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Asymptotic expansions in the path-integral approach to the bipolaron problem
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Large bipoiarons are studied in two (2D) and three (3D) space dimensions. The bipolaron
energy is expanded in inverse powers of the electron-phonon coupling constant n, which leads to
Eb;~ = —(2n /3s) A(u) —R(u) + O(o ), where u = U/n and U is the dimensionless Coulomb-
repulsion coupling constant. We derive closed analytical formulas for the coefficients A(u) and B(u)
which allow us to find the bipolaron stability region both in the scope of a madel formulated in
terms of Feynman path integrals and from fitting known results. Analytical expressions for the
leading terms of the bipolaron efFective mass and mean-square separation between electrons are also
presented.

I. INTR.ODU CTION

The aim of the present work is to establish analyti-
cal expansions for the characteristics of large bipolarons
in inverse powers of the Frohlich electron-phonon cou-
pling constant o, . We will base our analysis mostly on
expressions derived in a paper by Verbist, Peeters, and
Devreese in. the scope of the Feynman pat¹integral for-
mulation of quantum mechanics and its application to
the polaron theory. Conventional perturbation methods
fail to describe bipolaron states because of the simple
fact that bipolarons do not exist at small values of the
coupling constant. Physically for bipolarons to exist it
is necessary that the attraction due to phonon exchange
overcomes the Coulomb repulsion. Therefore it is the
strong-coupling mechanisms that underlie the bipolaron
dynamics. The availability of analytical expressions in
general clari6es the main features of any physical the-
ory. In this study we derive analytical strong-coupling
asymptotic expansions for the bipolaron self-energy, in-
cluding the two leading terms, which allows a meaningful
extrapolation to intermediate coupling.

For single polarons the basic ideas of the strong-
coupling regime have been put forward in pioneer-
ing investigations by Landau, Pekar, Bogolubov, and
Tyablikov. Numerical calculations for three-dimensional
(3D) polarons have been performed by Miyakes and for
2D polarons by Wu, Peeters, and Devreese. Although
there exists no obvious distinction between weak- and
strong-coupling regimes for free polarons, the study of
the response function reveals the gradual appearance of
internal excited states for increasing coupling strength.
Sharp resonances exist for large values of the electron-
phonon coupling constant o;, while at small values of
o. the response function is characterized by broad res-
onances due to scattering states. As it follows koln the
numerical results of Ref. 7 the region around o, —6 can
be considered as a dift'use boundary between- the weak-
and strong-coupling regimes.

As was mentioned, bipolarons only exist in the strong-
coupling regime, that is, in the region n ) 6 (for the

II. THE BIPOLAKON MODEL

The Hamiltonian for three-dimensional (3D) Pekar-
Frohlich bipolarons is given by

~2 ~2
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where r; (p;) are the positions (momenta) operators of the
ith electron, m is the electron band mass, and a (ag)k
are the creation (annihilation) operators of phonons with
wave vector k and frequency uk. The quantities Vk are
the Fourier transforms of the electron-phonon interac-
tion. For LQ phonons ~k ——ugo and Vk takes the form

3D case). Consequently, the strong-coupling limit be-
comes an essential feature of any theory of bipolarons.
To the best of our knowledge, for bipolarons no sys-
tematic strong-coupling expansions with analytical co-
eKcients have been published and most work relies on a
numerical analysis. The study of bipolarons is of possible
relevance in the understanding of high-T superconduc-
tivity (e.g. , for high-T, superconductors, s 9 the recently
discovered fullerites, ' and the proposed Bose-Einstein
condensation of large bipolarons ).

The present paper is organized as follows. In Sec. II
we describe the bipolaron model formulated in Ref. 1.
In Secs. III and IV the strong-coupling expansion for
the bipolaron energy is found and two leading terms are
calculated explicitly. In Sec. V the bipolaron stability
region is studied. An extrapolation of results obtained
is given to proceed beyond the model of the paper. The
effective bipolaron mass and its extension are estimated
in Sec. VI. The study is made both for 3D bipolarons
and for bipolarons in reduced space dimensions.
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(2.4)

&om which it follows that only U ) v 2 o. are physically
reliable.

The above problem was tackled by Verbist, Peeters,
and Devreese in Ref. 1 (hereafter called I) using a path-
integral representation for the partition function and ap-
plying Feynman's variational method to approximate the
path integral. The trial action was chosen correspond-
ing to a model where two Gctitious particles of mass M
are connected with each of the electrons by strings of
strengths K, and K,

' and another string of strength K con-
nects the two electrons to simulate the direct Coulomb
interaction. In addition, a vector a is used to describe
Huctuations of electrons around a mean vector distance
a from each other. Note that a related trial action was
used in Ref. 14 to study a system without repulsion.

The Hamiltonian describing this trial system is

~2 p2

j=l)2
1

+

(rq —B2 —a) + (rq —Rq + a)
2

2
(2.5)

All mentioned oscillator strengths, the mass M, and the
mean separation a are considered as variational param-
eters. It was found in I that in the bipolaron state the
vector parameter a equals zero. The squares of the eigen-
frequencies of the model system are

Mm
(2.6a)

M —m, 2K 4(r —r') 2

v+ v'

M

(2.6b)

(2.6c)

(4~a
v~ = —iMLo (2.2)

2m&LO j
The dimensionless Coulomb potential and electron-
phonon coupling constants are defined in the standard
way,

1 t mugo

1 e' f'1 1) m r,o
Aldz, o ~Q (6~ Fo) 5

and depend on the static (eo) and high-frequency (e )
dielectric constants. Introducing the ratio of the dielec-
tric constants g = e /eo we obtain the following relation
between the Coulomb and electron-phonon coupling con-
stants:

These variational parameters satisfy the following in-
equalities:

0', &0,'+0'„0, & v &0, &0. (2.7)

+0302 —02

Xe
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where

v' x 0' —v' 1 —e-" *
1D l l() =
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2
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v2 02 1~~—03m
3

+02 (2.9)

It follows from Eq. (2.9) that

v2 + 0203"("=
2n, n. (n, +n. )

(2.10)

Equations (2.8)—(2.10) generalize Feynman results to
the case of two polarons.

III. STRONG-COUPI INC EXPANSION

The physical condition (2.4) implies that the repulsion
cannot be arbitrary small. In the classical limit this im-
plies that a bipolaron state cannot exist. Indeed, at large
distances the effective potential due to phonon exchange
reduces the effective attractive potential to —n~2/r (in
dimensionless units). Adding the direct Coulomb repul-
sion between the two electrons it gives us the net repul-
sion potential e /eor It is becaus. e of phonon exchange
and correlation that a bipolaron state can exist quantum
mechanically. Bipolaron formation becomes possible at
rather large values of the electron-phonon coupling con-
stant o. which provides us with a motivation to apply the
strong-coupling expansion in inverse powers of o..

When o. ~ oo the frequencies 01,02 become large
while 03 and v remain Rnite. Thus, we search for a
solution, in which we expand the variational parameters
in a series of inverse powers of 0.2,

In what follows we use dimensionless units h = m =
~j.o ——1, so that the bipolaron energy is given in units
of Rur, o and the length in units of gh/m~r, o. In I an
upper bound was obtained for the free energy. Taking
the zero temperature limit of the expression given in I
we obtain the upper estimate for the bipolaron energy,

3 3 i n —v n —v
Eb~ = —) n~ —3v —— nq 2 + n2
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(n)

ng =n (d~+ )
n&O

j=12 (3.1a)
To find a regular procedure of the strong-coupling ex-
pansion of the integral in Eq. (2.8) we deFine a function
which difFers from those of Eq. (2.9) by terms decreasing
exponentially in x,

(~)
ns =Lds+)

n&1
(3.1b)

V2 Z Q2 &2 y Q2 ~2
D-(*)=n, 4+ 'n, 4O, +n,: n, 4n,

P —03 1
Q2 Q2 4Q

(3.2)

(n, )
v=ui+)

n&1
(3.1c) Adding and subtracting 2/QD, (x) into the integral of

Eq. (2.8) we obtain

3 . 3 ( O2i —v O22 —v v —ns)

e 2 ('Ul 1
dx +n

gn'D .{z) & n) gem'Di2(0)

1 2d~e- ~
' -+

o Qn2Dii(x/n2) Qn2Di2(z/n2) Qn2D, (x/n2)

where the scaling x -+ x/n is performed in the last line
of Eq. (3.3). The idea of representing Eb;~ in the form
(3.3) is the same one used in Ref 6.to derive the strong-
coupling expansion for a single polaron.

Inserting expansions (3.1) into Eq. (3.3) and collecting
terms of the same order in o. we arrive at the strong-
coupling expansion for the bipolaron energy,

1 ( 1
n Di2(0) =

~

1+—
2la&2 ( n Cd2hfs j (3.7a)

and consequently the term in the last line of Eq. (3.3)
contributes only to the coefIicient B(u). The following
expansions are also valid:

Eb;p ————n A(u) —B(u) + O(n ), u = —, (3.4)
2 2 U

3K 0.'
(ldi + (afg 1 idi(d2 zd —&s

4caiiid2 n 4)i + (dz ( Q/2caIs

2E, = ——n —
i

—+6ln2
~

+O(n ).2, (3
37r (2 )

(3.5)

which has to be compared to the strong-coupling expan-
sion of twice the single polaron energy,

2

+X 2 +
Gd1

(3.7b)

Because the critical value of the coupling constant for
the bipolaron stability is about n, 7 (see I), terms of
order O(1/n ) may be skipped. Moreover, because of the
minimization of the leading term of the expansion (3.4)
over tdi, ~2 constant terms in the expansions (3.la) will
not contribute to the coeKcient B(u) in Eq. (3.4). Thus,
in order to derive Eb p to first two orders, we insert the
parameters nz ——n uz (j = 1, 2), ns ——upas, v = ui into
Eq. (3.3), and take the limit of large n which results into

IV. COEFFICIENTS
OP THE STB.GNG-COUPLINC EXPANSION

( 37ri 3
~(u) =

~

——
~

-(~, +~,) —42) 4 (d1 + &2

Using the previous expansions we arrive at the expres-
sion for the coefFicient A(u),

n D, i(i2l(z/n ) m
4u1

—@PEX

+ )
4u2

(3.6a)
(d2 (4.1)

n D, (z/a ) m
4(d14) 2

(3.6b) The expression in square brackets has to be minimized
over u1 & u2. When u & 4 the minimum is reached
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at the end point u2 —+ 0 and the corresponding value
Eb;~ = 0. When u ( 4 the differentiation of A(u) over
frequencies leads to the pair of equations

A(u) = 4 —2~2u
l

1+
l

+ —u' — (46)128J 8 512

3——2
4

1 ( ~q ) 1+—
I/~2 (~1 + ~2)

=0,
v'~~ (~~+~2) (4.2a)

= 0. (4.2b)

The dependence A(u) is shown in Fig. 2. As was men-
tioned above, the curve (4.6) is replaced by A(u) = 0
when u ) 4. A bipolaron stability region is defined in
this approximation for u = U/n such that A(u) ) 1.
This occurs when the repulsion does not exceed a max-
imal value: U/n ( u „, which &om Eq. (4.6) is given
by

Introducing the notation
u = — 49 + 5232II/327 —91 151

3
)

&y + (d2
(4.3)

5232/327 + 91 151

- 1/2

= 1.534 770 321.
we obtain from Eq. (4.2a) expressions for the frequen-
cies: (4.7)

(1 (2)3
9

(4.4a)

128 (1 —(2)4
9m.

(4.4b)

tl 1 'll

((u) = —+ — 2+ —.
16 2 64

(4 5)

Inserting known frequencies into Eq. (4.1) we find the
leading term of the strong-coupling expansion,

The dependence of ~q, u2 on the scaled repulsion u is
shown in Fig. 1. Both u~ and cu2 approach zero at the
limiting point u = 4 and furthermore w2/uq ~ 0 at this
point.

Equation (4.2b) then becomes a quadratic equation for
the function ((u) with the solution

Equivalently, we find the critical value for the ratio of di-
electric constants q, = 0.078550358 [u „=~2/(1 —q, ),
cf. Eq. (2.4)). It is not really a surprise that we ob-
tained the same numerical value (0.079) while averaging
the Hamiltonian over a product of Gaussian wave func-
tions, one for the center of mass and the other for the
relative coordinates. The maximal value u~ ~ is shown
in Fig. 2 by the dashed vertical line while the solid verti-
cal line represents the minimal physical value u;„= ~2.
The bipolaron stability region in this approximation cor-
responds to the space between these two lines.

In the absence of the Coulomb repulsion the bipolaron
energy is eight times larger than the single polaron en-
ergy in the strong-coupling limit: A(0) = 4 [cf. Eq. (3.4)].
The physical meaning of this behavior of the coeKcient

3

2

~ 1+(

Q
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cd

8.20

~ W

8. 1

I

I

I

I

I

I

I

II I I I I I I I

c2 3 4 5

Scaled repulsion U/cx

1 2 3

Scaled repulsion U/n

FIG. 1. Two variational frequencies uz, u2 contributing to
the leading order of the strong-coupling expansion vs the
scaled repulsion u = U/n.

FIG. 2. The dependence of the coefficient A(u) in the lead-

ing term of the strong-coupling expansion for the bipolaron
energy on the Coulomb repulsion coupling constant u = U/o. .
The maximal value u „=1.53477 and the minimal value

u; = ~2 are shown by dashed and solid vertical lines, re-

spectively. The space between these lines is the bipolaron
stability region.
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3 3, 1+~,
3Q) ——CO3 ——Qi

4 4
(4.8)

which reaches the maximal value 4 at m = w3 ——1. In
order to obtain the coefficient B(u) we have to find the
limit of the integral in the last line of Eq. (3.3). Then,
introducing a new variable z = exp( —~zz) in the integral
and performing partially the integration we arrive at the
representation

B(u) = —+ —((+ 1) lii=3 3 4v'(+ 1

4 2 +1+ 2(
3 2 1+—((( —1) dz

o s [i/(+1+s ]

1
~+ICI'+ ~+ ~+1)

(4 9)

A(u) follows from the definition (2.3) of the Frohlich cou-
pling constant o.. In the strong-coupling limit when the
Coulomb repulsion is switched ofF the bipolaron state is
equivalent to a single polaron created by a particle with
the doubled electric charge 2e and the reduced mass I,/2.
Then it follows from Eq. (2.3) that for this "effective po-
laron" the coupling constant o. obtains a factor of 2i/2
in comparison with a "normal polaron. " Because the en-
ergy of the latter behaves like o. in the strong-coupling
limit, the bipolaron energy is indeed eight times larger
than the single polaron energy. This conclusion does not
depend on approximations being made. It follows also
from lower and upper estimates for the bipolaron energy
which coincide in the strong-coupling limit in the absence
of the Coulomb repulsion as was shown in Ref. 17.

To proceed further we collect now terms of order o. .
As was mentioned, the term in the last line of Eq. (3.3)
depends onIy on the variational parameters ~g and ~g
which are determined now. The contribution of the first
two lines of Eq. (3.3) to the coefficient B(u) is

V. STABILITY REGIONS

A. The bipolaron model. of I

To find the critical value of o. at which bipolaron for-
mation occurs, one has to compare the bipolaron energy
with twice the polaron energy as given by Eqs. (3.4) and
(3.5), respectively. This leads us to the relation

1 3+ 12ln2 —2B(u)
A' = — 3%'

2 A(u) —1
(5.1)

From this equation we can Gnd numerically the function
U, (a), at which point bipolaron formation is possible at
a given value of o.. This function is presented in Fig. 4.
The plotted curve (solid line) exceeds the line U = ~2o.
(short dashes) at a & n, = 6.753. The value obtained
is in agreement with the direct minimization procedure
done in I where the value o., = 6.8 was reported. Besides,
we obtained in the vicinity of the critical point (u ~2)
U —1.68o. —1.82. The result U = 1.63o. —1.49 was
obtained in I (a misprint occurred there in which the
second term had a positive sign).

To present the equation for the boundary of the bipo-
laron formation region in a more simple form let us

1 I
I

I I I ~
I

1 l ~ ~
I

I I I I 2D2;3 4 5

with s+ —— gl —z~ + ((1 p z), where ( = uzi/~q

gz/(1 —gz) = 64/[(/128+ uz —u)z —64], as it follows
from Eq. (4.4). Note that the function ((u) is given by
Eq. (4.5). The dependence of the coefficient B(u) on the
scaled repulsion u = U/n is shown in Fig. 3.

20 I I I
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I I 1 I
I

1
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,'uc
I I I I I I I I I I I I I I I I I I I I I I I I I I I Jt I I I I 1 I I I

0
rn 'l 0
CL
(D

CL

0
0 5 Q

Coupling constant a
1 ~ 5

Scaled repulsion U/a
2.3

FIG. 3. The coefficient B(u) in the first correction term
of the strong-coupling expansion for the bipolaron energy vs
the Coulomb repulsion coupling constant u = U/o. . The
maximum value u „= 1.53477 and the minimum value
u; = v 2 are shown by dashed and solid vertical lines, re-
spectively.

FIG. 4. The boundary of the bipolaron stability re-
gion. The solid curve corresponds to U, (a.), the dotted line
U = ~2a shows the boundary with the physical region, and
the dashed line shows the asymptotic U 1.534 7?n for large
n. The shadowed sector between the solid and the dashed
lines is the region where bipolarons exist. DifFerent scales are
shown to present results in 3D and 2D. The critical values are
o,, = 6.75 in 3D and 2.866 in 2D.
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note that the physical region corresponds to an inter-
val between u;„= ~2 and u „= 1.53477. This
interval is narrow enough to use linear approximations
for the functions A(u), B(u). Our numerical calcula-
tions give A(~2) = 1.14808, B(~2) = 4.22613 and
A(u „) = 1, B(u „) = 4.47665, from which we
find the following linear fits to these coefIicients: A(u)
—1.2282u + 2.8851 and B(u) 2.0771u + 1.2886. If we
insert these equations into Eq. (3.4) we find an expres-
sion for the bipolaron energy which is adequate in the
physical region of coupling constants. Comparing with
twice the polaron energy of Eq. (3.5) we arrive at the
simple formula for the boundary of the bipolaron forma-
tion region,

20

1 50
U)

CL
&D

CL

6 n, 10

Coupling constant cx

U, (a) = 1.53477o.
—10.925

o.2 —7.969
(5.2)

We remind the reader once more that this expression can
be used for o. & o, = 6.753, in which region it can be
considered as almost exact (in the scope of the model
under consideration).

From Eq. (5.2) we notice that the asymptotic behavior
U, = 1.534 77o. is improved by terms of order 1/o. . Only
the first two terms of this expansion are exact within this
model,

FIG. 5. The three-dimensional bipolaron stability regions
calculated in the bipolaron model of 1 (dashed curve) and as
the result of the fit (solid curve). The frontier of the physical
region is also shown by the dotted line. Now the shadowed
region of the bipolaron stability is much larger than the sector
between the dashed and the dotted lines which was already
presented in Fig. 4.

U, (n) 1.534 77n—4.536

U, (n) = 1.53477n— (5.4)

At large n this coincides with Eq. (5.2). Near the critical
point discrepancies occur, e.g. , the critical value follow-
ing from Eq. (5.3) is n, = 6.13 which is 9% smaller than
the value obtained above. This can be improved by arti-
ficially changing the coefficient of the 1/n term,

and Moizhes and Vinetskii et aL (q, = 0.138),
Adamowski (r), = 0.14), Sil et al. (rI, = 0.129),
and by our groupi (rI, = 0.131). Thus, for reference we
accept in what follows the value g = 0.138 which cor-
responds to u „=1.641. As to the critical value of o.,
apart of the quoted result of I also the results o. = 7.3 of
Ref. 21 and o. = 6 of Bassani et al. are reported. Thus,
one can take quite reliably the same value o. = 6.753 as
was used before. This leads us to the approximate for-
mula analogous to Eq. (5.4),

By construction this expression gives the same critical
value o., = 6.753 and the boundary curve behaves as
U, 1.66o. —1.62 in the vicinity of the critical point.
The slope parameter differs by less than 2%. For large
n the discrepancy between Eqs. (5.3) and (5.4) equals
approximately 0.96/o. and consequently the relative dis-
crepancy is about 0.63/n & 0.63/o. , = 0.014. Thus, one
may use the formula (5.4) to approximate the bound-
ary curve within the bipolaron model of I in the physical
region n ) a, with the accuracy of about 1—2%.

U, (n) = 1.641o. —10.342
(5.6)

C. R,esults in 2D

The corresponding curve is plotted in Fig. 5 (solid line)
together with the boundary obtained from Eqs. (5.1) and
(5.2) (dashed line).

B. Fitted results in 3D

From the above we find a possibility to go beyond the
bipolaron model of I and to exploit results of other au-
thors. Rewrite Eq. (5.4) as follows:

To apply the present results to lower dimensions we
make use of the fact that Feynman-type approximations
satisfy a scaling law introduced by two of the present
authors and Wu. ' ' This law establishes links between
polaron characteristics in spaces of diferent dimensions.
In particular, (bi)polaron energy in 2D can be obtained
as

(5.5) @(D)( ) E( )
l

2 sD f 3vr

E4
(5.7)

Results for the critical value of the dielectric constants
were obtained by Mukhomorov (g = 0.107), Suprun

The equation for the critical values of o. in two dimensions
is readily obtained from Eq. (5.1),



15 014 M. A. SMONDYREV, J. T. DEVREESE, AND F. M. PEETERS

1 0 I I I I
j

I I I I j I I I I
j

1 I f l

2D
It was defined in I as the total mass of the two electrons
and the fictitious particles: mb; ——2(m, + M). In terms
of oscillator frequencies (2.6) it can be written as

0
K

6
(D

CL

PO

Oi
mb; = 2m

V
(6 1)

Inserting here the series (3.1) we arrive at the strong-
coupling expansion for the bipolaron effective mass:

I I I . I I I I I j I I i s j I I I

n, 3 5 6

Coupling constant n

{o)
mb —2mo' — 1 + —

2

+o(n ) (6 2)

FIG. 6. The stability region for the two-dimensional bipo-
larons (notations are the same as in Fig. 5).

The leading term follows from Eqs. (4.4a) and (4.8):

16o.'mj*„——2m — M(u) + O(n ),817t ~

2 3+ 12ln2 —2B(u)
37t

37' A(u) —1
(5.8)

6
u

M(u) = 16 1 ———— 2+—
64 8 64)

(6.3)

U, (o.) = 1.680n—2.183
(5.9)

The corresponding curve is plotted in Fig. 6 (solid line)
together with the curve of Eq. (5.8) (dashed line).

A detailed study of a bipolaron confined. to a one-
dimensional structure is given in Ref. 26. An analogous
strong-coupling analysis for 1D bipolarons can be found
in Ref. 27.

VI. EFFECTIVE MASS AND EXTENSION
OF THE BIPOLARON

Another important bipolaron characteristic is its effec-
tive mass mb, , which in8uences the bipolaron mobility.

with the same functions A(u) and B(u). The bound-
ary of the bipolaron formation region for the 2D case is
presented in Fig. 4 with the scales given at the top and
right side of the figure. The critical value of the electron-
phonon coupling constant is now given by o. = 2.866.{2D)

In the vicinity of this point U, 1.683o. —0.77 (cf. the
result U = 1.63o. —0.63 of I, where the same misprint
in the sign occurred as in the 3D case). Note that the
slope of the curves in 3D and 2D coincides because of the
scaling law.

The same scaling law can be applied to arrive at for-
mulas analogous to Eqs. (5.2) and (5.3). But the scaling
is not valid outsid. e the scope of the bipolaron model of I
(or any other model based on a path-integral approx-
imation with a quadratic trial action). Consequently,
to derive an approximate formula in 2D of the type
of Eq. (5.6) one can use again the known value for
rk = 0.158 (u „= 1.680) of Ref. 16 and the quoted
value n, = 2.866 (2.9 in I and 2 in Ref. 23). The result
obtained is then as follows:

which compares to the strong-coupling expansion of the
single polaron effective mass,

16m'm*, =m +O(o. ),81~2 (6.4)

taken at the same order of approximation. Thus,
mb,. /2m' j ——M(u) + O(1/n2). At the critical point
u = u;„= v 2 we obtain M(u, „) —2.1703 while
at maximal repulsion u = u = 1.53477 we have
M(u „) —1.7177. Within the model of I the bipo-
laron effective mass is approximately twice as large as
the total mass of two free polarons. It decreases with
repulsion and exhibits a discontinuity when a bipolaron
state decays into two polaron states. The same conclu-
sion is expected in 2D. The single polaron effective mass
can be obtained by scaling from 3D as was derived in

*{2D)Ref. 28: m; = n a /16. As shown in I the same scal-

ing rnj2Dj(n) —mjsDj(3vro. /4) is valid for the bipolaron
mass so their ratio will be the same as in 3D.

In the absence of the Coulomb repulsion the bipolaron
effective mass is 32 times larger than the single polaron
effective mass: M(0) = 16. The explanation follows from
arguments given in Sec. IV while discussing the same
limit for the bipolaron energy where it was found. that
cr ~ 2~2n when one goes from the polaron to the rele-
vant bipolaron quantity. Therefore the "normal polaron"
effective mass m*

&
mo. should be scaled to obtain

the "effective polaron" (bipolaron) mass in the strong-
coupling limit as follows: mb,. (m/2)(2v 2n)4
32mo.

Because the leading term of the strong-coupling ex-
pansion for the bipolaron effective mass varies not so
crucially, we may use again a linear Gt to simplify the
formulas,
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mb,. = mn (0.2994 —0.1503u),

mb,. = mn (9.2283 —4.6321u). (6.5)

reaches the value B(u „) = 1.204. In 2D this ratio
remains the same as in 3D.

Note that to calculate the 6rst correction to the bipolaron
effective mass (6.5) one needs variational parameters ~~( )

and mq which were not determined while considering the
first two terms of the strong-coupling expansion for the
bipolaron energy.

Another characteristic of interest is the mean-square
separation rq2 between the electrons which was shown in
I to be given by rzz ——/2dD&2(0), where d is the num-
ber of spatial dimensions. Using Eq. (2.10) and insert-
ing there the series (3.1) we arrive at the leading term
of the strong-coupling expansion for the inverse mean-
square separation

VII. CONCLUSIONS

We analyzed. the strong-coupling limit for the bipo-
laron model introduced by Verbist, Peeters, and Devreese
in paper I, which is based on Feynman path integrals.
Leading terms of the strong-coupling asymptotic expan-
sions are calculated for the bipolaron ground-state en-
ergy, efFective mass, and mean-square separation. We
presented also simple 6tting formulas approximating the
boundary between the bipolaron and the polaron regions.
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