every case, on the
y versus t, /tg plane, localized final states are indicated
by solid circles and extended states by open circles (some
intermediate states are also shown). These "phase" dia-
grams describe the state reached after a time of the order
of 10 tg.

A rather intuitively obvious property of our model is
that increasing the electron-lattice coupling favors local-
ization in any case.

The Gnal state of the system depends strongly on the
initial electronic state. When the electron is initially very
close to an eigenstate, the ability to form a localized po-
laronic state decreases as one moves from an initial state
at the bottom of the band [E,(0) = —2] to the center of
the band [E,(0) = 0], regardless of the electronic mass
[Figs. 9(a)—9(c)] with the exception of t, /tI 10, where
the value of the coupling required for localized polarons
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becomes slightly smaller as one goes from the ground
state to E,(0) —1 [Figs. 9(a), 9(b)]. For initially highly
excited states, we observe an "antithermodynamic" be-
havior in the sense that the electron does not transfer
all of its energy and does not reach the bottom of the
band in most cases. Metastable states have been found.
The efFects of changing the electronic e8'ective mass are
very profound. At the bottom of the band, increasing
the mass does not favor localized polaron formation [Fig.
9(a)]. On the contrary, when the electron is initially
highly excited, polaron formation becomes easier when
the electronic and atomic masses become of the same or-
der [Figs. 9(b),9(c)]. But further increase of t, /tg results
in extended final states. Although one might expect that
the heavier the electron, the easier to localize, our results
indicate that this is not the case when the electron is ini-
tially close to an eigenstate. This argument is valid if

the electron is initially placed at a single site: The final
state is extended for small electron mass and localized
for large electron mass and sufficiently strong coupling
[Fig. 9(d)].

In order to understand the behavior summarized
above, we can resort to some simple qualitative argu-
ments. The initial electronic states we consider are either
localized in k space [very close to the eigenstates (aa) of
H, with energies (3b)] or localized in real space at a sin-
gle site. The self-trapping mechanism is quite different
in these two cases. In the former case, one electronic
mode interacts with the vibrational modes of the lattice.
This interaction is most eKcient when the velocities of
the electron and the lattice vibrations are the same, i.e. ,

Ve ~ Vg.
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Since the lattice is initially undistorted, the average speed
of its vibrations is

Vg C=G
M (20)

This assumption is valid in most cases since, except for
very few situations, all the lattice modes are excited by
the interaction with the electron. The condition (18),
together with (19) and (20), gives in our units

FIG. 9. The (y)-(t, /tg) parameter space for several initial
conditions. On the horizontal axis the logarithm of the ratio
t, /tq is taken and on the vertical it is the coupling strength y.
In (a) the initial electronic state is very close to the eigenstate
of H, with E,(0) = —2, in (b) to the one with E,(0) = —1,
in (c) to the one with E, (0) = 0, and in (d) the electron is

initially localized at a single site. The open circles indicate
extended states and the solid ones localized states, while the
intermediate states are shown with the crossed circles. These
states were reached after real time simulations of 10 tg.

v, =vga(4 —E )'/ (21)

oO

r

L

FIG. 8. Localized state for a system with
1V = 377, t /tl = 10, y = 2 (strong coupling), and initial
electronic state localized at a single site [E (0) = 0]. The
unit of time is tg. The time evolution of the electronic wave
function ]c (t)

~

is shown.

For E,(0) = —2, condition (21) is satisfied for t /tI ~ 0.
In other words, the electron-lattice interaction that re-
sults in electron self-trapping and polaron formation is
more efficient for small electron mass and this is indeed
what we found [Fig. 9(a)]. For E,(0) = —1 and E, (0) =
0, condition (21) gives t, /tI 1.73 and t /tI 2, re-
spectively. This is in agreement with our result that for
highly excited states, self-trapping occurs more easily (for
reasonable values of the coupling) when t, /tt is 1 and 2

[Figs. 9(b),9(c)]. In the case of t, /tg 0.01, as well as
t /tI 10, at the center of the band, localized polaron
formation does not take place for any realistic value of
the coupling constant [Fig. 9(c)].

In the case of an electron initially localized at a sin-
gle site the initial state is a superposition of difFerent
eigenstates (3a). Many electronic modes interact with
the lattice so that once the electronic wave function is
spread across the chain there is no mechanism such as
the "resonance"-type condition (18) to confine the elec-
tron. Due to its energy, the "fast" electron (t, /tg 0.01)
resists self-trapping, and due to the difFerence in t and
tg, the "slow" lattice cannot respond before the electron
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This behavior repeats itself or
hundreds of recurrence periods
without any sign of deteraora-
tion.
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is T„= 60tg. This recurrence phenomenon is robust for
small changes in the parameters and in the initial con-
ditions. It is observed for electronic eigenstates close to
E, —1, for N in the vicinity of 300, and it survives in
the region 1.35 & y & 1.58 and 0.007 & t /tt & 0.01S.
It also seems to be persistent and stable (we run simu-
lations for about 10 tg and small perturbations do not
destroy it). There is a strong dependence of the recur-
rence tizne (T„) on y, ranging from T, 600tg to 45tt as
y increases within the above range. In Figs. 11 and 12,
we show how the recurrence time (T,) and the maximum
lattice energy (Et „) depend on the coupling (y) and
the electron mass (t, /tt), respectively, for the region of
the parameter space in which recurrence appeared. The
strong dependence of T on the coupling constant (Fig.
ll) shows that the phenomenon is due to the nonlin-
earity of our model and excludes linear resonance type
of explanations. As we approach the lower quasicriti-
cal value of y (y 1.35) the recurrence period becomes
extremely long and the maximum value of Eg and E, g

extremely low. The recurrence seems to disappear and
the system apparently remains in its initial state. As we
approach the upper quasicritical value (y 1.57) the
phenomenon deteriorates after a few regular recurrence
periods and eventually an apparently chaotic behavior is
reached with considerably larger values of ~Et~, ~E, g~,
and ~E, (0) —E,~. As far as the dependence of the phe-
nomenon on the ratio t, /tt is concerned, there are two
distinct regimes (Fig. 12). For t, /tI & 0.0115, the behav-
ior is as in Fig. 11—i.e. , T, decreases as t, /tt increases—
while Et „ increases with t, /tt. The recurrence dis-
appears for t, /tg 0.01S in a very similar way as for

1.57 described before. However, for t, /tg & 0.0115,
the dependence of T and Eg „are opposite: T„ in-
creases and Et „decreases with increasing t, /tg. Also,
in this region, as opposed to the region t, /tt & 0.0115,
the interaction energy (E, t) is negative and about equal
in magnitude with the lattice energy, so that the electron
energy changes very little.

The time evolution of the electronic wave function [Fig.
10(a)] and of the atomic displacements and velocities
clearly indicates that the periodic transfer of energy back
and forth &om the electronic modes to the vibrational
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FIG. 12. The recurrence period T (solid circles) and the
maximum lattice energy amplitude Eg „(x) as a function
of the ratio t, /tg = 5 for a system with N = 300 and y = 1.5.

modes corresponds to periodic modulation and demodu-
lation of the wave function. In other words, the electronic
wave function is not a simple Bloch state any more, but
in addition to the "carrier" wave number corresponding
to this eigenstate, a wave envelope develops. When it
reaches maximum modulation, ~E, —E, (0)~, ~E, t~, and
]Et~ reach their maximum value, and when it demod-
ulates, the energies return to their initial value [Figs.
10(b)—10(d)]. Similarly, P reaches a minimum value
(P = 230) and returns to the initial value (P = 300)
of the uniformly extended state [Fig. 10(e)]. This tizne
evolution of the electronic wave function and the lattice
degrees of freedom can be described approximately by so-
lutions that consist of products of Jacobian elliptic func-
tions and trigonometric functions. These approximate
solutions (for the real part of the electronic wave func-
tion and the lattice displacements, for example) are

7r+—n+u t+~t
3

(23)

1 7r 27r
Be c„= cos —n —ut + Cicn(At ~K) cos n—
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FIG. 11. The recurrence period T (solid circles) and the
maximum lattice energy amplitude E'z, „(x)as a function
of the electron-phonon coupling y for a system with N = 3GO

and t, /tg = 0.01224.

t'2' 2vru„= C2cn(At~ ic) cos
~

n+ n+ (u't + y—~—, (24)N 3

where fur = E,(0) = —1, ir/3 is the initial Bloch wave
number [corresponding to E,(0) = —1], Ci and C2 are
the modulation amplitudes, A is related to T„ ic (the
modulus) is almost unity, ~' = 27r/T', T' 2.64t~, and
p is a parameter-dependent phase. The intermediate fre-
quency co' seems to be independent of the parameters y
and t, /tg. In Fig. 13, we compare the numerical values
of Rec at a fixed time [Fig. 13(a)] with those of Eq.
(23) [Fig. 13(b)]. Although the fit is satisfactory and the
above expressions reproduce correctly the energies and
participation number time dependence, they are not ex-
act solutions of the equations of motion (7) and (8) for
any value of the parameters and the initial conditions. It
is interesting that these expressions have a similar form
as a class of exact solutions of the integrable continuous
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FIG. 13. The real part of c(n) for a time moment from
the numerical simulation in (a) and from the approximate
solution [Eq. (23) in the textj in (b).

V. CONCLUSIONS

NLS e uationq tion and some integrable version of the DNLS
equation.

The appearance of these solutions is related to the in-
stability of the initial Bloch eigenstate which is necessary
in order to drive the system away from th' t t bl
s a e. en the parameters are in the appropriate range,
any small perturbation to the eigenstate drives the sys-
tem out of the initial state, leading eventually to the re-
current behavior. It should be pointed out that a similar
recurrence resulting from a Benjamin-Feir instabil'

as been found both numerically and experimentally for
the NLS e uation bq ', but the initial state giving rise

~ ~ ~

s no necessarily sat-to t e recurrence of our model does n t l
isfy the conditions obtained from linear and n l
stability analyses for the NLS equation. ' ' Moreover,
aur madel fully includes a large number (K = 300) of
vi rational degrees of freedom in addition to the elec-

modynamic behavior. All of the above clearly suggest a
torus of almost integrability interpretation of our results.
t is possible that for this small region (and perhaps Far

other small regions as well) of parameter space aur s s-
tem exhi its local integrability or it is very l t bc ose o eing

tron in an otherwise empty band. We studied the time
evolution of the coupled system numerically for several
initial conditions, diferent coupling strengths, and elec-

approximate analytical methods has been recovered but,
in the most part, a much richer and complex picture has
emerged. Some states, with most impressive being the
recurrent one, have been found. These s l t' need fur-
ther investigation in order to determine whether they re-
Hect real physical properties of electron-phonon system
or ar

s ems
r are simply some newly discovered features of this par-

ticular but widele y used, model. The only approximation
employed is the classical treatment of the lattice (at no
point do we resort to the adiabatic approximation) which
is certainly justified in the adiabatic regime but is more
diKcult to 'ustifj y in other cases. However, our results re-
capture the main characteristics of electron-phonon sys-
tems in all cases. Naturally it would be desirable to treat

oth the electron and the lattice quantum mechanically
an at the same time obtain an accurate time evolution
o a highly excited state of the system, but this task is
well beyond the current state of the art. Our approach
allows systematic corrections when some of the quantum
mechanical aspects of the lattice motion are taken into
account.

In the work presented here we focused on the eKects of
varying the electronic effective mass (adiabatic param-
eter). We basically used two different types of initial
conditions, the electron localized in kin space in an eigen-
state) and the electron localized in real space (at a single
site .

When the electron is initially close to an eigenstate,

tive mass does not favor localized polaron formation. On
the contrary, for initially highly excited states, polaron
formation becomes easier when the electronic mass be-

an increase of the initial electronic energy decreases the
a i ity of the system to reach a localized state. A simple
argument based on matching the electronic and atomic
ve ocities explains these gross features of our results.

In the case of electrons initially localized at a single site
t e Anal state is extended, if the effective mass is small,

the coupling suKciently strong. This behavior can be
understood with the small polaron fo taron orma ion criterion.

The results of our extensive simulations of the dynam-
ica behavior of the system determine the role of the
parameters involved in this nonlinear coupled electron-
attice model and show how strongly the final state de-

pends on the electronic effective mass and on the initial
electronic configuration. This dep depen ence is very inter-
esting in the disordered case as well (results will be pre-
sented in a future publication). It is possible that this
behavior will be significantly modified when temperature
effects are included (this work is under way).

We consi ered the discrete deformation ot t' l
mo e, which is one of the standard models that describe

e interaction of the electrons with the lattice vibra-
tions. We restricted ourselves to th f le case o a single elec-
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