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Fast domain growth through density-dependent diffusion in a driven lattice gas
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We study electromigration in a driven difFusive lattice gas (DDLG) whose continuous Monte Carlo
dynamics generate higher particle mobility in areas with lower particle density. At low vacancy
concentrations and low temperatures, vacancy domains tend to be faceted: the external driving
force causes large domains to move much more quickly than small ones, producing exponential
domain growth. At higher vacancy concentrations and temperatures, even small domains have
rough boundaries: velocity differences between domains are smaller, and modest simulation times
produce an average domain length scale which roughly follows L t~, where ( varies from roughly
0.55 at 50'Pp filling to roughly 0.75 at 70'Fo filling. This growth is faster than the t behavior of a
standard conserved-order-parameter Ising model. Some runs may be approaching a scaling regime.
A simple scaling picture which neglects velocity Buctuations, but includes the cluster size dependence
of the velocity, predicts growth with I t . At low fields and early times, fast growth is delayed
until the characteristic domain size reaches a crossover length which follows I, „oc8 . Rough
numerical estimates give P = 0.37 and simple theoretical arguments give P = —. Our conclusion
that small driving forces can significantly enhance coarsening may be relevant to the YB2Cu30&
electromigration experiments of Moeckly et al.

I. INTRODUCTION

The study of spinodal decomposition and coarsening
in quenched Ising models has been vigorously pursued.
Binder and StaufFer predicted that, following a quench
at t = 0, the structure function of a coarsening system
would grow with a single length scale L(t). Numerical
studies have verified that, when this length scale is re-
moved from the results, the reduced structure factor is
very nearly constant in time. I ifshitz and Slyozov gave
a further prediction: domain size should asymptotically
grow as L t I for a conserved order parameter (COP)
model. Monte Carlo simulations have checked this re-
sult. All of this theory d.escribes the equilibrium case,
where nothing acts on the coarsening process besides a
thermal bath. In real systems, however, phase segrega-
tion can be afFected by several infIuences, including grav-
ity, elastic stress, or electric fields. Such forces often push
material around, instead of preferring one phase over an-
other. Given this wide area of potential experimental ap-
plication, it seems reasonable to ask what happens when
you take a COP Ising model and apply a uniform force
to push particles (up spins) across the lattice?

This type of driven diffusive lattice gas (DDLG) was
first introduced by Katz, Lebowitz, and Spohn, who
found that the external driving force raised T . Sub-
sequent research has carefully investigated the order-
ing phase transition of this model. In addition to work
that analyzed interface roughness and domain shape,
some efForts have been made to see whether the scaling
and growth law results of the equilibrium model carry
over to the nonequilibrium one. Such studies of the
driven difFusive lattice gas have almost always employed
the same Monte Carlo dynamics —those of Kawasaki.
For this specific class of model, there is no barrier to

hinder particle motion along the interface between two
phases, and domains tend to elongate along the direc-
tion of the force. Coarsening studies of the Kawasaki
DDLG (which have often employed a modified Cahn-
Hilliard equation) have found some evidence for enhanced
growth along the field, but no sign of enhanced growth in
the transverse direction. Among these studies, the fastest
power law found for growth was domain area cx t
and other estimates have ranged from less Geld —induced
enhancement to a suggestion that there is no enhance-
ment at all (i.e. , that an average measure of domain size
has a growth rate, which is close to the I t ~ be-
havior of the equilibrium model).

The present study finds that coarsening rates in the
early stages of growth, as well as orientation of domains,
can depend strongly on the details of the DDLG model
used. Noting that nonequilibrium problems have an in-
herent sensitivity to dynamics, we have studied a DDLG
with particle mobility that goes d.own when the number
of bonds to neighbors goes up. The resulting motion has
free difFusion of single particles across empty spaces. (A
similar bond —counting approach was used to model elec-
tromigration of thin Glms on semiconductors, but that
work did not study coarsening. ) In our model, the ex-
ternal driving force bunches domains up along the field
(so that they lengthen in the transverse direction), and
it can push entire domains of vacancies across the lattice
so that they sweep up other vacancies and grow quickly.
For moderate lattice Gllings, the resulting domain radius
grows as L v t~, where ( varies roughly from 0.4 to
0.7 as lattice filling is increased. For very high concen-
trations of particles, the early stages of growth can be
exponentia/ in time.

When we approached. the problem of coarsening in an
electric field, we were interested in fast motion of iso-
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lated particles through the middle of a domain, rather
than along an interface. Such bulk di8'usion was relevant
to the electromigration studies of Moeckly, Lathrop, and
Buhrman. In their room-temperature observations of
YB2&usov z (YBCO) thin film devices, they found that

a small electric bias ( 10s V/cm) could produce macro-
scopic motion of oxygen. The associated force was so tiny
that it would only have moved an oxygen atom a few lat-
tice constants per second in a fully oxygenated sample,
where the activation energy for oxygen motion is about
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FIG. 1. Snapshots from our simulation (Ref. 28). An external field pushes white particles up. (a) and (b) are early and late
configurations from a run with 90+0 filling. Here, a few of the black vacancy regions undergo runaw'ay growth as they sweep
down through the lattice. (c) and (d) show early and late stages of a run with 70'Fo filling. Here, blocks of all sizes are moving,
and domain area growth is close to linear in time. All pictures have A=1 and J=1.5. Except where noted, 6gures show data
from runs with 256 x 256 lattice. See Ref. 28.



FAST DOMAIN GROWTH THROUGH DENSITY-DEPENDENT. . . 15 019

1 eV (Ref. 16) and the diffusion constant is about 10
cm2/s near room temperature. In an oxygen depleted
region, however, small forces may have a large impact: in-
ternal friction measurements give an activation energy of
0.1 eV for motion of a completely isolated oxygen atom,
and the chemical diffusion data of LaGraÃ and Payne
suggest that the difFusion constant of YBCO can rise by
more than an order of magnitude as the oxygen in the
chain plains is depleted.

To study the efFects of such difFerences in mobility, we
wanted the simplest model that could describe a density-
dependent difFusion constant. We therefore chose a
two dimensional DDLG with modified continuous Monte
Carlo dynamics. Thus, we group atoms according to
their coordination q, increment time by an amount, which
increases as the number of highly mobile atoms decreases,
and propose a move from list q with probability

&[q] = dt(4 —q)m(q)e 4", -

where N[q] is the number of q-coordinated atoms. is This
continuous Monte Carlo scheme satisfies detailed bal-
ance, so the equilibrium state at L = 0 is that of the
nearest —neighbor Ising model: 'R = —J P~, ~

S,S~. This
dynamics allows atoms with low coordination to move
quickly. It also produces a basic particle —hole asymme-
try, illustrated by the fact that isolated atoms can zip
across vacant spaces (rate 1), while isolated holes hardly
move (rate e i2 ). We include the electric potential by
accepting all proposed forward moves, a fraction e of
the proposed sideways moves, and only e of the pro-
posed moves against the field, where 24kT is a local
potential difFerence along the Geld. Motivated by the
YBCO experiments, we have focused much of our at-
tention on the limits of high particle concentration, rela-
tively low Gelds, and strong coupling to nearest neighbors
(i.e. , a highly concentration —dependent mobility).

Figure 1 shows two of the interesting behaviors we
found. In both pictures, the black regions are vacancy
clusters, which move collectively downwards as an exter-
nal force pushes (white) particles up. In the symmetry-
breaking field, the vacancy blocks become short and
wide. i The pictures on the left [Figs. 1(a) and l(b)] have
90% lattice filling. Here, isolated runaway processes dom-
inate: large domains move much faster than small ones
and sweep up many vacancies, thus becoming even big-
ger and faster. We discuss such processes in the following
section on exponential growth. The pictures on the right
have 70% lattice filljng. Here, blocks of all length scales
are moving and combining, and a mean domain radius
grows as a power in time. Note that the late snapshot at
the bottom [Fig. 1(d)] resembles a scaled-up version of
the snapshot at the top [Fig. 1(c)]. In Sec. III, we eval-
uate scaling collapses, and we construct a simple picture
for domain growth in this regime. Finally, in Sec. IV, we
will look at small driving forces. In this limit, we Gnd
that the early stages of growth show the L ~ t ~ behav-
ior expected for the zero field case, and then a crossover
to fast growth occurs. We interpret this crossover as the
time at which the area swept out through linear motion
along the field equals the area visited by diffusive motion,

and we derive the field dependence of the domain size at
crossover.

II. EXPONENTIAI GRGWTH

The runaway growth of the high filling regime is fun-
damentally tied to a separation of time scales produced
by faceting. The pictures in Fig. 1 were generated with
strong coupling between neighbors, so atoms with two
neighbors move much more quickly than atoms with
three. In this regime, the base of each vacancy domain
tends to be Hat, with all atoms having three neighbors.
After a stagnant period, one of these strongly pinned
atoms pops out of the base and leaves behind two doubly
coordinated particles. The remaining atoms then have a
lower barrier to motion. One by one, the rest of the row
soon dislodges and moves rapidly across the empty space.
Under such conditions, one would expect the velocity of
a region to be proportional to its horizontal width (i.e.,
the number of ways to produce the initial break). Figure
3 shows this behavior at low temperatures for isolated va-
cancy domains. Periodically, a domain will collide with
a vacancy in its path, and that will provide the initial
break to move the domain through an extra row of atoms.
Again, the rate of such motion increases linearly with the
width of the domain.

Domain size is therefore a crucial factor in determining
growth. Besides moving more quickly to sweep up new
vacancies, wide blocks clear larger regions as they move.
In general, we expect

Here, n is the area of the block in question, m is its width,
c is the concentration of vacancies in the region ahead of
it, and Lv is the relative velocity of the block we are
describing (in comparison to that of vacancies which it
overtakes). For low temperatures and low vacancy con-
centrations, small vacancy blocks will move at negligible
velocities and large blocks will move with v m. In this
regime we expect:

If the width and height of a region scale similarly, then
the above result gives dn/dt oc n or n growing exponen-
tially in time. In practice, we find that wid. th grows more
quickly than height. This tendency should only enhance
the rate of growth.

To check this prediction against our simulation, we
calculated two —point correlation functions in both hor-
izontal and vertical directions. For a rough measure of
length-scales, we used the width at one-quarter max of
each of our correlation functions. Figure 2 shows verti-
cal block size, horizontal block size, and the product of
the two (a typical domain area) as a function of time. To
run the simulation efficiently enough to observe the large
range of size in this Ggure, we used a fast model with
nearly infinite coupling (where uncoordinated atoms al-



15 020 LISA K. WICKHAM AND JAMES P. SETHNA 51

1000;—
Isolated clusters: J=2, h = l.

100
I

30—

G$

3 20-
c5

10—
CD

(a)
0.0 0.5 1.0
Time (units of waiting time for q=3 atom)

10 20 30
Cluster width

40 50

FIG. 2. From bottom to top, these plots give vertical and
horizontal cluster size, and the product of the two as a func-
tion of time. (Sizes are taken as the full width at quarter
maximum of two-point correlation functions, such as those
in Fig. 5.) These simulation results correspond to 90% filling
and A = 1. They were produced with a fast, low-temperature
algorithm. Lattice size: 512x512. Time is scaled so that a
given triply coordinated atom will wait approximately one
time unit before moving. Note that the plot has a log of
cluster size vs linear time, so that a straight line indicates
exponential growth. Fractional rate of growth slows at late
times, when domains become so large that they have rough
bases.
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ways moved first, and then all singly coordinated atoms
moved). As Fig. 4 demonstrates, we found the same be-
havior at low temperature for standard finite-coupling
dynamics. Note that the vertical scale on these plots is
logarithmic, so the straight line observed does indicate
exponential growth.

Notice that the runaway growth does not continue in-
definitely. For very large domains, the time required to
move a full row of atoms from bottom to top is compa-
rable to the time between initial "three —moves. " If the
rate of q = 2 moves is the limiting step, then motion from
each kink in the domain can proceed independently and
large blocks will approach a terminal velocity. Crossover
to this behavior will occur when the time required to
move an entire rom of atoms through sequential q = 2
moves is approximately equal to the expected waiting
time before one atom in that row moves from a triply
coordinated site. The slowdown in growth in Fig. 2 oc-
curs when these two time scales are comparable to each
other. Figure 3 shows the velocity of a vacancy domain
in an empty lattice as a function of domain width at two
diff'erent temperatures. Note that the low-temperature
plot is fairly linear, while the high-temperature results
do indeed approach a terminal velocity. Figure 4 shows
simulation results with a domain roughening crossover,
which varies with temperature.

There is another way to produce rough domain bases
and eliminate exponential growth. In the case where va-
cancy clusters are constantly running into one another,
their bases will always contain doubly coordinated atoms,
and q = 2 moves will again be the rate-limiting step. Fig-
ure 5 shows the changeover from exponential to power-
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FIG. 3. From simulations with a single domain in an empty
lattice: velocity as a function of domain width for (a) J=2
and (b) J=l. Note that the low temperature (high- J) results
are nearly linear. Data are averages of 30 runs; error bars
represent estimated variations in the mean; and A = 1.
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FIG. 4. Cluster width vs time in a 90% full lattice at three
temperatures. These plots were produced with standard fi-
nite-temperature dynamics, and time is again scaled so all

q = 3 atoms have moved approximately once at t = 1. The
circles have J = 1.5 and show exponential growth, which
crosses over to the power law at late times. The diamond
plot (lowest) has J =1 and does not show well-formed ex-
ponential growth. The squares have J= 1.25 and show an
intermediate behavior, and A =1.
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law growth as the number of vacancies increases. Look-
ing at configurations with 82% filling, we see isolated
runaway domains whose acceleration slows as their bases
become rough. This behavior makes intuitive sense be-
cause, in runaway growth, the size of large domains in-
creases more quickly than the spacing between small
ones, so large domains can grow to be larger than a typi-
cal interdomain spacing. We will Gnd later that horizon-
tal correlation functions in the power-law growth regime
nearly scale, so the relationship between domain width
and horizontal domain spacing remains nearly fixed. This
is consistent with our observation that growth that starts
in the crowded, power-law regime tends to stay power-
law.

III. POWER-LAW GROWTH AT LOWER
FILLINGS

We have found that the exponential growth regime oc-
curs for low temperatures and low vacancy concentra-
tions, where only a few domains become large enough
to respond strongly to the external Geld. At lower par-
ticle fillings, most vacancies will join clumps soon after
coarsening begins, since most of the vacancies are con-
nected through atoms with single or double coordination
at quench. At such fillings, vacancy domains no longer
move through a nearly stationary sprinkling of tiny va-

cancy clumps. Instead, the lattice contains a distribu-
tion of block sizes, most of which are moving steadily in
the Geld. Frequent collisions between domains provide
sources of fast moving atoms, so that motion is not char-
acterized by long waiting times with Hat domain bases.
Thus, we no longer expect the velocity of a domain to be
proportional to its width.

Figures 6 and 7 show results from the simulation at
lower filings. The first, a check for dynamical scaling,
gives clear evidence that domains of all length scales are
growing at similar rates. The horizontal correlation func-

Time (units of waiting time for q=3 atom)

FIG. 5. Log-linear plot of cluster area vs time. Prom top
to bottom the curves correspond to 80, 82, and 85% filling,
and A = 1.

tion shows strong hints of scaling, but the vertical cor-
relation function has an anticorrelation dip, which grows
more pronounced with time. (That is, the regions be-
tween vacancy domains are becoming more thoroughly
swept out. ) Although growth in this regime is not com-
pletely self-similar, a scaling picture may be a useful first
step towards describing coarsening at these filings. Fig-
ure 7 shows a characteristic domain area as a function of
time for 60, 70, and 80%%uo concentrations. This growth
is significantly faster than the t / behavior of a zero-
Geld model. If we Gt growth at each concentration to
domain area t &, ( varies from about 0.65 at 60%% fill-

ing to approximately 0.75 at 70 and 80% filling.
Although the behavior of our model in this moderately

full regime is complex, we have tried to piece together a
simple picture which would mimic the observations de-
scribed above. We start with the following question: in a
scaling regime where growth is still dominated by catch-
up events, what kind of velocity distribution would pro-
duce linear domain growth? An elementary argument
proceeds as follows: we can describe each time in a scaling
regime with characteristic horizontal and vertical length
scales Lg and L„. In a typical collision, the area gained
by a vacancy cluster will scale with the product of these
two lengths, i.e.,

A typical time between collisions will scale as the vertical
length scale divided by the velocity diBerence of the two
colliding domains:

dt I„/b, v.

Together, these two results indicate that the area of a
typical domain will increase linearly in time if Av
1/I h, .

Is this scaling picture useful for understanding sim-
ulation results? One obvious objection is that vertical
correlations in our model do not settle into a final scal-
ing shape until late in the simulation, and so the typical
vertical spacing between domains does not scale perfectly
with the vertical height of the domains. Also, we have
neglected any enhancement in coarsening due to veloc-
ity Buctuations, and, in fact, our simulation results in-
dicate that domain areas in this regime have somewhat
faster than linear growth in time. Realizing that our
scaling picture is an approximate description, at best, we
have investigated the size dependence of domain veloci-
ties. Recall that a large domain with several kinks in its
base should approach a terminal velocity, where motion
proceeds from each kink independently. Is the dominant
correction to this terminal velocity a term of the form
v, ,/Ih'? Note that this is the form one might expect if
the dominant correction is due to behavior at the sides of
a domain base. Figure 8 shows velocity plotted against
1/iv for domains of various size moving through empty
space at high temperature, so that the domain bases had
several kinks. We tried plotting velocity vs 1/zo and
found the best asymptotic linear fit for x=0.7—1.2. Fig-
ure 9 shows velocity as a function of 1/vj in an actual sim-
ulation run at 70% filling. Despite poor statistics in the
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FIG. 8. Prom simulations with a single domain in an
empty lattice: velocity plotted against inverse domain width.
These results are consistent with velocities, which approachv: vo vi /vu at large domain size, as shown by the linear
fit. Here, J = 1 and A = l.
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~ 40
65
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FIG. 9. Velocity as a function of inverse width in an ac-
tual simulation run with J = 1.5 and A = 1. Despite poor
statistics, the linear fit is consistent with a 1/is correction to
a terminal velocity, as in Fig. 8.

latter plot, Figs. 8 and 9 together seem to con6rm that
vacancy clusters in our model approach constant veloc-
ity with l/Lh corrections. Thus, our scaling picture may
provide a Grst step towards explaining observed growth
at these fillings.

For fillings below 50%, we must focus on domains of
particles, instead of vacancies. These clumps of parti-
cles actually move against the field direction, while a
wind of particles sweeps into them on one side and tears
particles away on the other. Figure 10 shows prelim-
inary simulation results at these filings. The domain
area grows roughly as to 7s at 20%'filling (( 0.4), as
to ss at 30% filling (( = 0.5), and as ti i at 50% filling

(( = 0.55). Note that growth at low fillings is dominated
by the shorter time scales associated with the motion of
atoms with few neighbors. Note also that the growth
exponent g increases with filling. We do not at present
have an explanation for the latter effect.

IV. LOW FIELD CROSSOVER

For high 6llings and strong interparticle couplings, we
have seen that large external Gelds can dramatically en-
hance coarsening. In most experimental applications,
however, the potential difference between neighboring
sites is much less than kT, so it is natural to ask how weak
fields affect domain growth. In the zero-Geld limit, our
model corresponds to standard Lifshitz-Slyozov growth
with asymptotic I t / behavior. Slightly away from
this limit, we 6nd that low Gelds produce such slow coars-
ening for a while, and then generate a crossover to fast
growth and noticeable anisotropy. Figure 11 shows this
behavior. First, initial transients die away on a time
scale given by the rate of motion for q = 3 atoms (as in
Ref. 5), and ti~s growth sets in. When the characteristic
domain size is still much less than IcT/2E, growth takes
o8' and the presence of the Geld also appears in a loss
of square domain symmetry. Figure 12 shows rough vi-
sual estimates of crossover length as a function of field.
Although this plot may include systematic error from
pinpointing a crossover in increasingly rounded curves,
it strongly suggests that the crossover length has a weak
dependence on the field.

To gain a physical understanding of the crossover, Grst
note that it represents a transition between diffusion-
dominated growth, and driven collisions produced by the
external field. In this low field regime, where the poten-
tial drop across the domain is still less than kT, we can
describe the driven motion with linear response theory.

ghee~~Agk k~k
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FIG. 10. Preliminary results for a power law in the cluster
area vs time at 20, 30, 50, 60, and 70 Fo filling. At each time,
an approximate logarithmic derivative in cluster area vs time
is shown. (This is an efFective slope over a finite-time window
around each given time in a curve such as those in Fig. 7.)
Runs at 30% and 50'F0 used a 128 x 128 lattice. Note that the
asymptotic power increases with filling.
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FIG. 11. Crossover to fast growth for 90'70 filling and
&=0.1. The circles show characteristic domain width, and the
squares show domain height. The straight line shows L t ~

growth. Low field data in this figure (and the next two) used
the fast, low-temperature algorithm.
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FIG. 12. Rough visual estimates of crossover length vs ex-
ternal 6eld for several fields at 80'p0 Glling. The straight line
shows L oc A for comparison.

FIG. 13. Collapse of cluster width vs time for several low
6eld curves, ranging from A = 0.005 to A = 0.1. The collapse
follows L(A, t) = 4 C(tb) and uses runs with 80%%uj filling.

We w'ill argue that crossover occurs when a typical block
absorbs more vacancies through concerted motion along
the field than through diffusive motion. Driven collisions
should win when the area of a circle swept out through
diffusion, mDt, is equal to the area swept out by linear
motion, i.e. ,

lapse. Considering the numerical difIiculty of achieving
well-developed t ~ growth for a wide range of fields, we
believe an A / crossover is supported by the data; in
any case, our results strongly indicate that length scale
at crossover varies only weakly with field.

mDt = vtm. (6) V. CONCLUSIONS

Note that we can replace the horizontal length scale m

with a general length scale L, since this early growth
regime is precisely when length scales in all directions
are the same.

To describe the crossover more completely, we need to
know how D and v vary with the size of a domain in our
model. For velocity, we refer back to the sanction describ-
ing exponential growth, where we found v L whenever
motion was limited by the slow rate of dislodging the
first atom from a row. To describe the variation of the
diffusion constant, note that D = u(Az), where cu is
the frequency of a typical move and Lx is the center of
mass displacement caused by such a move. For a faceted
domain, a typical move takes an atom from one rare kink
in the boundary to another. Such a move displaces the
atom by a distance of order L and the center of mass by
b, 2: 1/I. Since the frequency of these moves will be
proportional to L, we expect that faceted domains will
have D 1/I Note that th. ese results for v and D are
consistent with the Einstein relation that should apply
at such small fields: D/2kT = v/force. (The driving
force will be proportional to total charge of a block and
therefore of its area. )

Plugging these results into Eq. (6), we find that the
prediction vL„„=AD becomes LL„„ocL,, „or
L, „ocA / . If this relationship correctly describes
the crossover to fast growth, then simulations with a well-
developed L oc t / growth before crossover should follow
the scaling collapse I (A, t) = Z ~ C(tA), at least until
fast growth has taken over. Figure 13 shows such a col-

Thus, in our model, a reduction in external field only
produces a small increase in the minimum domain size
for takeoff. Although the departure from t /' growth
appears to be small at low fillings, the field —driven take-
off at higher fillings soon leads to large empty regions,
which move steadily against the Geld as particles sweep
quickly through their centers. For moderately high lat-
tice fillings, fast growth involves most of the vacancy re-
gions. Here, domain growth is very roughly linear in
time, and horizontal correlations come close to scaling.
At very high lattice fillings and low temperatures, fewer
domains undergo significant coarsening, but those that
do have runaway, exponential growth. In our model, ex-
plosive growth ends when domains are large enough to
have rough bases, either through thermal effects or con-
stant collisions. Our study has also explored the strong
impact that faceting can have on size dependence in ve-
locities of vacancy clusters. This is a subject with poten-
tial applications in the study of void electromigration in
small aluminum interconnects, where faceting is well doc-
umented and voids have been observed to move through
the middle of single crystal grains. Most importantly,
our model demonstrates that external driving forces can
be surprisingly effective in producing domain clumping
and macroscopic particle Buxes.

How such enhancement plays out in particular ex-
perimental systems is still an open question. In the
instance of Moeckly's YBCO electromigration experi-
ments, particle motion takes place in the anisotropic en-
vironment of the oxygen "chain" planes, and our simple
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model does not incorporate such inherent anisotropies.
Also, associating our model with the YBCO experi-
ment involves abstracting our simulated phase separa-
tion of completely 61led and empty areas to an exper-
imental phase separation, which may be less extreme.
Neutron and TEM observations of YBCO suggest that
domain segregation in these planes produces regions of
more closely spaced oxygen rows and less closely spaced
rows. Still, the more open environment of widely spaced
rows does allow increased mobility. Moeckly's observa-
tions of large oxygen-depleted regions suggest that field. —

induced clumping is a vital component of his experi-
ments. Without describing the specific characteristics of
YBCO, our model provides a qualitative check that small
external driving forces can indeed facilitate the segrega-
tion of domains with high particle Inobility.

This study serves as a preliminary survey of a broad
range of interesting and potentially relevant model be-
haviors. An extension to three dimensions would allow
us to study the effect of a 6nite-temperature roughening
transition. Our study of faceting effects should be ex-
panded to cover other types of dynamics, such as those
which facilitate surface diffusion. Our simple picture of
coarsening in the presence of scaling clearly needs to be
modified to include departures &om scaling and fluctu-
ations in domain velocity, and an entire regime of low

61ling needs to be explored and understood. Our work
illustrates the breadth of issues involved in studying how
a separation of time scales due to faceting can affect re-
sponse to an external driving force. We have demon-
strated that useful approaches to this problem may be
found outside the long wavelength, late time limit. Fur-
ther work should improve our understanding of parti-
cle motion and domain coarsening in systems that, in-
stead of being conveniently isolated in a thermal bath,
are knocked out of equilibrium by an external force.
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