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We develop and test an embedded-atom model for late transition-metal (Ni, Pd, Pt and Au)—
silicon alloys with Si concentration up to 20 at. fo. We exploit the model to simulate by molecular
dynamics the quench from high temperature of Ni80Si2p, PdspSi2p, PtspSiqo, and AusqSi20 that re-
sults in the formation of an amorphous system in the case of the Pd-Si, Pt-Si, and Au-Si alloys.
We analyze in detail the glass transition and the variation across it of the viscosity and diffusion
coefBcient. Moreover, we study the static structure and the elastic and vibrational properties of
the low-temperature amorphous alloys. The results show that, despite some quantitative disagree-
ment, the embedded-atom potential reproduces all the major features and trends observed in the
experiments, and provides a reliable model for the simulation of these systems.

INTB.ODUCTION

Metallic glasses are fascinating materials with promis-
iDg perspectives in catalysis, high-strength materials,
and magnetic applications. Together with more common
glasses (silicates, chalcogenides, and polymers) they chal-
lenge our ability to describe the structure and atomic d.y-
namics of systems out of equilibrium. 2 Fundamental and
not fully answered. questions concern the exact nature of
the glass transition, the behavior of dynamical and trans-
port properties close to the glass temperature T~, and the
relaxation processes occurring at lower temperature.

Three major classes of metallic glasses have been ex-
perimentally investigated. 4 The erst class, exemplified
by Cu60Zr40 and Ni24Zr76, contains alloys of early tran-
sition metals (TM's) with late TM's. The second one,
composed of alloys of simple metals and early TM's, has
received considerable attention because of the potential
applications of Al-TM alloys, like A18yY8Ni5. The last
and most important class includes the alloys of late TM's
or noble metals with a metalloid (mainly B, Si, P), and is
exemplified by Au80Si20) Pd80Si20) Fe80B20& and Ni80P20 ~

An increasing role in the theoretical investigation of
these systems has been played. by computer simulation,
and in particular by molecular dynamics (MD), because
of the ease in obtaining glasses by this method. , its mi-
croscopic resolution in the determination of structural
and dynamical properties, and the possibility of perform-
ing "computer experiments" unfeasible in the real world.
Needless to say, these positive features are partially com-
pensated by the intrinsic limitations of MD to small sys-
tems and. short times, which may prevent the direct sim-
ulation of several phenomena relevant for glasses.

A crucial ingredient of any investigation of glasses
by computer simulation is the underlying model for the
system potential energy. Pioneering investigations ex-
ploited simple interatomic potentials (hard spheres, and

Lennard- Jones and inverse power potentials7), for which
the equilibrium properties were well known, and that,
because of their idealized forxn, were well suited to high-
light the unifying features of glasses. Quantitative stud-
ies, however, require more reined potentials, especially
to investigate properties that are not universal, but de-
pendent on the specific system under study.

Most of the MD simulations aiming at the realistic
description of specific systems have been devoted to sim-
ple metal-TM and TM-TM alloys, mainly because of the
availability of potential energy models already tested for
equilibrium conditions. In order of increasing complex-
ity (but not always accuracy), we mention pair potential
models, perturbation theory based. on the homogeneous
electron gas, embedded-atom (EA) models, and tight-
binding (TB) schemes. Pair potentials are computation-
ally very convenient, and still able to reproduce several
structural and dynamical properties of metallic glasses.
Reliable models, however, are density (and thus state) de-
pendent, and the Gtting procedure to determine the pair
interaction can be cumbersome. Moreover, these mod-
els are usually unsuited to study inhomogeneous systems
like surfaces and interfaces. The metallic character of
alloys of simple metals is better reflected by perturba-
tion theory based on the electron gas, which has been
extensively used to model, for instance, Mg-Zn, Ca-
Mg, and Ca-Al alloys. This scheme, however, cannot
be extended. to TM's, and shares with pair potentials the
limitation to nearly homogeneous systems.

Tight-binding models for metallic glasses, developed.
mainly by Hafner and collaborators, are potentially one
step beyond the other schemes, since they include explic-
itly information on the electronic structure of the system,
and have been applied to model TM-TM (Refs. 13, 14)
and TM-metalloid amorphous alloys. However, at least
in the implementations presented until now, TB schemes
appear also rather complex, and some of the assump-
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tions are less transparent and easily verified than those
at the basis of other methods. Moreover, for what con-
cerns the static structure and the vibrational properties,
the agreement between theory and experiment achieved
by this method does not appear to be clearly superior to
that of the others.

Embedded-atom methods, ' " finally, seem to repre-
sent the best compromise of computational simplicity,
Qexibility, and accuracy for metallic systems, and, there-
fore, have been used to model TM-TM glasses, and, to
a minor extent, simple metal-TM alloys.

In the present study we develop an EA scheme to
model TM-Si glass-forming alloys. The basis for our
model is provided by the experimental observation that
these alloys are apparently metals and that the Si atoms
do contribute to the metallic bonding, provided the Si
concentration does not exceed 30 at. %. This point of
view is supported by photoemission spectroscopy, elec-
trical conductivity measurements, reHectance spectra, 2i

and calorimetry. All these observations justify the ex-
tension to these systems of a scheme explicitly tailored
for metallic systems. In our model we emphasize the
ability of the potential to provide a global and robust
description of these alloys with the minimum of fitting
parameters, in view of an extensive exploitation for sys-
tems (like defects, surfaces, and ternary alloys) rather far
&om those used to fit the potential. This transferability
property is achieved at the cost of some quantitative dis-
agreement between computed and measured radial dis-
tribution functions, which, however, is still comparable
or even better than that achieved by previous studies. A
fine tuning of the potential could surely improve signif-
icantly this comparison for any specific application. At
variance with previous EA potentials for Si (Refs. 23,
24) that aimed at the description of the full variety of
metallic and semiconducting phases of this element, we
carefully restrict the application range of our model to
metallic systems. This restriction allows us to retain the
simplicity and computational appeal of the original EA
scheme.

As an extensive test of the model we simulate by MD
the quench &om high temperature of Ni8oSi2p, Pd8pSi20,
Pt8OSi20, and Au80Si~o, which results in the formation of
an amorphous system in the case of the Pd-, Pt-, and
Au-Si alloys. The analysis of thermodynamic and trans-
port properties, the static structure, and the dynamics
close to T~ and at low temperature confirms that the EA
potential describes reliably all the major features of these
systems. Of course, the real value of the model is not in
its ability to reproduce these rather well-known proper-
ties, but in its possible applications to investigate at the
atomistic level (although not necessarily by MD) a va-
riety of processes, like diffusion, low-energy excitations,
and relaxation, not fully understood in real systems.

EA MODEL

tials for a series of simple and transition metals (Al, Ni,
Pd, Pt, Au), gauging the cross interactions on several
intermetallic alloys among these elements. Second, we
generated the potential for Si following the scheme de-
scribed below. Third, we determined the alloying prop-
erties of metallic Si by fitting the lattice constants of the
fcc Al:Si random alloy. In this stage of the fit the al-
loy properties of Si with the other metals were not used.
Finally, we verified that the Si potential obtained in this
way can be combined (without further fitting) with any
of the potentials in the (Ni, Pd, Pt, Au) set to provide
a reliable description of their alloys with up to 20% of
Si. This test, which is the main subject of the present
section, demonstrates a fair degree of transferability for
the Si potential over a set of consistently generated metal
potentials. As a consequence, we expect that our poten-
tial can also be used (at least at a semiquantitative level)
to study Si alloys with other metals M, even if a direct
fit of M:Si properties cannot be performed (for instance
for lack of experimental data). To this aim, it could be
sufhcient to harmonize the M potential with those of the
metals discussed below.

The special role of Al in fitting the alloying proper-
ties of Si was motivated by the similarity in the atomic
volume of Al and metallic Si, and by the more general
equivalence we expected for the metallic phases of these
8p elements occupying two successive positions in the pe-
riodic table.

As extensively described in the original papers, the
EA potential for a set of N atoms is written as

where y, j is a short-range, repulsive pair potential, and
E, is the energy gain in embedding the atom i into the
electron density p(r";)

In the following, we assume

(2)

with

Z, (r) = Zo(1+ P,r"') exp( —o.,r),

where Zo, o.„P,, and v; are free parameters. Moreover,
the embedding density p(r;) is the superposition of atom-
iclike contributions p~ ~ &om all the other atoms in the
system:

In turn, p~ ~&(r) is written as the sum of contributions
coming from two orbitals 4 (r) and 4'p(r) of different
symmetry:

To enhance the transferability of our Si potential to a
wide class of metallic alloys, we devised and tested the
following procedure. First, we produced the EA poten-

where N is the valence charge of the element, and n is a
free parameter. For transition metals o. and P correspond
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to s and d symmetry, respectively, while 8 and p orbitals
are considered for Al and Si.

Both the Z(r) and the 4's have been cut at a cut oK
distance B, and a shift has been applied to obtain a
potential that is continuous and has a continuous first
derivative everywhere.

For the metals listed above our fit to the properties
of the single elements is standard, and we simply report
in Table I the elastic constants and vacancy formation
energy for reasons of reproducibility and test. The lattice
parameter, cohesive energy, and bulk modulus used in
our fit are those reported in Ref. 26.

In the Appendix we describe in some more detail the
generation of the EA potential for Si, since the low-
pressure, low-temperature diamond-phase is nonmetallic,
and clearly outside the validity range of the simplest EA
scheme.

The role of n in determining the properties of alloys
has been discussed extensively. Here we simply remark
that our recipe to fit n is slightly diferent &om the
one described in the original paper on the EA modeling
of alloys, which used the properties of dilute impuri-
ties to determine the cross interactions, and focused on
the enthalpy of mixing instead of structural properties.
We choose to determine n &om the properties of inter-
metallic compounds because we expected this to be more
reliable for alloys of finite concentration. In fact, by com-
paring for a few cases the potentials obtained by fitting
the properties of impurities and intermetallic compounds
we concluded that the two choices produce equivalent po-
tentials. We decided to fit structural data because these
are available for a large number of intermetallic at low T.
Enthalpy, instead, is usually tabulated only for high T,
and this makes less straightforward or less reliable its us-
age in the fit. Moreover, in our experience the lattice con-
stant and excess enthalpy of alloys are, to a large extent,
equivalent properties in the EA potential: Larger lattice
constants usually imply lower mixing enthalpy, and fit-
ting one or the other property provides again equivalent
potentials.

The optimal potential parameters are collected in Ta-
ble II.

The comparison of the computed and experimental lat-
tice parameters for a series of intermetallic compounds is
reported in the first half of Table III. This comparison is
focused on the alloys containing Al because of the sim-
ilarity with metallic Si mentioned above. As apparent
&om a survey of crystallographic data, the alloys of Al
with transition metals tend to have complex structures,
deformed by long-range oscillatory interactions that can
be traced to Fermi surface effects. The size of the dis-
tortion depends on the transition. metal (for instance, it
is larger for Pd than for Ni) and decreases with decreas-
ing Al content. The most distorted structures (like those
of Pd2A1 and AuA12) are not reproduced quantitatively
by the EA potential (at least in the form we use), which
does not contain the long-range Friedel oscillations of the
interatomic potential. The relaxed structures obtained
within the EA potential tend to be a symmetrized ver-
sion of the experimental ones, of which they retain some
basic properties like the equilibrium volume and the num-
ber of neighbors. As discussed below, the same trends are
observed in the intermetallic compounds of Si. The com-
parison of computed excess internal energies of mixing
at T = 0 with the excess enthalpy at T 300 K (also
reported in Table III) suggests that the model is able to
reproduce the experimental trends, again with the no-
table exception of AuAl2.

Among the metals considered above, Ni, Pd, and Pt
form ordered intermetallic compounds Mi Si with Si,
few of which have x & 0.30, and are, therefore, within
the reach of the EA potential. We used these systems
for a first test of the reliability of our potentials. The
results are reported in the second part of Table III. Two
regularities are apparent. First, and not surprisingly, the
accuracy of the potential increases with decreasing x, as
shown by the comparison of the Ni2Si and Ni3Si results.
Second, the chemical trends observed for Mi Al re-
main in Mq Si: The elements like Pd (and, to a minor
extent, Pt) that form complex structures with Al give
rise to complex unit cells also with Si, with distortions
that are not quantitatively reproduced by EA.

Element
Al

Pd

Pt

Si

Cgg (Mbar)
1.01

(1.12)
2.33

(2.46)
2.24

(2.34)
3.11

(3.47)
1.85

(1.86)
2.10

(2.23)

Cg2 (Mbar)
0.71

(0.66)
1.54

(1.47)
1.81

(1.76)
2.69

(2.51)
1.58

(1.57)
0.51

(0.44)

C44 (Mbar)
0.46

(0.26)
1+28

(1.25)
0.73

(0.71)
0.74

(0.77)
0.43

(0.42)
0.20

(0.20)

R„(eV)
0.87
(0.7)
1.64
(1 6)
1.47
(1.4)
1.51
(1.5)
0.88
(0.9)

TABLE I. Elastic constants C,~ and vacancy formation en-
erg, y E of the EA potential for the pure metals and for sc
Si. The numbers in parentheses are the experimental values
for the metals reported in Ref. 26, and the results of ab initio
computations for Si (Ref. 27; see text).

GLASS TKANSITIDN

TABLE II. Embedded-atom potential parameters used in
the simulation.

Al
Ni
Pd
pt
Au
Si

&o (e)
3
10
10
10
11
3.2

(A-')
1.315
1.863
1.295
1.639
1.548
0.551

3.781
0.896
0.593
0.802
0.501

298.353

V

0.326
1.000

—2.913
0.603
0.131

—8.906

N,
1.90
1.78
1.70
1.67
1.18
0.8

a. (A)
5.5
4.8
5.5
5.5
5.5
4.8

With the potentials described above we simulated by
MD the quench &om the melt for samples of Nl8oSi2o,
Pdso Si2o &

Ptso»2o &»d Auso Si2o In real experiments
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TABLE III. Lattice parameters a, b, c and excess internal energy of mixing AU '" at T = 0
for selected M-Al and M-Si alloys (M=Ni, Pd, Pt, and Au). The AU '" for the Si alloys has
been computed with respect to the experimental cohesive energy of diamond Si. The experimental
values for the lattice parameters (in parentheses) are from Ref. 28, the excess enthalpies of mixing
AH are from Ref. 29.

Alloy
NiAl

Ni3Al

PdA1

Pd2A1

PtAlg

Pt3Al

AuAlg

AugAl

Ni3Si

Ni2Si

Pd3Si

Pt3Si

Structure
CsCl

Cu3Au

CsC1

Pd2Al

CaF2

Ni3Al

CaF2

MoSig

Cu3Au

PbC12

Fe3C

Pt3Ge

a (A)
2.92

(2.89)
3.57

(3.57)
3.04

(3.04)
5.34

(5.41)
5.94

(5.92)
3.85

(3.88)
6.27

(6.01)
3.38

(3.35)
3.45

(3.51)
7.21

(7.06)
5.31

(5.74)
7.60

(7.70)

3.92
(4.06)

4.78
(4.99)
7.51

(7.56)

8.01
(7.77)

8.84
(8.89)

3.47
(3.72)
5.31

(5.26)
7.60

(7.77)

A U '" (eV/atom)
—0.49

(A H = —0.61, T = 298 K)
—0.39

(A H = —0.39, T = 298 K)
—0.91

(A H = —0 96, T = 373 K)
—0.77

(E H = —0.88, T = 373 K)
—0.36

—0.75
(A H = —0.72, T = 298 K)

—0.01
(A H= —0.'44, T = 400 K )

—0.34
(b, H = —0.36, T = 400 K)

—0.64

—0.80

—0.84

—0.90

these systems can be divided into two categories. On the
one hand, the Pd- and Au-Si alloys, which give rise to
few or no intermetallic compounds, are easily produced
in the glassy state, with estimated critical cooling rates
of the order of 10 K/sec. On the other hand, the Si
alloys of Ni and Pt, which do form several ordered inter-
metallic compounds, are not &ozen in the glassy phase
by comparable cooling rates: PtsoSi20 can be prepared
in the glassy state only by laser quenching, but not by
the slower splat cooling, while Ni80Si~o crystallizes even
under the fastest experimental quenching conditions and
its amorphous form is obtained only by nonthermal pro-
cesses like sputtering. The minimum quenching rate we
can achieve in our simulation is still one or two orders of
magnitude faster than the fastest experimental one. It
is interesting to observe that, despite this limitation, our
computation is able to reproduce the difFerent behavior
of the alloys listed above, and to provide a description
at least qualitatively correct of the glass transition in the
Pd-, Pt-, and Au-Si alloys.

The MD simulation was performed for systems of 864
atoms in a cubic box with periodic boundary conditions.
The equations of motion have been integrated by a veloc-
ity Verlet algorithm with a time step of 1.571 x 10
sec. Each simulation was started by equilibrating the sys-
tem at very high temperature (T ) 2000 K), at which the
alloys were liquid. Then, we decreased T by discontinu-
ous jumps of less than 100 K each. After each variation
of T we reequilibrated the system during 10 MD steps
(16 psec) and the volume was carefully calibrated to fol-

low the zero-pressure equation of state. Statistics was
accumulated during runs of 10 steps (0.16 nsec). Each
quench, therefore, lasted more than 2 x 10 steps, or 3.2
nsec, corresponding to a cooling rate of 0.8 10~ K/sec,
which has to be compared with the 10 K/sec achieved
by laser quenching, and the much slower 10' K/sec ob-
tained by the fastest mechanical quenching methods.
Our results, therefore, approach those of laser quench-
ing, while providing only a rough approximation for splat
cooling. The long equilibration and statistics runs and
the small jumps in T ensure that the results do not de-
pend much on the details of the cooling schedule, al-
though they do depend on the global cooling rate, as
shown by the glassy state obtained below Tg. We did
not apply constant-T and constant-P MD algorithms be-
cause these modify the dynamics of the system, which
is, instead, one of the aims of the present computation.
Constant-pressure MD (Parrinello-Rahman ) has been
used to test the structural stability of the glassy samples
at the end of the quench.

The first quantity we discuss is the internal energy
U(T) during the cooling, reported in Fig. 1 for PdsoSi2p.
The points are the average of the potential energy over
the 105 step statistics runs. With the cooling rate of
our simulation, the Pd, Pt, and Au alloys display the
discontinuity in the slope of U(T) that signals the glass
transition, without any discontinuity in U(T) itself that
would be associated with crystallization in at least a part
of the system. The ¹iSialloy behaves in a diferent way:
At T 1500 K it crystallizes in a (defective) fcc structure
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Tg by 200 K. Part of the discrepancy is probably due
to the fast quench imposed by MD, since experiments
and simple qualitative arguments show that Tg increases
with increasing cooling rate. Most of the discrepancy,
however, is likely to be due to the inaccuracies in the
potential, which are reQected also on the static structure
and dynamical properties, as discussed below.

The most common definition of T~ is in terms of dy-
namical properties like the viscosity rI(T) and the dif-
fusion coefficient D(T). We computed il by the Green-
Kubo relation

0
300 600 900 1200

T [K]
1500 1800

where p is the number density, N the total number of
atoms in the system, and. y is the time autocorrelation
function of the shear stress a &.

(') = ( (t + ) * (')).
FIG. 1. Internal energy per atom U as a function of T

during cooling at a rate of 0.8 x 10 K/sec. Main plot:
Pdso Si2o, inset: Niso Si2o. The points are averages over 0.16
nsec microcanonical runs. The zero of U is given by the energy
of the fcc random alloy.

(see the inset of Fig. 1). Also this alloy can be obtained
in a glassy structure by an abrupt quench &om the liquid.

The quantitative determination of the glass transition
has been performed by fitting U(T) by the Pade' form

a + bT + cT2

1+dT (6)

with two di8'erent sets of coefFicients for the low-and high-
T portion of U(T). The subdivision of the temperature
range in a low- and high-T portion is decided a priori by
visual inspection of the simulation results, and excludes
the data close to the point where U(T) changes slope.
The transition temperature T~ has been determined &om
the intersection of the low- and high-T interpolation of
U(T) Asimilar fi.t has been performed for the zero pres-
sure volume V(T). This provides a nearly identical esti-
mate of T~. The estimated Tg, together with the disconti-
nuities in the constant-pressure specific heat Cz and iso-
baric thermal expansion coefficient ap = (OV/BT) I /V,
are reported in Table IV. The comparison with experi-
mental systems is hampered by the scarcity of data on
T~ for metallic glasses. By considering the experimen-
tal Tg for Pd82si&8 and the crystallization temperature
T, for the other alloys (and taking into account that
T~ & T,), we estimate that our EA model overestimates

In turn, the stress tensor o p is defined by

o p =) o 'p ——) —
~ ) f (r; —r)+2mv v,.

)

where n, P are Cartesian coordinates, f,~ is the force on
atom i due to atom j, v, is the velocity, and m; the mass
of atom i.

The computation of g is notoriously dificult, and our
data are affected by large error bars, which increase with
decreasing T (from 20% at T & 2000 K to 30%
at T 1.2T~). Our results for PtsoSi2o are reported in
Fig. 2. Despite the error bars, it is possible to recognize
a clear Arrhenius behavior of the coinputed rl(T) in the
liquid phase, down to 1.2Tg. For lower T our results be-
come unreliable, since the length of the simulation (0.16
nsec, extended to 0 50 nsec. for few systems close to Tg)
is not sufficient to cover the long time tail in y(t), which
contributes significantly to g. Therefore, our discussion
of the crossover &om the Arrhenius to the Vogel-Fulcher
form, expected close to Tg, is only tentative. Our results
[together with the data for D(T) discussed below] suggest
that g changes rather smoothly across T~, at least on the
nsec time scale, before a significant relaxation reduces
drastically both g and D. A fit with the Vogel-Fulcher
relation

B
1nq = A+

TABLE IV. Glass transition temperature T~, zero-pressure specific heat C~ (potential energy
contribution only), and thermal expansion coefBcient ni evaluated in the amorphous (T~ ) and
undercooled liquid (T~+) phases at T = T~.

PdsoSi2o
Auso Sligo

Ptso Sicko

Tg (K)
943
403
930

C'~(Tg )/~~
2.13
1.73
1.66

&~(Tg+)/l ~
2.88
2.51
2.76

~~(Tg ) (K ')
1.334 x10
1.701x10
1.117x 10

cr.r (Tg+) (K ')
2.817x10
3.430 x 10
2.040 x 10
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FIG. 2. Viscosity coeKcient as a function of inverse T
for PtsoSiqo. Squares: simulation results. Solid line: Ar-
rhenius 6t for the liquid phase. Dashed line: 6t by a Vo-
gel-Fulcher-type relation (see text).

-12

-16

is still possible, but provides a value for T' that is only
one half of the Ts we estimate from the slope of U(T).
The origin of this behavior is, again, in the short simula-
tion length. A relaxation over macroscopic times would
increase g by orders of magnitude, and reconcile the esti-
mate of the glass temperature from il (and D; see below)
with that from U(T).

A complementary description of the system transfor-
mation approaching Tg is provided by the diffusion co-
efficient D(T), which has been computed by a linear fit
to the long time behavior of the mean square atomic dis-
placement:

The data for Au and Si in AusoSi20 are reported in
Fig. 3 on a scale that highlights the Arrhenius form
D(T) = Dp exp( EE/KsT) f—or T ) Tg. From the plots
of D(T) it is possible to estimate the preexponential fac-
tor Do and the apparent barrier LE in the liquid phase,
which are listed in Table V. Comparison with the experi-
mental values reported in Ref. 34 shows that the orders of
magnitude and the trends are correct. Also in agreement
with the experimental determinations is the fact that Si
difFuses more slowly than the metals, despite the large
advantage in mass. It is tempting to interpret this fact
by assuming that in the liquid phase Si dift'uses together
with a cage of metal neighbors, which are the precursors
of the structural units described in the following section.
Analysis of atomic trajectories, however, shows that the
behavior of the Si and the metal atoms is similar, with
only quantitative differences. This has been shown by
identifying the nearest neighbor (NN) shell of few Si and
metal atoms, and analyzing how often one atom is re-
placed in this first coordination shell. We observe that
at T 1,2T& every atom interchanges at least one of
its NN's within 20 psec, and the process is only slightly
slower for Si than for the metals.

Comparison of our results for D(T) with a power law
inspired by mode coupling theory,

-20
0.0 0.5

TQ /T
1.0

FIG. 3. DifFusion coeKcient of (a) Au atoms and (b) Si
atoms in Au80Siqo as a function of inverse temperature. The
solid line is an Arrhenius 6t to the simulation results.

highlights two major points. As mentioned above, and as
remarked by several previous investigations, D(T) does
not vanish at Tg, although at lower temperatures it has a
value that can hardly be measured by MD. Disregarding
this qualitative discrepancy, the fit of D(T) with Eq. (11)
is almost as good as that obtained with the Arrhenius
form, and a distinction of the two is dificult to achieve
with the accuracy allowed by simulation. Again, the op-
timal T' is somewhat lower than the Tg computed from
U(T) (see also Ref. 37 for a similar observation). As a
last remark, we notice that both the diffusion coefFicients
of Si and the metal can be fitted by Eq. (11) with the
same T', and with a slightly different o..

Another theory of diffusion we considered in the in-
terpretation of our results is the so-called "&ee volume"
theory, which predicts an exponential dependence of D
on the volume:

D(T) = Dp exp[ —bvp/(v —vp)],

where v is the mean atomic volume, and vo is the close
packing volume of the atoms (i.e. , the volume at which
no residual difFusion remains). Assuming Dp, b, and vp

as free parameters, this relation provides probably the
best fit of our results over the entire simulation range.
The same value of vp (but not of Dp and b) provides
an excellent fit of the dift'usion coeKcient for the under-
cooled liquid as a function of pressure at constant T, as
we verified by a series of simulations for AusoSi20 at 895
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AusoSi2o
Pd8oSi2o
PtsoSi2o
Niso Sicko

TABLE V. Preexponential parameter Do and energy barrier AE of an Arrhenius fjLt

(D(T) = Do exp[ E—E/ksT]) for the liquid phase diffusion of metal (M) and Si atoms.

Do(M) (cm /sec) AE(M) (K) Do(Si) (cm /sec) AE (Si) (K)
5.01x 10 3888 6.53x10 4323
9.18x10 6766 9.73x 10 7322
7.01x 10 6909 8.95 x 10 7921
1.95x 10 7511 2.35x 10 8510

K under pressures ranging up to 90 kbar.
Below Ts our estimate for D(T) is affected by large

statistical errors. The main conclusion we can draw &om
our simulation is that a residual diffusion remains below
T~, without any tendency to vanish over a nsec time scale
(the longest constant-temperature run performed below
Tg reached 10 steps, or 1.6 nsec). The atomic processes
contributing to the residual diffusion in the amorphous
alloys appear to be different from those characterizing
the diffusion in hot crystalline solids. This difference is
highlighted again by comparison with the behavior of the
Ni8pSi2p defective crystal obtained by our quench. Fig-
ure 4 reports the time evolution of the square displace-
ment per atom Lr &om an arbitrary, well-equilibrated
configuration in NisoSi2o at T = 1341 K (a) and in
Au8p Sizz at T = 398 K. The plot; for Ni8p Sizz displays
one of the few jumps we observed for this system at a T
below the first-order transition. The jump involves sev-
eral atoms (about ten, including both Ni and Si) and is
abrupt. The behavior of Au8pSipp is apparently different:

1.0

Despite the much lower T, it is possible to observe an
almost continuous sequence of small jumps (again coop-
erative, as pointed out by the analysis of the atomic po-
sitions), producing a time evolution of Er2 that is much
more gradual, and that reminds us of plastic How.

Several recent experimental papers (see for instance
Refs. 35 and 39) have discussed the validity for metallic
glasses of the Einstein-Stokes relation

kgT
g )6m'

where r is a length of the order of the atomic size. The
apparent conclusion is that ga is few orders of magnitude
larger than what can be expected by extrapolating the
high-T values, or, equivalently, r is much shorter than a
typical atomic or ionic radius. Although the large error
bars in our data at low T prevent a quantitative and
reliable analysis, we point out that we observe a similar
behavior in our simulation. By using Eq. (13) to compute
r &om g and D for Pt8p Si2p, we 6nd that, starting &om

0.8 A at high 2', r grows slowly to 1.2 A where
it drops discontinuously by one order of magnitude (see
Fig. 5).

STATIC STKUCTUKE

0.5
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l ),I,, l,
.

)
$41'l, , j, l The partial radial distribution functions g;~ (r) and the

structure factors S,~ (k) of the glassy alloys at room tem-
perature have been computed as averages over 0.16 nsec
MD runs. The results for Pd8pSi2p are reported in Figs. 6
and 7, together with the available experimental data.

The model has not been 6tted to reproduce the details
of the static structure of each compound, but to give an
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FIG. 4. Mean atomic displacement Ar as a function of
time for (a) crystalline NisoSiso at T = 1341 K, (b) amorphous
AusoSiso at T = 398 K. Solid line: metal atoms. Dashed line:
Si atoms.
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FIG. 5. EfFective interatomic radius r for Pd8oSiqo com-
puted from the Einstein-Stokes relation, Eq. (13).
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r [A]
FIG. 6. Partial radial distribution functions for Pd80Si2o at

3ll K. Lower curve: gpss pd(r) -Uppe. r curve (shifted by two
units): gpss-s;(r). Inset: total radial distribution. function.
Solid line: present computation. Dots: neutron diffraction
results.

overall reliable description of these systems. As a conse-
quence, soxne disagreement is apparent in the g(r) and
S(k), which, however, still reproduce the main features
observed experimentally. The most important quantita-
tive disagreement concerns the metal-metal and metal-
metalloid nearest neighbor distance. In both the Pd-Si
and Au-Si alloys (the only alloys for which experimen-
tal data are available) our EA potential overestimates
the metal-Si NN distance by 3.5%, while the metal-metal

10

4 6
K [A I]

FIG. 7. Partial structure factors for Pd8OSiqo at 311 K.
Lower curve: Spy s;(K). Upper curve (shifted by two units):
Spg-pd(K). Inset: total structure factor. Solid line: present
computation. Dots: neutron diffraction results.

NN distance is underestimated by almost the same &ac-
tion ( 3.2%). As a result, the Brst peak in the total
g(r) is broad and cannot be resolved in the M-Si and
M-M contributions, while the first peak of the experi-
mental g(r) presents a characteristic pre-peak due to the
M-Si correlation. The errors in the M-Si and M-MNN
distances are probably related, since the formation of a
close bond between the M and Si would weaken the di-
rect M-M bond. However, a significantly shorter M-Si
bond is hard to achieve within the basic EA scheme we
employed [unless we modify the simple prescription for
the cross interaction, Eq. (2)], and we think that the
error in the NN distances points to a deviation of the
bonding &om a purely metallic one. In fact, despite the
overall metallic character of the system, it is not difFicult
to imagine that a small covalent component (directional,
and involving the hybridization of the p levels of Si with
the d of the metal) is also present, 4x'2o and responsible
for the short M-Si distance.

The error in the NN distances described above is re-
Qected in the structure factor. Since the experimental
partial S;~ (K) are too noisy, we limit our comparison to
the total S(K). It is apparent that the computed S(K)
oscillates with a period that is 3% larger than the
experimental one, corresponding to the EA underestima-
tion of the M-M NN distance [S(K) reilects mainly the
behavior of SM ~(K)]. Moreover, since the M and Si are
more symmetric than in reality, the simulated system is
markedly more ordered than its experimental counter-
part, as shown by the higher first peak in S(K) and by
the slower decay of the successive oscillations.

To assess the importance of these discrepancies in the
NN distances, we point out that for transition metals er-
rors of the order of 2% are not uncommon in density
functional theory in the local density approximation
(the state of the art in total energy-structural coxnputa-
tions) and the 3.5% error of the EA potential is the price
to be paid to allow extensive and inexpensive MD simu-
lations. We also underline that the global description of
the experimental structure provided by the EA potential
is comparable and often better than that of other models
(like second-order perturbation theory and TB models),
including those requiring more extensive Fitting.

In &act, despite the (important) quantitative discrep-
ancies described above, the EA potential reproduces re-
markably well all the features associated to the amor-
phous structure, as can be appreciated also by contrast-
ing with the results for Ni80Si~o, i.e. , the system that
crystallized during the quench (see Fig. 8). In agreemexit
with the experimental results, our amorphous alloys dis-

play a strong chemical short-range ord.er, as revealed by
the negligible number of NN Si-Si pairs (a few units at
most in each system). For all the amorphous and liq-
uid systems the number of M atoms surrounding each Si
is 9.9 k 0.8 (Ref. 43) ancl remains almost constant over
a wide temperature range. The average number of M
atoms surrounding each other M atom is slightly more
variable, ranging (at room temperature) from 9.8 + I in
Au80Si20 to 10.5 + I in PtsoSi2o, and decreasing with
increasing temperature. The total coordination number
(M plus Si) of the metal atoms in the amorphous alloys
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FIG. 8. Radial distribution function for Ni80Siqo at 300 K.
Solid line: defective crystal structure obtained by the quench
at 0.8 10 K/sec. Dashed line: amorphous structure obtained
by the quench at 10 K/sec.

is close to 13, to be compared with the 12 computed for
the crystallized NisoSi20. A direct comparison of coordi-
nation numbers with experiments is diFicult, since even
for the most studied systein (PdsoSizo) quantitative data
are scarce and contradictory. For instance, the number
of M neighbors of the Si atoms quoted in Ref. 44 (neu-
tron difFraction data) is 6.6, while in Ref. 45 (neutron
and x-ray difFraction) it is 9 + 0.9. This second value is
considered the most reliable, and is consistent with our
results.

The first coordination shell of Si is better defined than
that of the M atoms, as shown by the first peak of the
partial g;~(r), which is higher and sharper for M-Si than
for M-M. Both the gM s; and gM M present the char-
acteristic asymmetry in the first peak (a slight shoulder
beyond the maximum) that is usually associated with the
strong chemical order of these systems and the trigonal
prism geometry of the Si first coordination shell. The
second peak of g(r) (partial and total) is split in a char-
acteristic way, which becomes visible starting &om 200
K beyond Tz. The transition occurs when the ratio of the
first peak to the Grst minimum reaches 14, which is the
value predicted by the Vfendt-Abraham4 criterion.

Related features can be observed in the structure fac-
tor. The chemical order is apparent by constructing the
concentration-concentration structure factor

SCC(K) 2 M2 S [SM-M(K) + S's -S'(K) 2Ss'-M(K)]

(14)

where xM and xs; are the metal and Si concentrations,
respectively. Scc(K) has a well-defined pre-peak (i.e.,
before the first peak), corresponding to the length scale
of the first coordination shell. The second peak of S(K)
is asymmetric, with a pronounced shoulder on its high-K
side. 4'

To investigate the dependence of the amorphous struc-
ture on the cooling rate we quenched abruptly a sample
of each alloy &om 2000 K to room temperature. Since
stabilizing the system at the final T requires 1000 MD
steps (or 1.6 psec), this process provides a cooling rate of

10is K/sec, i.e. , 1000 times faster than the slowest quench
we described before. The systems that are amorphous
after both quenches (i.e., all but NisoSi2o) present struc-
tures that are qualitatively similar in the two cases, with,
however, quantitative differences that are easy to predict.
The density achieved by the slow quench is 1.4% higher
than for the fast one; that is, more defects are annealed
in the slow process, whose total volume corresponds to
roughly 12 atoms for our 864 atoms system. The g(r)
is similar in the two cases, with quantitative differences
that are more apparent near the first minimum and the
second peak: The first minimum is better defined, and
the second. peak is more clearly split and asymmetric in
the slowly quenched systems. Room temperature diKu-
sion is also significantly higher in the rapidly quenched
systems, while it is barely detectable in the others.

The Voronoi construction has often been used to char-
acterize the local symmetry in amorphous systems. We
carried out this analysis using standard library routines
for the amorphous alloys at zero and room temperature,
and for liquid configurations close to Tg and at high tem-
perature ( 1500 K). A common characterization of the
Voronoi polyhedra distribution is in terms of the num-
bers n~, n4, n5, ... of polyhedra faces having 3, 4, 5, ...
edges. As remarked by several previous studies, this
characterization produces a very large number of difer-
ent (ns, n4, ns, ...) signatures, and fails to provide a clear
and synthetic picture of the local arrangement. Easier to
interpret is the probability distribution of faces with n
edges. In our three zero-temperature amorphous systems
pentagonal faces dominate, representing roughly 50% of
the total faces, and highlighting the importance of local
fivefold symmetry. Ideal icosahedral arrangements (i.e. ,
Voronoi polyhedra with 12 pentagonal faces), however,
are extremely rare. With increasing temperature the rel-
ative importance of pentagonal faces decreases in favor of
the hexagonal ones. The same trend is observed in zero-
temperature samples obtained by a fast quench &om high
T. These trends suggest that the local fivefold symmetry
is a peculiar structure dominating the low-temperature
undercooled liquid more than a remnant of the equilib-
rium liquid phase. The NN shell for the Si atoms that are
ninefold coordinated is usually recognizable as the trian-
gular prism unit (FesC cementite) that has been often
invoked to explain the Si coordination in these systems,
and the shape of the first peak of g(r)

To characterize the medium-range order on the scale of
10—15 A. we studied the properties of approximate square
paths going through NN atoms. The paths were started
&om a given atom i by selecting at random the direc-
tion n, connecting i to one of its neighbors in the first
coordination shell. One side of the square was then con-
structed by repeating m times (m = 3, 4, 5), this basic
step joining NN atoms in such a way as to conserve as
much as possible the original direction n. A sequence
of four sides separated by (approximate) clockwise 90'
turns defines our approximate square path. In a per-
fect cubic crystal this procedure returns to the starting
atom. In defective crystals this algorithm provides a way
to identify dislocations. The distance b between the fi-
nal and the starting point is the defect's Burger vector.
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Our systems are too small and too disordered to allow a
clear de6nition of dislocations. Despite this limitation we
use the dislocation terminology to discuss the properties
of the square paths described above. As a benchmark
for the glassy systems we 6rst discuss the results for the
defective Ni80Si20 crystal obtained by our annealing and
one undercooled liquid system (PdsoSizo at T = 1066 K)
(see Fig. 9). In NisoSizo at room temperature the ma-

jority of the paths returns to the starting point (b = 0).
Most of the remaining paths end up in one of the NN's
of the starting atom. Only very few end up in the sec-
ond and third NN. When nonzero, the orientation of b

is isotropic. In the undercooled Pd80Si20 at T = 1066
K most of the paths do not close. The probability dis-
tribution P(i b i) for the length of b has one broad peak
at the NN distance, but all the other distances are rep-
resented up to at least the third NN. The orientation
of 6 displays a sxnall but statistically signi6cant prefer-
ence for orientations perpendicular to the plane of the
path. In the language of dislocations, screw dislocations
are more common than edge dislocations. The situation
in the glassy samples is intermediate between these two
cases: The peak in P(fbi) at the NN distance is higher
and sharper than in the liquid, but P(fbi) decays slowly

with distance. The preferential polarization of 6 perpen-
dicular to the plane of the path is even stronger than in
the liquid, although the difFerence between the two is at
the limit of the statistical error.

ELASTIC PROPERTIES

Before computing the elastic constants, we verified
that the cubic shape of the cell imposed during the
quench is stable by relaxing the system at zero pressure
within the Parrinello-Rahman method, which allows the
simulation cell to change shape as well as volume. A long
relaxation at room temperature did not produce any sig-
nificant variation in the simulation cell. This allows us
to compute the elastic constants with the constraints and
simplifications appropriate for cubic systems. The bulk
modulus B and the elastic constants Cqi, Ci2, and C44
have been determined by the energy variation under the
deformations of the unit cell described in Ref. 50. After
applying each deformation (with up to 1% variation in
each of the sides) the position of the atoms within the
cell has been accurately relaxed. The results, reported
in Table VI, are in good agreement with the few avail-
able experimental data. As expected for amorphous
systems, the computed elastic constants satisfy the re-
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FIG. 9. Probability distribution for the modulus of the
Burger's vector b for square loops spanning four nearest
neighbor atoms. Solid line: glassy Pd8pSigp at T308 K.
Dashed line: liquid Pd8pSi2p at T = 1066 K. Dotted line:
defective Ni8pSi2p crystal at T = 295 K. The area under the
curves is normalized to one. A peak at ibi = 0 is not displayed
in the figure.

lation Cii ——Ci2 + 2C44 which is implied by the system
isotropy. The signi6cance of this relation is highlighted
by the result for Ni80Si20, which violates it by more than
20%%uo.

The phonon density of states (DOS) of the amorphous
alloys has been computed by direct diagonalization of the
dynamical matrix for the 864-atom systems, after a care-
ful relaxation of the atomic positions. Because of the rel-
atively large system size, we considered only the I' point
of the Brillouin zone associated with the periodically re-
peated simulation cell. The computation provided both
the vibrational &equencies v& ) and the normalized eigen-

vectors B(,where o. labels the modes and i the atoms.
The DOS for Au80Si20, which is representative of those
for the other systems, is reported in Fig. 10 together with
the corresponding DOS for pure fcc gold. The compari-
son of these two curves shows that our model reproduces
the two major features of the DOS for the amorphous
metal-metalloid glasses observed in experiments:52 (i) A
wide band extending beyond the high-&equency edge of
the pure metal; (ii) an enhancement of the low-frequency
part of the alloy DOS with respect to that of the pure
metal. The analysis of phonon localization via the par-
ticipation ratio

p(o) (~ )—

TABLE VI. Bulk modulus B, elastic constants C;~, and Poisson's ratio v for the amorphous
alloys Pd8pSi2p, Pt8pSizp, Au8pSizp, and the defective fcc crystal Ni8pSizp at room temperature.

NispSi2p
Pd8p Simp

Pt8p S12p

Ausp Slgp

B (Mbar)
1.77
1.90
2.69
1.70

Cgg (Mbar)
3.44
2.43
3.26
2.00

Ciz (Mbar)
0.94
1.63
2.40
1.55

C44 (Mbar)
1.62
0.22
0.42
0.22

0.44
0.40
0.42
0.44
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systems makes very unlikely the inclusion in our samples
of the tunneling modes with energies around 1 K, and
also in the energy range up to 20 K our sampling of the
DOS is limited to few modes.

An alternative description of the local elastic proper-
ties of an amorphous system can be obtained via the
computation of the atomic stress, along the lines pro-
posed in Ref. 56. The atomic stress 0'& at atom i is

defined by Eq. (8) above. The sum of o'& over the
atoms provides the virial tensor of the system. The trace
cr' = (o' + o„'„+0,', )/3 defines a local pressure on the
atom i, while the mean square deviation 7; (von Mises
shear stress),

FIG. 10. Vibrational density of states. Solid line: amor-
phous AuepSi2p, T = 318 K. Dashed line: fcc Au, T = 0
K.

shows that, as easily predicted, the high-&equency band
is due to very localized modes, involving almost exclu-
sively Si atoms (see Fig. 11). The excess low-frequency
modes induced by Si alloying in the range 2 meV & v & 5
meV are associated mainly with the displacement of the
metal atoms, with only a relatively small component on
Si. Finally, the few ( 5—10) relatively localized modes
at v = 1.5 meV are worthy of mention. They are appar-
ently related to the quasilocalized (or resonant) modes
described by Laird and Schober in the case of a sim-
ple model glass: In common with the excitations de-
scribed by these authors, they occupy the low-&equency
tail of the DOS, involve the motion of 20—30 atoms
(as displayed by their participation ratio of 0.1—0.2), and
they are highly anharmonic, as shown by their large
Griineisen parameter (see the inset of Fig. 11). All these
features suggest an identification of these modes with the
characteristic and universal low-temperature excitation
of glasses, and, in particular, suggest a connection with
the "soft potential model" introduced in Ref. 55 to pro-
vide a unified description of tunneling modes (relevant at
T 1 K), harmonic quasilocalized modes (T 2—5 K),
and thermally activated relaxation (T 20 K). A note of
caution, however, is in order, since the small size of our

measures the anisotropy of the local stress. Both quan-
tities are identically zero for a monoatomic Bravais lat-
tice at zero pressure. We computed o; and 7;. for liquid
and amorphous systems, averaging over few independent
con6gurations. The results are summarized by the prob-
ability P(o)[or P(r)j'for an atom to experience the local
stress 0 (or von Mises shear stress w) The di.stribution
P(0) for AuspSi2p is displayed in Fig. 12. In the liquid

0.1

0.0

I

0.2
(b)

0.1

el 4 ', ', ()Le&
~ ~

is et

~ ~
Oy

I

~Q

0.0 I

0 10 20 30 40 50

V [meVj

%a+z9
~ I

20

V [meV]

30 4Q 50
0.0

-300 -200 -100 0
G [Kbar]

100 200 300

FIG. 11. Phonon participation ratio (see text) for
Ausp Si2p, T = 318 K. Inset: Gruneisen parameter for the
same system.

FIG. 12. Probability distribution P for the hydrostatic
atomic stress rr in (a) undercooled liquid AuspSiso, T = 818
K; (h) amorphous Ausp Siss, T = 318 K. The shaded area rep-
resents the probability distribution restricted to the Si atoms.
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state the distribution is rather broad, covering 400
kbar, almost symmetric with respect to the origin, and
the distributions for the Si and Au atoms are similar.
The situation changes rapidly with T decreasing below
T~: While the distribution for Au becomes significantly
narrower (with possibly a slight asymmetry toward neg-
ative cr), the distribution for Si develops long tails, ex-
tending (slightly asymmetrically) up to 300 kbar. Similar
results are obtained for P(v), showing that the stress ac-
cumulating at the Si atoms becomes highly anisotropic.
This behavior is reminiscent of the picture for the glass
transition proposed by Egami and Vitek in Ref. 57, iden-
tifying the transition with the percolation through the
system of orientationally coordinated stresses. The fea-
ture peculiar to our system is that high stresses reside
on Si only, while the temperature dependence of P(a.)
for the metal follows the normal trend toward a narrow
distribution centered around the origin.

CONCLUSj:ONS

Alloys of late transition metals with up to 20 at. 'Fo

of Si are experimentally known to be metallic. On the
basis of this observation, we propose to apply the well-
known embedded-atom method to provide a simple and
computationally convenient description of glass-forming
metal-Si alloys. We produced a potential able to describe
alloys of Al, Ni, Pd, Pt, and Au with Si. The potential for
the metals has been constructed following standard pro-
cedures, described in Refs. 16 and 26. The potential for
Si has been based on ab initio results for the lattice pa-
rameter, the cohesive energy, the bulk modulus, and the
elastic constants of the metastable simple cubic phase. 7

The cross interaction between Si and the metals has been
constructed by first gauging the interaction potentials of
the metals among themselves and then by adjusting care-
fully the interaction of Si with one of the metals. As the
reference metal for this last step we choose Al because of
the expected similarity in size and chemical behavior of
Al and Si in a metallic environment. The reliability of our
procedure in describing alloys whose properties have not
been fitted has been tested by performing computations
for several metal-rich ordered silicides. The results show
that our model, although not quantitatively accurate, is
remarkably robust in providing the qualitative features
and the trends in a large class of alloys.

The model has been exploited to simulate by MD the
quench &om high T of 864-atom samples of NispSi2p,
PdspSi2p, Pt8pSi2p, and Au8pSi2p. A cooling rate of
0.8 x 10 2 K/sec gives rise to amorphous structures for the
Pd-, Pt-, and Au-Si alloys, while Ni-Si crystallizes. This
is in agreement with the observation that this last sys-
tem is not produced in the amorphous state by a thermal
process unless a third element (like Ge or P) is added.
The glass transition temperature T~, determined. by the
discontinuity in the slope of U(T), reproduces the exper-
imental trends, despite an overestimation of 200 K,
which is at least partially due to the fast quenching rate
imposed by MD.

The static structure of the amorphous alloys, charac-
terized by the partial radial distribution functions and

structure factors, displays the major features observed in
the experimental results. The first peak of the M-M and
M-Si g(r) is asymmetric, with a characteristic shoulder
after the maximum. The second peak is split, and this
feature appears 200 K beyond T~. The glass transition
occurs when the ratio of the maximum to the first mini-
mum in the total g(r) approaches 14, in agreement with
the empirical Wendt-Abraham law. The Si-Si nearest
neighbor pairs are rare (metalloid-metalloid avoidance),
and the analysis of the first coordination shell of Si high-
lights the importance of the triangular prism unit often
associated to the ninefold coordination of the metalloid
and the asymmetry in the first peak of g(r). As already
observed in the case of the ordered alloys, the model is
not quantitatively accurate in describing the details of
the structure: The M-Si NN distance is underestimated,
and the M-M NN distance is overestimated, both by- 370.

The model has also been used to study a variety of
transport and dynamical properties of the alloys in the
liquid and amorphous phases. The di6'usion coeKcient D
and the viscosity g display a clear Arrhenius behavior in
the liquid phase. Approaching Tg our estimate for these
two quantities becomes less reliable, but shows that they
change rather smoothly across the glass transition. The
product Dg, which, according to Stoke's law is inversely
proportional to a characteristic atomic size, has a more
discontinuous change at T~, where it decreases by roughly
one order of magnitude.

The analysis of the vibrational properties shows that
the model reproduces the major features of the experi-
mental DOS for the amorphous metal-metalloid glasses:
The Si alloying and the subsequent amorphization induce
an excess of low-&equency phonons associated. with the
displacement of the metal atoms, and a wide band of
high-&equency localized modes involving the movement
of the Si atoms only. Few quasilocalized modes at the
low-&equency tail of the DOS provide the connection be-
tween our simulation and recent theoretical discussions of
the characteristic and universal vibrational properties of
glasses.

An intriguing microscopic view of the glass transition
is provided by the computation of the atomic stresses,
showing that with decreasing temperature, and starting
&om T~ a large and highly anisotropic stress is trapped
at the Si atoms.

All these results show that the model reliably describes
a variety of structural and dynamical properties of M-Si
glass-forming alloys. Moreover, due to the intrinsic reli-
ability of the EA potential in describing inhomogeneous
systems, the model is particularly suitable for the inves-
tigation of surfaces and interfaces of metallic alloys. It
can also be easily extended to ternary and multicompo-
nent systems, which are indeed the ones with the most
promising technological applications and that, moreover,
include intriguing examples of quasicrystals.
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APPENDIX

To reproduce faithfully the properties of Si in a metal-
lic environment we fit our EA potential on the properties
of one of the various metallic phases of Si, which become
stable under high pressure. ' Since the structural and
elastic properties required to determine such a potential
are not available from experiments, we rely on ab ini-
tio computations within a density-functional-theory lo-
cal density approximation (DFT LDA).27 We base our
computation on the simple cubic phase because of its
simplicity and because its (metastable) equilibrium vol-
ume per atom is the closest to the equilibrium volume
of fcc Al. The computation of the equilibrium volume
Vp, cohesive energy Ep, and the elastic properties has
been performed by using pseudopotentials and a plane
wave expansion for the Kohn-Sham orbitals. The Bril-
louin zone has been sampled with 56 special k points in
its irreducible wedge, and the broadening technique
has been used to deal with the metallic nature of the sys-
tem. For the broadening function a first-order Hermite-
Gaussian function has been chosen, which makes quite
insensitive the result on the value of the Gaussian width
used. The elastic constants have been evaluated by tak-
ing the numerical derivative of the stress tensor for two
independent uniaxial deformations of the crystal [along
the (001) direction for Cqq and Cq2 and along the (111)
direction for C44]. In view of the well-known overestima-
tion of Ep by the DFT I DA, the difference between the
cohesive energy of the simple cubic and diamond phases
has been computed, and added to the experimental Ep
for diamond Si.

The potential parameters for Si have then been de-
termined by the usual procedure, with two exceptions.
First, the Murnaghan equation of state

E(V) = Ep +, , [Bo(l —Vo/V)

+(Vp/V) o —1] (A1)

(with Eo = 4.30 eV/atom, Vo = 15.96 A, the bulk mod-
ulus Bo ——1.04 Mbar, and its pressure derivative Bo ——4)
reproduces the ab initio equation of state better than the

one by Rose et al.ss (that was used for Al and the TM's),
and has been applied to compute the embedding function
I' [p] for Si in a range of densities around the equilibrium
one. Second, we did not fit the vacancy formation energy,
because this quantity has not been determined in the ab
initio computation.

The parameter n for Si has been determined by fitting
the lattice constant of Al:Si fcc random alloys. The re-
sults of this fit and a short discussion are reported in
Ref. 25. To prevent any possible instability, a short-
range repulsive potential has been added to Si at dis-
tances shorter than those included in the fit (r ( 2.4
A).

As stressed above, this simple potential was not in-
tended to reproduce the variety of phases Si displays,
encompassing both covalent and metallic bonding. How-
ever, to determine the range of validity of our model, it
is useful investigate how it describes the Si phases other
than the simple cubic. The P-tin structure is metal-
lic, with a volume per atom very close to that of the
sc phase. Not surprisingly, our model reproduces well
both its cohesive energy (Eo ——4.20 eV/atom computed
by the EA potential, vs the ab initio value Eo ——4.35)
and the lattice parameter (a = 4.848 A, c = 2.454 A in
the EA potential, vs the ab initio a = 4.82 A. , c = 2.66
A), with only a slight distortion in the atomic positions.
More demanding is the diamond structure, which is semi-
conducting. We find that our model has diamond as a
metastable structure, with a cohesive energy Ep = 4.65
eV/atom (experimental Ep = 4.63 eV/atom), a lattice
parameter a = 5.64 A. that is 4' larger than the exper-
imental one (a = 5.43 A.), and elastic constants close to
those obtained in Ref. 23. The metastability range of this
structure is rather extended, since it does not transform
during a long MD run (160 psec) at T 500 K. Only be-
yond this temperature does it spontaneously transform
to a di6'erent, distorted structure that we have been un-
able to identify. This last structure, which we assume is
the model ground state, has a cohesive energy Ep ——4.75
eV/atom and is fourfold coordinated.

We stress that, despite the qualitative similarity of the
phases displayed by our model and the experimental or
ab initio Si, we do not expect our potential to be reliable
for Si outside the narrow range of metallic alloys that are
the subject of our study. In particular, we did not check
properties like defect or surface energies for pure Si, and
we have no reason to expect the model to be accurate.
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