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Excitations, order parameters, and phase diagram of solid deuterium at megahar pressures
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In recent infrared experiments on solid ortho-deuterium a number of IR-active modes were observed
in the various high-pressure phases. We have performed a group-theoretical analysis of IR and Raman
activity for the vibrational modes of proposed space groups to aid in determining the structures of the
various phases. From a comparison of the theoretical analysis with experimental results, candidate
structures for the various phases are selected. The best candidates have underlying molecular centers
which form hcp lattices in both the broken-symmetry phase (BSP) and the deuterium-A (D-A) phases;
the molecules in each phase are orientationally ordered along crystalline directions not coinciding with
the c axis. The hcp-c structure has been excluded. We have also analyzed the mode frequencies and in-

tegrated intensities in these phases to determine the order parameters for the structures. From the tem-
perature dependence of the order parameters a determination of the order of the phase transition can be
made. The D-A phase does not end in a critical point, but rather a triple point with a phase line separat-
ing the low pressure phase and the D-A phase, above the triple point. Our results are consistent with a
first-order phase transition in crossing from the BSP to the D-A phase and a second-order phase transi-
tion from the D-A phase to the low pressure orientationally disordered phase.

I. INTRODUCTION

Solid hydrogen and deuterium have fascinating P-T
phase diagrams at high pressures as shown in Fig. 1(a) for
deuterium (Ref. 1, Cui, Chen, Jeon, and Silvera, hereafter
referred to as CCJS) and in Fig. 1(b) for hydrogen and its
isotopes. At low pressure and low temperature both
para-Hz and ortho-D2 form an hcp lattice with molecules
in spherically symmetric states. We shall call this the
low-pressure (LP) phase. At a T=O K threshold pressure
of about 28 GPa for deuterium, and 110 GPa for hydro-
gen the ground-state symmetry of the low-pressure
phase breaks and molecules become orientationally or-
dered in a phase called the broken-symmetry phase
(BSP). The BSP was first predicted to be of Pa3 symme-
try, " and later was proposed for H2 to have an hcp-
ordered structure. Experimentally, the structure of the
BSP is undetermined. At higher pressure, about 150
GPa, hydrogen and deuterium transform into a new
phase named the hydrogen-A (H-A) or deuterium-A (D-
A) phase, respectively. The H-A and D-A phases have
been suspected to be the molecular metallic phases, and
have attracted much attention both theoretically and ex-
perimentally, which will be discussed below. However,
little is known of the microscopic details of this phase; at
present the conducting nature of the phase is unknown.
It was shown by Lorenzana, Silvera, and Goettel that
the H-A phase has orientational order. In this article we
use a group-theoretical analysis, along with recent spec-
troscopic observations to further elucidate the nature and
structure of the BSP and D-A phases.

Recent infrared (IR) absorption measurements on solid
deuterium by CCJS have shown that the D-A phase line
does not terminate at a critical point; a triple point has
been observed where the BSP phase line meets the D-A
phase line. Above this triple point the D-A phase line

continues, but the order of the transition was unknown.
Below the triple point the phase transition from the BSP
to the D-A phase is a first-order transition characterized
by a frequency discontinuity in both the IR and Raman
vibrons. The discontinuity in the Raman vibron was used
to identify the H-A phase line and the disappearance of
the discontinuity was interpreted as evidence for a criti-
cal point in hydrogen. ' Silvera pointed out that the ex-
istence of the critical point implied that the H-A phase
has the same symmetry as the LP phase, i.e., hcp symme-
try. Recently, Zallen, Martin, and Natoli observed that
the IR absorption identified by HanAand, Hemley, and
Mao' in H2 as a vibron is not allowed in hcp symmetry.
However, as pointed out by CCJS such arguments cannot
be used for the spectra in the impure (mixed ortho para-
H2) crystals studied by Hanfland, Hemley, and Mao. We
have studied the IR spectra in pure ortho-D2 crystals and
find the D-A phase to be incompatible with hcp symme-
try.

We believe that the reported critical point in H2 is ac-
tually a triple point as we observed in D2. In CCJS and
in this article it is shown that the disappearance of the
vibron frequency discontinuity is insufficient evidence to
identify a critical point. The disappearance of the discon-
tinuity occurs for both hydrogen and deuterium, and was
the basis for the identification of a critical point. Howev-
er, more extensive data, i.e., IR spectra, exist only for
deuterium. Measurement of IR spectra in hydrogen
should also confirm that the reported critical point is ac-
tually a triple point.

The nature of the phase transition from the LP phase
to the D-A phase above the triple point is not understood
at present. Here, we report results of IR and Raman
measurements which suggest that the D-A phase line
above the triple point may be a second-order phase tran-
sition. We perform a group-theoretical analysis of the IR
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nuclear-spin states (i =1/2 for hydrogen and i= 1 for
deuterium). Under particle permutation these are re-
quired to combine with the rotational wave functions to
have the proper symmetry. For low pressure the rota-
tional wave functions are very well approximated by the
spherical harmonics with the free rotor rotational quan-
turn numbers J, rn. Para hyd-rogen (ortho deuterium) cor-
responds to I =i&+i2=0, J even (I =0,2, J even),
whereas ortho-hydrogen (para-deuterium) corresponds to
I= 1, J odd (I = 1, J odd). At high pressure J is no
longer a good quantum number and the rotational wave
functions must be described by even and odd functions
which are not spherical harmonics. Conversion to equi-
librium mixtures is quite slow and has been studied exten-
sively at low pressure. " At high pressure there have
been no quantitative studies of the conversion rates. Sil-
vera and Wijngaarden and Lorenzana, Silvera, and Goet-
tel have observed the development of sharp rotational
spectra as mixed ortho-para samples convert to equilibri-
um at low temperature, which is attributable to ortho-
para conversion. The conversion rate is much faster at
high pressure than at low pressure. In the current high-
pressure work, samples were allowed a minimum of 24 h
to convert to equilibrium.

,
'Pa30'

0 100 200
II. THE PHASE DIAGRAM OF OR THO-DEUTERIUM

Pressure (GPa}

FIG. 1. (a) Various phases of high-pressure solid deuterium
identified by IR absorption in this work. Mixed crystals at a
given pressure have o-p ratios corresponding to the equilibrium
value at liquid nitrogen temperature. Raman spectra are also
used to determine the D-A phase line, given by the triangle and
square. (b) The I'-T phase diagram of hydrogen and isotopes.
Dotted lines indicate expected behavior. The asterisk with a
question mark at the end of H-A phase hne is the critical point
proposed by earlier work (Refs. 6 and 7) based on the disappear-
ance of the discontinuity in the Raman vibron frequencies, as
discussed in the text.

Based on IR vibron spectra, the phase diagram of
ortho-D2 is divided into three regions, as shown in Fig.
1(a). LP is the low-pressure insulating phase with hcp
symmetry. In this phase the molecules are in spherically
symmetric states (for J=O molecules) or disordered states
(for mixed ortho para cryst-als). Pure ortho Hz or pa-ra-D2
orders into the Pa3 structure at low pressures, shown in
Fig. 1(b). A group-theoretical analysis has shown that
the IR vibron is not an allowed transition for hcp symme-
try' and this has been confirmed in our experiment with
pure ortho-D2. In the BSP phase three distinct IR vib-
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and Raman activity of vibrons and phonons for various
structures which have been considered for the high-
pressure phases of hydrogen. From a comparison of the
theoretical analysis with experimental results, candidate
structures for the BSP and D-A phases are selected.
Based on the selected structures of the various phases we
analyze the vibron excitation energies in terms of the in-
tramolecular interaction and the isotropic and anisotrop-
ic intermolecular interactions. Taking the dominant an-
isotropic intermolecular interaction to transform as the
electric quadrupole-quadrupole interaction (EQQ), we
show that the vibron excitation energies can be used to
directly measure the orientational order parameters in
both the A and BSP phases.

The hydrogens have two species, resulting in profound-
ly difterent properties in the solid. The ortho-para identi-
ties of hydrogen and deuterium are due to the identical
particle symmetry of the nuclei. " The most fundamental
quantum numbers for identifying the species are the
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FIG. 2. Pressure dependence of IR vibrons peak frequencies
in the various phases of ortho-Dz. We believe that the peak
represented by the open triangles actually represents vibron v2
and v3. These peaks were unresolved in run 2 with a thin sam-
ple. The solid lines are guides to the eye.
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rons are observed. The pressure dependence of their fre-
quencies is shown in Fig. 2. The D-A phase is character-
ized by a single intense IR vibron whose frequency is
about 60 cm ' lower than the vibron of the highest ener-
gy in the BSP at the onset pressure of about 150 GPa.
The intensity of the D-A vibron absorption line grows
rapidly with increasing pressure.

The phase lines are determined by observing changes in
the IR spectra from one phase to the other. The Raman
spectra are also used to determine the D-A phase transi-
tion and the results are shown in Fig. 1(a). At 77 K this
transition pressure appears to be about 15 GPa higher
than that determined by IR spectra. This pressure
difference may be attributable to pressure gradients in the
sample, in combination with a difference in relative sensi-
tivity of the IR and Raman measurement techniques.
Since the D-A phase line is similar to the H-A phase of
hydrogen, it is reasonable to assume that the as yet un-
determined nature of these phases is the same for the two
isotopes.

III. THEORETICAL ANALYSIS

In this section we discuss the relevant theoretical as-
pects in analyzing our Raman and IR data. We first car-
ry out the group-theoretical analysis of IR and Raman
activity for vibrational modes of various structures which
have been proposed for the high-pressure phases. Then
we analyze the vibron excitation energies based on the
structures selected from the group-theoretical analysis.
The vibrational energies depend on both the intra- and
intermolecular interactions. In hydrogen the intramolec-
ular interaction is much stronger than the intermolecular
interactions and dominates the energy. Finally, we dis-
cuss order parameters which characterize the molecular
orientational ordering in the various high-pressure
phases. The long-range orientational order parameter is
defined such that it is nonzero in the ordered phases and
becomes zero in the disordered phase. If there is a
discontinuity in the order parameter at the transition
from an ordered phase to a disordered phase, the transi-
tion is first order, whereas a continuous change of the or-
der parameter to zero implies that the transition is
second order.

A. Group-theoretical analysis

Hydrogen and deuterium have only one electron per
atom, thus it is very diScult to study their high-pressure
phases by x-ray diffraction due to the small scattering
strength. The difFiculties are enhanced at megabar pres-
sures due to the smaH sample size and the problems in
producing single crystals. Up to now the structures of
the various high-pressure phases are undetermined. On
the other hand, group-theoretical analysis of IR and Ra-
man activity of various vibrational modes can provide a
powerful tool to determine the possible structures for the
high-pressure phases of hydrogen and deuterium.

It is useful to first review the theoretical pictures of the
high-pressure phases. Electronic band-structure calcula-
tions have been used to predict stable high-pressure
structures of solid hydrogen and metallization pressures.

Earlier work by Ramaker, Kumar. , and Harris, ' as well
as Friedli and Ashcroft, ' predicted that hydrogen in the
Pa3 structure would become a metal in the region of a
few hundred GPa. Later Barbee et al. ' showed that a
much lower energy high-pressure structure is hcp-c with
a metallization pressure of 60 GPa. In the hcp-c struc-
ture the molecular axes are oriented along the c axis of
the hcp lattice. However, in all of these studies the
theoretical method underestimates the metaHization pres-
sure. Garcia et al. ' used a modified approach and.
showed that the hcp-c would metallize at 180 GPa.
Then, Kaxiras, Broughton, and Hemley' and Kaxiras
and Broughton' showed that there are still lower energy
structures on the hcp lattice with molecules rotated away
from the c axis. These lower symmetry structures have
wider energy gaps and thus higher metallization pres-
sures. Recently Nagara and Nakamura' enlarged the
basis of the hcp lattice to four molecules/unit cell and
found a still lower energy space group, Pca2, . This struc-
ture is stable until about 300 GPa; above this pressure the
rutile structure becomes more stable. However, Surh,
Barbee, and Mailhiot considered the effect of vibronic
zero-point motion on the Pca 2& structure and found that
the hcp-c structure becomes the ground state for the
insulator-metal transition. Edwards and Ashcroft ' pro-
posed a class of layered structures for high-density hydro-
gen. Later, we shaH analyze one of these structures with
the Cmca space group (four rnolecules/unit cell). It has
also been suggested that the space group P63/m could
be a stable high-pressure structure. This space group has
eight molecules/unit ceH and was earlier considered as
the stable structure for the low-temperature ordered
phase of ortho-H2 or para-D2 at low pressure. The most
recent study of crystal structures at high pressure is a
quantum Monte Carlo investigation by Natoli, Martin,
and Ceperley which includes the zero-point energy
directly. They limited their study to hcp lattices with
two molecules per unit cell and found the insulating
Pmc2, structure (to arrive at this structure, in Fig. 3 of
this paper invert the dashed arrows of the P2/m struc-
ture), proposed by Kaxiras and Broughton, to have the
lowest energy. [To expedite our analyses, we have
identified the space groups of the structures shown by
Kaxiras and Broughton. Their Fig. 3(b) is space group
P2/m and Fig. 3(e) is Pmc2, . ]

For the BSP, earlier work by Raich and Etters pre-
dicted the Pa 3 structure to be the lowest energy structure
for pure EQQ interactions. Calculations by Runge
et al. ' for a more realistic intermolecular potential pre-
dicted that with increasing pressure, ortho-D2 first orders
into the Pa3 structure and at higher pressure it trans-
forms to an hcp-ordered structure, while para-Hz orders
directly into an hcp-ordered structure at high pressure.
ExperimentaHy, the structure of the BSP is undeter-
mined.

In Fig. 3 we show the detailed structures of the Pca2&
space group proposed by Nagara and Nakamura and
the P2/m space group proposed by Kaxiras and
Broughton. ' For comparison we also show the hcp
space group for the LP insulating phase. For all of the
three space groups, the molecular centers are on an hcp
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Pca2~

CP

FIG. 3. Illustration of structures: P2/m, Pca2&, and hcp.
Solid lines represent molecules lying in a c plane and broken
ones in the next c plane. Arrows indicate the direction of
molecular axes whose direction cosines with the z axis are posi-
tive and they do not imply the directions of dipoles. In the
P2/m structure all molecules have the same orientation with
(8,$)=(60,30') (Ref. 18). In the Pca2, structure, molecules
take one of the four orientations. The polar and azimuthal an-

gles of the molecular orientation at the origin are
(9,$) =(59.3,37.6'), in accordance with Ref. 19. In the hcp-c
structure, the molecular orientation is perpendicular to the
plane.

lattice. In the P2/I structure the molecules are rotated
away from the c axis of the hcp lattice by a polar angle
m/3. In the I'ca2, structure, the rnolecules orient in one
of four di6'erent directions, and their polar and azimuthal
angles are given in Fig. 3. The P2/m and the hcp struc-
tures have two molecules per unit cell; the Pca2, struc-
ture has four molecules per unit cell.

To aid in determining the structures of the various
high-pressure phases we have carried out a group-
theoretical analysis of IR and Raman activity of vibra-
tional modes for the various structures proposed for the
high-pressure phases. The results of this analysis, the
number of allowed vibrational modes and their irreduc-
ible representations are given in Table I. Note that for
space groups with inversion symmetry, Raman-active
modes are those with even irreducible representations
which are denoted by the subscript g, and IR active
modes are those with odd irreducible representations
which are denoted by the subscript u. For space groups
without inversion symmetry, modes can be Raman and
IR active simultaneously. The results in Table I are valid
for solids with translational symmetry and thus are in
principle applicable only to pure o-D~ (p-H2) crystals.
The experimentally observed number of IR and Raman
modes are shown for ortho-02 at the bottom of the table.
Note that in earlier work at low pressure an IR vibron

TABLE I. The group theoretically allowed IR and Raman modes corresponding to proposed high-
pressure space groups of the solid hydrogens. The numbers in brackets are the total number of distinct
allowed modes. Asterisks indicate that the irreducible representation 8& (or B,g) is interchangeable
with 82 (or Bzg ) due to the definition of the 180 rotation axes in the corresponding space groups. The
references in column 6 are the theoretical work in which the various structures were proposed. The
number of observed IR and Raman vibrons given at the bottom are from the present work for ortho-D2.
The results for the Raman phonons are from the literature for both D2 and H2. Measurements in Ref.
37 were made in mixed crystals.

Space
group

P63/mmc
hcp-c

Pa3
P42/mnm

rutile
Pca2&

P2i /c

Pmc2,

P2/m

P63/m

LP
BSP
D-A

IR vibron

(o)

(0)
A, +8(+82

(3)
A„+8„

(2)
A, +8*,

(2)
8„
(1)

(0)
Ei„
(1)

P8

3'
18

Raman vibron IR phonon Raman phonon

A)g
(1) (0)

A +Tg 2T.
(2) (2) (o)

A,g+8 )*

(2) (1) (o)
A

&
+ A2+8] +82, 2A ) +28) +282 2A

&
+3A2+28& +282

(4) (6) (9)
Ag +Bg 2A„+8„ 3Ag+38g

(2) (3) (6)

Ate+Bi A, +8,* A)+ A2+8)
(2) (2) (3)
Ag 2Ag+Bg
(1) (o) (3)

A )g+83g Btu +B2u
(2) (2) (o)

2Ag +E2g A „+2E
&„2Ag +E&g +3E2g

(3) (3) (6)

Experimental observations for ortho-D2
1' 1b

18

18
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was observed for hcp symmetry, but it was due to
impurity-induced IR activity. In that work the intensi-
ty of the IR mode was studied as a function of ortho-para
concentration. This is an excellent example of why spec-
tra from mixed crystals must be used with great caution
in e6orts to determine lattice symmetry.

In the LP phase, we have observed one Raman vibron
and no measurable IR vibron. One phonon mode has
been observed in the LP phase. This is consistent
with the LP phase having hcp symmetry, a structure
which has been determined by x-ray diffraction. In the
BSP, three vibrons and one Raman vibron are observed;
this rules out the earlier proposal of a Pa3 structure,
since the Pa3 has no IR activity. The Pca2j has three IR
vibrons in agreement with experiment, but four Raman
vibrons and nine Raman phonons are expected. Since the
Pca2& structure does not have inversion symmetry, three
of the four vibrons are Raman and IR active simultane-
ously. Their irreducible representations are A1, Bl, and
B2 are shown in Table I. The fourth vibron with irreduc-
ible representation A2 is Raman active only. Experimen-
tally, we observed three IR vibrons, but only one Raman
vibron. The frequency of this Raman vibron is about 100
cm ' lower than the IR vibrons at a pressure of 50 GPa.
Experimentally, three Raman vibrons with the same fre-
quencies as the IR vibrons are not observed. This seems
to rule out the space group Pca2, as the structure of the
BSP. Qn the other hand it is possible that the (unob-
served) vibrons may have very low Raman intensity and
may not have been observed due to signal-to-noise con-
siderations, as our Raman signal-to-noise ratio was quite
low. It would be useful to calculate the intensities of all
of these modes. Since Pa3 symmetry does not allow IR
vibron activity which is experimentally observed, we can
rigorously rule out this structure for the BSP.

Consider now the D-A phase, where a single IR vibron
and one Raman vibron have been observed. The hcp,
P42/mnm, and Pa3 structures are eliminated since they
have no IR allowed vibron. The Cmca structure is also
eliminated for the same reason. The P6&/m structure has
one distinct IR active vibron, however, the number of al-
lowed Raman vibrons do not match with experiment.
For Pmc2& we expect two IR and two Raman vibrons, as
well as three Raman phonons, in disagreement with ex-
periment. The best candidate is the P2/m structure pro-
posed by Kaxiras and Broughton. '

In the rest of the paper we shall discuss our data in
terms of the Pca2, and P2/m structures for the BSP and
the D-A phase, respectively. This is done to enable some
detailed analysis. One should not take this as a statement
that we have determined them to be the structures of
these phases, rather that they are the proposed structures
most consistent with experimental data.

B. Vibron energies for various phases

In the analysis of the vibron excitation energies we fol-
low the theory developed by Van Kranendonk for vib-
ron frequencies in solid hydrogen. In this theory the vi-
brational potential in a lattice is taken as a sum over the
single molecule potentials and a sum over the pair poten-

tials, which can be separated into isotropic and aniso-
tropic parts:

V„,= g V, +1/2 g (V; +V. ,.
". ) .i'

Here, V; is the intramolecular potential; V; and V;. are
the isotropic and anisotropic intermolecular potentials,
respectively. If only the nearest-neighbor (NN) interac-
tions are taken into account, for the hcp structure the
two vibrons at k =0 have energies of v+ =v;„„,—3(s&+ez) and v =v;„„,—3(e& —e2), respectively.
Here, vj g g represents the intramolecular interaction en-
ergy arising from V; in Eq. (1), —e, /2 is the matrix ele-
ment of the intermolecular interaction between the vibra-
tional eigenstates of a pair of molecules within the same
plane, and —e2/2 is that of a pair of molecules in two
difFerent planes in an hcp lattice. For an ideal c/a ratio
of an hcp lattice [c/a =v'(8/3)], the in-plane and out-
of-plane intermolecular couplings are equal and the two
vibron energies reduce to v+=v;„„,—6c and v =v;„„,.
They correspond to the two molecules in each unit cell
vibrating in phase and out of phase, respectively. The
former vibration is Raman active, but the latter is IR for-
bidden because in hcp symmetry the net dipole moment
induced in the lattice is zero. However, any equilibrium
molecular orientation away from the c axis will lower the
hcp symmetry and a net dipole moment will be induced.
As a result the IR vibron becomes allowed.

The phase transition from an orientationally ordered
structure to a disordered structure can be described by an
order parameter. The order parameter provides valuable
information for understanding the nature of an order-
disordered phase transition. Vibron excitation energies
are sensitive to the orientational ordering, and hence can
be related to the order parameter. In the following we
develop a model which analyzes the vibron excitation en-
ergies in the P2/m ad Pca2& structures. This model al-
lows us to calculate the order parameter from the vibron
excitation energies directly and shows how to extract the
information from experimental data.

Let us first consider the P2/m structures shown in Fig.
3. Like the hcp space group, this space group also has
two molecules in each unit cell. As a consequence there
are two vibrational modes, v+ with the two molecules vi-
brating in phase, and v with the two molecules vibrat-
ing out of phase. As discussed, the intermolecular cou-
plings in the P2/m symmetry can be split into isotropic
and anisotropic contributions. The isotropic interaction
between two molecules depends only on the separation of
the molecular centers. The anisotropic part can be ex-
panded in spherical harmonics, YzM. It has been shown
that at low pressure the anisotropic interaction is dom-
inated by the EQQ interaction. " This interaction is re-
sponsible for the ordered low-pressure and low-
temperature structure of solid molecular hydrogen, the
Pa3 lattice. "Recently, Runge et al. , as well as Kaxiras
and Guo ' using local-density approximation electronic-
structure calculations, have analyzed the interactions at
high density in terms of e8'ective pair interactions. Kax-
iras and Guo found a crystal-field-like term which favors
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the hexagonal structure and pair interactions in which
the most important term transforms as the EQQ interac-
tion. Hence, in the analysis of vibron excitation energies
in the high-pressure phases we use an efFective EQQ po-
tential. The EQQ-like interaction can be expressed as

V, = V(R ) g C (224;MN) Y2M(Q, ) Y~iv(QJ ) Y4 M+lv(Q J' )

M, X

where V(R) is the radial dependence, C(224;MN) is a
Clebsch-Gordon coeKcient, and Q; = (8;,P; ), QJ and Q; ~.

specify, respectively, the orientation of the molecular
axes and vector connecting the molecular centers with
respect to the crystalline frame. The energy with which a
central molecule interacts with its neighbors can be cal-
culated as a function of its orientation. All molecules
except the central one are assumed fixed in the equilibri-
um position. In the calculation we also assume that the
orientational distribution of the center molecule is axially
symmetric. This simplifies the calculation because we
can transform the pair interaction to a coordinate system
in which the z axis lies along the equilibrium orientation.
Then we average the interaction over the angles in the
plane perpendicular to the z axis. If we consider the NN
interactions, we find that the orientationally dependent
intermolecular interaction for a central molecule in the
P2/I structure is

V =CY20(8) (2b)

In this result 0 is the polar angle by which the molecular
axis deviates from the equilibrium orientation of the
P2 jm structure. C is a function of the molecular param-
eters and the lattice constants, hence for a given pressure
it is a constant. The anisotropic interaction potential in
Eq. (1) can now be replaced by Eq. (2b). Following the
Van Kranendonk theory of the vibron frequency in solid
hydrogen, the vibron excitation energies at k =0 are then
the matrix elements of the vibrational potential of Eq. (1)
between the vibrational eigenstates in the solid. The two
vibron peak energies of the P2/m structure are expressed
as

v+ =vi„„,—3(e, +e2) —(4m/5)'~26, ( Y20(8) ),
=v;„„,—3(s, —ez) —(4m/5)'~ 5( Y20(8)) .

(3a)

(3b)

Here v;„„, is the intramolecular vibrational energy; c,
&

and E2 aI c thc isotI'oplc mtcrmolcculal intcI'actions be-
tween the molecules in the same plane and in difFcrent
planes, respectively. 6 and 5 are functions of the molecu-
lar parameters and the lattice constants. The last terms
in the above equations are the anisotropic interactions
and depend on molecular orientations and ( Y2O(8) ) is a
thermal average of the second-order spherical harmonic.
When the molecules are disordered, (Y20(8)) is zero;
this corresponds to the disordered LP phase. %Then the
molecules are in the perfect alignment of the I'2/m struc-
ture, (Y2O(8)) is (5/4m. )' . Hence, ( Y2O(8)) can be
used as an order parameter to describe orientational or-
dering. The order parameter normalized to one can be
defined as g=(4m/5)'~ ( Yzo(8) ).

The frequency scaling parameters b, and 5 in Eqs. (3)
depend on pressure. In general they also depend on tem-
perature, but in the temperature range we have studied
here this can be ignored. For the same reason the tem-
perature dependence of the v;„„„c., and Ez can be
neglected. Hence, for a given pressure these parameters
are the same in both hcp and P2/m structures and the
vibron energies in Eqs. (3) can be rewritten as

v+(P, T) =v+d;, (P) bg-;

v (P, T)=v d;,(P)—5g,

(4a)

(4b)

vl vintra (sl+2e2+s3+2E4) ~

vz vinrra (El+2E2

v3=v; r (El 2F2+E3 2E4)

v4=v;nr« —(sl —2e2 —s&+2c4) .

(5a)

(5b)

(5c)

All of the four intermolecular interactions can be dissoci-
ated into isotropic and anisotropic contributions. Fol-
lowing the analysis in the proceeding section for the
P2/m structure, we can rewrite the above equations as

v, (P, T) =v+d;, (P) brl, —

v2(P, T)=v s;,(P) —5,g,
v3(P, T)=v d;,(P)—5~g,

v4(P, T) =v d;,(P) —53g .

(6a)

(6b)

(6c)

(6d)

Here v+d;, and v d;, are the vibron energies of the disor-
dered LP phase, 6 and 5;, (i=1,2,3) scale the relative
shift of the BSP vibrons to the LP vibrons in the disor-
dered phase.

C. Landau theory of second-order
phase transitions

Group-theoretical methods can be used to describe
phase transitions in crystals, according to Landau

where v+d;, and v d;, are the vibron energies of the disor-
dered Lp phase. The significance of these results is that
the vibron excitation energies of the ordered phase are
direct measures of the order parameter.

Now let us analyze the vibron excitation energies in the
Pca2& structure where the molecules take one of the four
orientations shown in Fig. 3. As a consequence, the unit
cell in this structure includes four molecules. This lower-
ing in symmetry splits the two vibrons v+ and v in the
hcp or the P2!m structures into four modes. We consid-
er only the nearest-neighbor interaction and use E& to de-
scribe the interaction between two molecules with the
same orientation in the same plane and use c2 to describe
the interaction between the two molecules with difFerent
orientations but in the same plane. The interactions be-
tween molecules in two different planes are described by
63 and c4, respectively. Solving the dynamic equations
for the four vibrons we get the energies of the vibrons in
terms of the intramolecular interaction and the four in-
termolecular interactions,
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theory. In this theory, a transition is described by an
order parameter g. The components of the order param-
eter g transform like basis functions of an irreducible rep-
resentation of the space group of the higher symmetry
phase. Near the transition, the free energy of the crystal
is expanded about g=O. The space-group symmetry of
the crystal requires that only invariant polynomials in
this expansion can contribute to the free energy of the
crystal. The invariant terms in this expansion determine
the nature of the phase transition. If the transition is
second order, third degree terms of the form g, g qI, are
not allowed to appear in the free-energy expansion. This
condition is satisfied if the triplet direct product of the ir-
reducible representation formed by the components of
the order parameter g does not contain the identity rep-
resentation.

The methods have been used by Cullen et al. in un-
derstanding the phase transition of o-H2 from the ordered
low-temperature phase to the disordered high-
temperature phase at ambient pressure. Taking the Pa3'
structure as the ordered phase and the cubic structure as
the disordered phase they have shown that the orienta-
tional phase transition from the ordered phase to the
disordered phase can not be second order. Considering,
in our case, the P2lm structure as the ordered phase and
the hcp structure as the disordered high-symmetry phase
and taking ( Y2p(el ) as the order parameter for the
I'2/m space group we have arrived at the conclusion that
the transition from the I'2/I space group to the hcp
space group cannot be a second-order transition. De-
tailed discussion is given in the Appendix.

IV. EXPERIMENTAL RESULTS

The experimental setup and procedure has been de-
scribed in detail in our recent report on the megabar
pressure triple point in solid deuterium. Here the pres-
sure range has been extended to 2.1 Mbar. In the mea-
surements of both the BSP and the D-A phase lines, no
thermal hysteresis has been observed. Measurements
have been made with increasing pressure, because de-
creasing pressures in the megabar pressure regime can
lead to failure of the diamond anvils.

A. 0-A phase

In order to determine the nature of the transition
above the triple point, we have measured the temperature
dependence of vibron peak frequencies for both the IR
and Raman vibrons, as well as the integrated intensity of
the IR vibron. The results are shown in Fig. 4(a) for the
Raman vibron frequency and in Fig. 5 for the IR vibron
integrated intensity and frequency. For comparison we
show the temperature dependence of the H-A Raman
vibron frequency at a pressure below the triple point in
Fig. 4(b) which clearly shows a discontinuity in the vib-
ron frequency. Above the triple point, going from the
D-A phase to the LP phase at a constant pressure, the IR
vibron integrated intensity gradually decreases to zero.
Consistent with the IR vibron integrated intensity, the
Raman vibron frequency also continuously changes from
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FIG. 4. Raman vibron frequency as a function of tempera-
ture (a} for deuterium above the triple point in this work, (b) for
hydrogen below the triple point at P=162 CiPa by Lorenzana,
Silvera, and Goettel (Ref. 7). The pressure in (a) was 181 CzPa at
liquid-helium temperature, however, the pressure drifted to 186
CxPa after the temperature cycle of the measurement. The solid
line in (a) is a guide to the eye. The solid line in (b) is a comput-
er fitted model for correcting effects due to a pressure distribu-
tion (Ref. 7). As discussed in Ref. 7, due to a pressure gradient
the LP and the H-A phases coexisted near the H-A phase line.
The model with a linear pressure gradient in a sample having a
sharply defined transition pressure was used to correct for the
distortion.

the low-temperature value in phase D-A to the high-
temperature value in phase LP. No discontinuity in the
vibron peak frequency is found without our spectral reso-
lution of about 5 cm . However, there is a discontinuity
in the first derivative of the vibron peak frequency, which
is indicated by the kink in Fig. 4(a). The transition tem-
perature determined by the kink is consistent with that
determined by the IR vibron integrated intensity. This
result means that there is a phase transition even though
the discontinuity in the vibron frequency has disap-
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FIG. 5. Temperature dependence of the IR vibron frequency
and integrated intensity in the D-A phase at P= 181 GPa.

peared. This experimental evidence also indicates that
the previously reported critical point in hydrogen deter-
mined by the disappearance of the discontinuity of Ra-
man vibron frequency ' is insufhcient evidence for such a
conclusion. We have shown earlier in the analysis of vib-
ron energies, that vibron frequencies can be used as direct
measures of the order parameter of the D-A phase.
Hence the kink in Fig. 4(a) indicates a second-order
phase transition. The integrated intensity of the IR
vibron is a direct measure of the order parameter and its
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FIG. 6. Normalized order parameter in the D-A phase based
on Eqs. (4) and the Raman vibron frequency in Fig. 4(a) and the
IR vibron frequency and integrated intensity in Fig. 5. The
temperature is normalized to the transition temperature T, .
For the IR frequency data and the corresponding integrated in-
tensity at P= 181 CxPa, T, = 198 K is used to normalize the tem-
perature. This number was obtained by extrapolating the in-
tegrated intensity in Fig. 5 to zero. For the Raman data at
P = 181—186 GPa, T, =210 K, obtained from Fig. 4(a), is used.

B. BSP phase

The phase transition from the BSP phase to the LP
phase shows a discontinuity in Raman vibron frequency.
This discontinuity is a couple of cm in D2 at the transi-
tion pressure, 28 GPa. In HD the discontinuity is about
6—7 cm ' at a pressure of 70 GPa, and in H2 this
discontinuity is about 15 cm ' at a pressure of about 110
GPa.

Our IR spectra in the BSP show three vibrons; the in-
tegrated intensity of IR vibron 1 and its frequency are
plotted in Fig. 7 as a function of temperature at P=143

3246 + I I
I

I I I I I I I
I

I I I I I I I
I

I I I I I I 1.2

3244
E

3242

0

3240

1.0

0.8

0.6

Q 4

0.2

3238 +« I i I I I I » I I « I

40 80 120
Temperature(K)

0.0

FIG. 7. Temperature dependence of the IR vibron 1 frequen-
cy and integrated intensity in the BSP phase at a pressure of 143
CiPa.

square root is proportional to the order parameter as
shown by Jochemsen, Berlinsky, and Silvera. The nor-
malized order parameter obtained from the integrated in-
tensity is given in Fig. 6. In Sec. III B we demonstrated
that vibron excitation energies are also direct measures of
the order parameter. Following the analysis we plot, in
Fig. 6, the normalized order parameter from data in Figs.
4(a) and 5 using Eqs. (4). Because the hcp symmetry of
the LP phase does not allow IR-active vibrons as dis-
cussed in Sec. III A, no IR vibron is observed in the LP
phase. In applying Eqs. (4) to extract the temperature
dependence of the order parameter, the value v d;,(P) is
obtained by extrapolating the low-temperature IR vibron
frequency to the transition temperature. The three sets
of order parameter data in Fig. 6 are in good agreement.

The fact that the experimental order parameter in Fig.
6 continuously changes from unity to zero indicates that
the transition from the D-A phase to the LP phase is a
second-order phase transition. As a caveat, we note that
pressure distribution within the sample can average out a
discontinuity in the integrated intensity and make it ap-
pear continuous. On the other hand a discontinuity in
frequency will not be smoothed out by pressure variations
and if it is larger than the experimental resolution it will
give a de6nitive answer. We observed no discontinuity in
the frequency.
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FIG. 8. Normalized order parameter in the BSP phase based

on Eqs. (6) and IR vibron frequency and integrated intensity
data in Fig. 7. The line is a guide to the eye.

GPa. The integrated intensity decreases with tempera-
ture and becomes zero in the LP phase. Like the D-A
vibron the BSP vibron also shifts to higher energy with
increasing temperature, but the shift from the low-
temperature value to the high-temperature value is only
several cm '. In contrast, a similar shift from the low-
ternperature value of the D-A vibron to the high-
temperature value is of order of 30 cm '. Applying Eqs.
(6) to the experimental data of vibron frequency in Fig. 7,
we obtain the normalized order parameter g in the BSP
phase, shown in Fig. 8. The normalized order parameter
obtained from the square root of the integrated intensity
of the vibron is also plotted in the same figure. In Fig. 9
we compare the temperature dependence of the order pa-
rameters between the BSP and D-A phases in which the
normalized order parameters for the D-A phase at the
two different pressures are given. From Fig. 9 it is clear
that the integrated intensity of the BSP vibron decreases
more sharply than that of the D-A vibron. One may ar-
gue that a larger pressure gradient in the D-A phase may
have smoothed out a sharp transition from the ordered
phase to the disordered phase. On the other hand we
found that there is no significant trend difference in the
experimental order parameters between pressures of 162
and 181 GPa of the D-A phase. This may indicate that
the difference in pressure gradients between two pressures
differing by 20 GPa is not significant. Hence, the
difference in the order parameters between the BSP phase
at a pressure of 143 GPa and the D-A phase at a pressure
of 162 GPa is unlikely to be due to the difference in the
pressure gradients at the two pressures.

C. Pressure dependence of' vibrons

Finally, we analyze the pressure dependence of the IR
vibron frequency and integrated intensity in the various
phases of ortho-D2. The results are shown in Fig. 2 for

FIG. 9. Comparison of the normalized order parameters at
pressures of 162 GPa and 181—186 GPa of the D-A phase and
143 GPa of BSP phase. The curve for the BSP phase is from
Fig. 8.

the peak frequencies and in Fig. 10 for integrated intensi-
ties. We observed three peaks in the thick sample (run 1);
the two weak peaks were barely resolved. In the thin
sample (run 2) the vibron lines were broadened, probab1y
due to more strain. We only observed two peaks in the
thin sample, the weaker peak presumably being two un-
resolved peaks, as we discussed in Ref. 1. We identify the

1000

E

100

10

0
0 1

0.01 t

I
Il

LP"

I I I I I I
I

I i I

o BSP v1, run1
BSP v3, run1

a BSP v2, run1
0 BSP v1, run2

BSP
i I I I I I I I I i I

i I I I
I

I
1 PP

o-D2
T=SK

80 5

x
60

2

40

0-A
I

I

I i i i i I I 20
50 100 150 200

Pressure(GPa)

FIG. 10. Pressure dependence of the integrated intensities of
the IR vibrons in the various phases of ortho-D2. We believe
that the peak represented by the open triangles actually
represents vibron v2 and v3. These peaks are unresolved in run
2 with a thin sample. The solid lines are guides to the eye. The
circle and square with crosses inside at 50 GPa represent the
numerical results of the integrated intensities of v1, v2, and v3

by artificially splitting the overlapped modes at this pressure.
Detailed discussion is given in the text. On the right hand axis
we plot the full width at half maximum (FWHM) of the D-A
vibron, given by the asterisks.
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three vibrons according to their relative intensities. Vib-
ron 1 (ul) has the largest integrated intensity as shown in
Fig. 10; Vibron 2 (u2) has the smallest integrated intensi-
ty and vibron 3 (u3) is a little bit stronger than u2. At
about 50 GPa the three vibrons mode frequencies cross,
as shown in Fig. 2. Since the three modes cannot be
separated at this pressure, the integrated intensity of the
peak is actually the sum of the three modes. We numeri-
cally split the peak based on the extrapolation of the in-
tegrated intensities of U1 and unresolved U3 and U2. The
numerical results are given by the circle and square with
crosses inside. The large deviation in the v1 frequency of
run 1 at 48 GPa in Fig. 2 is due to an experimental cali-
bration error in the vibron frequency. The integrated in-
tensities of the vibrons in the BSP phase show a very
small pressure dependence. In contrast, the D-A vibron
integrated intensity increases with pressure rapidly until
it is about two orders of magnitude stronger, within the
pressure range we studied. The D-A vibron broadens
rapidly with increasing pressure; the line width is also
plotted in Fig. 10. Due to a pressure distribution in the
sample the BSP and D-A vibrons coexist when the D-A
phase is first detected at around 150 GPa. The discon-
tinuity in the vibron frequency clearly indicates a first-
order phase transition from the BSP to the D-A phase.

The energy di6'erences between the IR and Raman vib-
rons at various phases are direct measurements of inter-
molecular interactions. This can be seen from Eqs.
(3)—(6). We have plotted these diff'erences from the ex-
perimental data, as shown in Fig. 11 for both the BSP
and D-A phases. Our results show discontinuities in
these difII'erences at the transition pressure from the BSP
to the D-A phase. In hydrogen, HanAand, Hemley, and
Mao' reported that the intermolecular interaction is
continuous in the transition from the BSP to the H-A
phase, based on their IR and Raman data at liquid-
nitrogen temperature and concluded that the discontinui-
ty in the Raman and IR vibrons at the transition pressure
from the BSP to the H-A phase is attributable to the in-

tramolecular interactions. We point out here that their
sample was a mixed ortho-para crystal so that in their
case there was no translational invariance and transitions
for all k were allowed. As a consequence, the IR vibron
peak frequency they measured is probably at the peak of
the density of states, whereas their conclusion was based
on theory of vibrons at the Brillouin-zone center. The
frequency difFerence between their IR and Raman vibron
peaks may not correspond to the intermolecular interac-
tion. A more detailed theory is required to draw con-
clusions concerning the continuity in the intermolecular
interactions in their case. Our results in Fig. 11 indicate
that the discontinuities (of order 100 cm ') in both IR
and Raman vibron frequencies in the transition from the
BSP to the D-A phase cannot be attributed solely to the
intramolecular interactions.

V. CONCLUSIONS

We have presented a detailed data analysis of IR and
Raman vibron excitations for both the BSP and the D-A
phase. To narrow down the possible structures of the
two phases, we have performed a group-theoretical
analysis of IR and Raman activity of various vibrational
modes for the theoretically proposed high-pressure
phases of the hydrogens. According to this analysis, pos-
sible candidate structures for the BSP and D-A phases
are Pca2, and P2/m, respectively. This result indicates
that the underlying molecular centers in both phases
form hcp lattices, but the molecules in each phase have
difFerent orientational ordering. Based on the above
structures we have analyzed the vibron energies in both
phases in terms of intramolecular and intermolecular in-
teractions and have shown how the frequencies can be
used as a direct measure of the order parameter. The ex-
perimentally observed temperature dependence of the IR
and Raman vibrons frequencies and integrated intensities
were used to determine order parameters in both phases.

From comparison of experimental observations to al-
lowed modes for the D-A phase, the Pa3 and hcp struc-
tures can be excluded. From this point of view P2/m
qualifies as a candidate structure. However, we have
used Landau theory to analyze the order of the phase
transition from P2/I to hcp for a single order parameter
and this is predicted to be first order, not second order, as
experimentally observed. Therefore P2/m can be exclud-
ed as a candidate structure for the D-A phase. For the
BSP phase, the proposed Pa3 structure has been exclud-
ed. For the model structure Pca2, the number of ob-
served IR modes agrees with predictions, but more Ra-
man modes are predicted than observed.

We have demonstrated that group-theoretical analysis
of IR and Raman-active modes is a powerful tool for
determining the structures of the high-pressure phases.
Future work in achieving high Raman signal-to-noise ra-
tio should be pursued to search for additional modes with
weak intensity. IR and Raman measurements of phonon
modes are also valuable. It wi11 also be helpful to theoret-
ically analyze the relative intensities of the vibrational
modes for various structures.
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APPENDIX

Landau theory states that a second-order phase transi-
tion from a low-symmetry space group to a high-
symmetry space group is driven by the order parameter
of the low-symmetry phase. The components of the or-
der parameter in the low-syrnrnetry phase transform like
basis functions of an irreducible representation of the
space group of the high-symmetry phase. The condition
for the second-order phase transition is that the triple
direct product of the irreducible representation formed
by the components of the order parameter does not con-

tain the identity representation.
In applying the Landau theory to the phase transition

from the I'2/m space group to the hcp space group, we
need to find out the components of the order parameter
in the P2/m space group. These components transform
like basis functions of an irreducible representation of the
hcp space group. The order parameter
rl=(4m/5)' ( Y20(8)) in the P2/m space group can be
represented by one quantity, 3g r, w—here g is the pro-
jection along the equilibrium molecular axis. Application
of the symmetry operations of the high-symmetry hcp
space group on 3g —r gives rise to the independent
components q; of the order parameter, which forms an
irreducible representation of the hcp space group. From
the obtained irreducible representation, we can calculate
the triple direct product. We find that this contains the
identity representation. Hence, the transition from the
P2/m space group to the hcp space group cannot be a
second-order transition.

L. Cui, N. H. Chen, S. J. Jeon, and I. F. Silvera, Phys. Rev.
Lett. 72, 3048 (1994).

~I. F. Silvera and R. J. Wijngaarden, Phys. Rev. Lett. 47, 39
(1981).

H. E. Lorenzana, I. F. Silvera, and K. A. Goettel, Phys. Rev.
Lett. 64, 1939 (1990).

4J. C. Raich and R. D. Etters, J. Low Temp. Phys. 22, 213
(1972).

5K. J. Runge, M. P. Surh, C. Mailhiot, and E. L. Pollock, Phys.
Rev. Lett. 69, 3527 (1992).

R. H. Hemley and H. K. Mao, Science 249, 391 (1990}.
7H. E. Lorenzana, I. F. Silvera, and K. A. Goettel, Phys. Rev.

Lett. 65, 1901 (1990).
8I. F. Silvera, Sov. J. Low Temp. Phys. 19, 628 (1993).
R. Zallen, R. N. Martin, and V. Natoli, Phys. Rev. B 49, 7032

(1994).
M. HanQand, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett.
70, 3760 (1993).
I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980).

2J. van Kranendonk, Can. J. Phys. 38, 240 (1960).
D. E. Ramaker, L. Kumar, and F. E. Harris, Phys. Rev. Lett.
34, 812 (1975).
C. Friedli and N. W. Ashcroft, Phys. Rev. B 16, 662 (1977).

~~T. W. Barbee III, A. Garcia, M. L. Cohen, and J. L. Martins,
Phys. Rev. Lett. 62, 1150 (1989).
A. Garcia, T. W. Barbee III, M. L. Cohen, and I. F. Silvera,
Europhys. Lett. 13, 355 (1990).

~7E. Kaxiras, J. Broughton, and R. J. Hemley, Phys. Rev. Lett.
67, 1138 (1991).
E. Kaxiras and J. Broughton, Europhys. Lett. 17, 151 (1992).

9H. Nagara and T. Nakamura, Phys. Rev. Lett. 68, 2468 (1992).
0M. P. Surh, T. W. Barbee, and C. Mailhiot, Phys. Rev. Lett.

70, 4090 (1993).
'B. Edwards and N. W. Ashcroft, Bull. Am. Phys. Soc. 39, 336

(1994).
M. Surh (private communication}.
H. M. James, Phys. Rev. 167, 862 (1967).

24V. Natoli, R. M. Martin, and D. Ceperley, Phys. Rev. Lett.
74, 1601 (1995).

25S. A. Boggs, M. J. Clouter, and H. L. Welsh, Can. J. Phys. 50,
2061(1972).
P. J. Berkhout and I. F. Silvera, J. Low Temp. Phys. 36, 231
(1979).
R. J. Wijngaarden and I. F. Silvera, Phys. Rev. Lett. 44, 456
(1980).

8R. J. Hemley„J. H. Eggert, and H. K. Mao, Phys. Rev. B 48,
5779 (1993).

'

H. K. Mao, A. P. Jephcoat, R. J. Hemley, L. W. Finger, C. S.
Zha, R. M. Hazen, and D. E. Cox, Science 239, 1131 (1988).
J. van Kranendonk, Solid Hydrogen, 1st ed. (Plenum, New
York, 1983).
E. Kaxiras and Z. Guo, Phys. Rev. B 49, 11 822 (1994).

2B. Kohin, J. Chem. Phys. 33, 882 (1960).
L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon, New York, 1980).
J. R. Cullen, D. Mukamel, S. Shtrikman, L. C. Levitt, and E.
Callen, Solid State Commun. 10„195(1972).

35R. Jochemsen, A. J. Berlinsky, F. Verspaandonk, and I. F. Sil-
vera, J. Low Temp. Phys. 32, 185 (1978).
F. Moshary, N. H. Chen, and I. F. Silvera, Phys. Rev. Lett.
71, 3814 (1993).

7R. J. Hemley, J. H. Eggert, and H. K. Mao, Phys. Rev. B 48,
5779 (1993).


