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Dense quasiperiodic decagonal disc packing
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An inflation rule is given which proves the existence of infinite decagonal rectangle-triangle tilings.
Such tilings correspond to the maximum possible density of a decagonal disc packing and can be
used to model decagonal quasicrystals. A lower bound of 0.0336 per vertex is found for the entropy
density of the corresponding random-tiling system. The atomic surfaces for a deterministic version
of the packing are self-similar and disconnected. The relationship between rectangle-triangle tilings
and. real decagonal phases is discussed. It is shown that the large unit cell associated with observed
microcrystalline phases has a natural explanation in the context of rectangle-triangle tilings.

I. INTRODUCTION

The problem of quasiperiodic disc or sphere packing is
of great interest in the field of quasicrystals. For exam-
ple, in a model for a quasicrystal where nonoverlapping
clusters of atoms are energetically favored, the most sta-
ble structures are expected to correspond to maximum-
density cluster packings. Such packings map naturally
onto tilings, where the vertices of the tilings represent
centers of clusters and the edges represent the linkages
between neighboring clusters.

Thus the problem becomes one of maximizing the den-
sity of vertices on a tiling, subject to quasiperiodic sym-
metry and with edges belonging to a specified set of vec-
tors. Perhaps the simplest such model for planar qua-
sicrystals with n-fold symmetry (n = 8,10,12) is to limit
the shortest edges to the set of n directions (2vri/nj. The
solutions to the dodecagonal and. octagonal disc packing
problems are known: in the dodecagonal case, it is a tiling
of equilateral triangles and squares; in the octagonal
case, it is a tiling of squares and various "hexagons. " In
each case, there is a finit entropy density associated with
various ways of arranging the same tiles under quasiperi-
odic symmetry. Furthermore, deterministic versions of
the packing yield atomic surfaces in the cut description
whose boundaries are fractal

Here we give an inflation rule which prod. uces a tiling
corresponding to a maximally dense decagonal disc pack-
ing. Furthermore, it has features in common with the oc-
tagonal and dodecagonal cases: there is a 6.nite entropy
density associated with diferent ways of arranging the
tiles and, for deterministic inflation, the atomic surfaces
that result are self-similar. The paper is arranged as fol-
lows. Section II describes the inflation rule and gives
the calculation of the entropy associated with rand. om
inflation. In Sec. III, the connection is made between
this model and real decagonal quasicrystals to conclude,
in Sec. IV, that certain decagonal phases are unlikely to
have simple atomic surface shapes in the cut description.

II. DECAGONAL RECTANGLE- TRIANGLE
TILINGS BY INFLATION

This section begins with a summary of the notation
used and a review of previous work on the decagonal disc
packing problem. The following projections of the basis
vectors in a four-dimensional representation are used:

e; = a [cos(2ai/5), sin(2vri/5)],

e; = a [cos(67ri/5), sin(6ni/5)],

(1)

(2)

for 1 & i & 4. The golden mean w is defined as
(1+v 5)/2 1.618. Associated with a vertex at position

i n;e; is its perp space coordinate x+ = g, i n;e+
and its level v = (P, i n;) ~s. For convenience, levels
3 and 4 are alternatively called levels -2 and -1, respec-
tively. The network formed by connecting points with
v = 0 separated by distance b = 2a sin(n/5) is called the
zero Level netio-ork. The set of (—x+j for the level v ver-
tices delimits the level v atomic surface The decagon. al
disc packing problem is to maximize the density of ver-
tices of a tiling subject to decagonal quasiperiodicity and
with edges in the directions (+e, j.

The standard Penrose rhombus tiling (2D PT) is il-
lustrative. The edges all belong to the required set of
near-neighbor vectors. However, the short; diagonal of
the thin rhombus, or "c bond, " is of length a/r ( a,
and, thus, at least one vertex on each c bond must be
removed to obtain a valid disc packing. Henley elim-
inated some vertices of the 2D PT to obtain a packing
fraction f = 0.7386. However, considering only tilings
where the vertices form a subset of vertices of a tiling of
the two Penro'se rhombi, the highest d.ensity is achieved
when the c bonds always form chains of even length I,.
Then, the removal of m/2 vertices is sufficient to elim-
inate all short distances. The tiling thus formed will
consist of fat Penrose rhombi and various hexagons. If
edges of length 6 are drawn, the tiling will have only
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two distinct tiles: a rectangle and an isosceles triangle
(Fig. 1). Symmetry then fixes the packing fraction to be
(z~ )/[8~5cos(vr/10)j = 0.7822.is This packing fraction
cannot be achieved by eliminating vertices from the 2D
PT because it contains odd-length chains of c bonds.

The standard binary decagonal tiling ' forms a bet-
ter starting point. All of the vertices have v = —1, 0, or 1,
thus it is a three-level tiling. Olamy and Kleman 6 found
a three-level tiling, whose vertices are a subset of the
binary tiling, corresponding to f = 0.7627. This tiling
achieves the highest packing fraction of any known pen-
tagonal structure with simple polygonal atomic surfaces.
Mihalkovic showed that, starting from the binary ti-
ing, a packing fraction of about 0.7719 can be achieved
by optimally eliminating vertices on the c bonds. How-
ever, the binary tiling still suffers from odd-length chains
of c bonds. A maximally dense decagonal packing must
therefore contain vertices not present in the binary tiling.

An inQation rule that leads to a three-level tiling with
the maximum packing fraction is shown in Fig. 2. The
linear scale of the inBation rule is w —18. There are
four units involved in the inHation procedure: (1) the
level 0 vertices (L vertices), (2) the level +1 vertices (S
vertices), (3) the b edges on the zero-level network (bL,I,
edges), and (4) the other b edges (bye edges). As shown
in Fig. 2(a), a D tile is drawn on each L vertex, a P
tile on each S vertex, an X tile on each bI,I. edge, and
a Y tile on each bye edge. The interior of each tile is
then filled as in Fig. 2(b) to yield the inHated tiling. The
filling is independent of neighboring tiles; an inflation
rule of smaller linear scale which has this property seems

unlikely, but bas not been ruled out. Note, however, that
only the even powers of v map the set of three levels onto
itself.

There is still a good deal of choice possible in the in-
Hation rule. Each small decagon containing ten triangles
and five rectangles can be filled in two ways differing by
a rotation of m; furthermore, the P, D, X, and Y tiles
can all be filled in different symmetry-equivalent ways.
The calculation of the entropy density due to such ran-
dom choices in inHation is straightforward; the details
(applied to the case of random StampHi inHationi) have
been given elsewhere. The relevant parameters for the
inBation rule presented here are given in Table I; these

(b)

~cr ~5l

FIG. 1. Comparison of (a) two Penrose rhombus, (b) rhom-
bus-hexagon (with disc packing shown), (c) rectangle-triangle
and (d) Hiraga-Sun decagon-pentagonal star-hexagon tilings
(Ref. 18). The zero-level network in (c) is highlighted. Longer
"hexagons, " containing adjacent rectangles, are not ruled out
by packing considerations, but do not arise from the in6ation
rule in Fig. 2.

FIG. 2. The inilation rule: (a) division of rhombus and
hexagon into D, P, A, and Y tiles, (b) filling of inflation
tiles with rectangles and triangles. The zero-level network is

highlighted.
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TABLE I. Parameters for in6ation.

Vertex or edge
L vertex
8 vertex
bl I, edge
~ss edge

No. per vertex
1 —5-'~' —0.5528

5-'~' = 0.4472
2v. 0.7639

0.2361

In8aton
tile
D
P
X
Y

No.
independent

fillings

4
2

512
1024

parameters, combined with the inBation scale of v, yield
the random inflation entropy density per vertex:

S (10 —5-'~') -"+2 -"
—0.03361.

1 —7- 12

This sets a lower bound on the entropy density of the

FIG. 4. Periodic approximant to decagonal rectan-
gle-triangle tiling. For clarity, only the edges of length a are
drawn.

v~ jw

decagonal rectangle-triangle random tiling system.
To illustrate possible atomic surfaces for the model,

the inHation rule was formulated in a deterministic way:
each X and Y tile had its interior filled in a way that
minimized perp-space variance P(w+)2, and the interi-
ors of small decagons, D tiles and P tiles were Glled in a
deterministic way depending on the sector of perp space
that the central vertex occupied. The result is shown in
Fig. 3 for the level 0 and level 1 atomic surfaces. Note
the complicated shapes containing self-similar features,
"pinwheels, " ' and disconnected pieces. A periodic ap-
proximant of the corresponding tiling, containing 1364
vertices, is shown in Fig. 4.

III. RECTANGLE- TKIANCLE TILINC S
AND DECAGONAL PHASES

FIG. 3. Atomic surfaces for (a) level 0 vertices and (b)
level 1 vertices. The atomic surface for level -1 vertices is the
inverse of that for the level 1 vertices.

Oxborrow and Mihalkovic ~ have shown that the
bright ring contrasts of certain high-resolution electron
micrograph (HREM) images of decagonal Al-Pd-Mn
(Refs. 18—21) can be interpreted as a zero-level network
of linkage length b = 20 A. More remarkably, when the
edges of the corresponding rhombus tiling (a = 17 A.)
are drawn, the chains of c bonds are almost exclusively
of even length. Thus, these images can be interpreted
as nearly defect-&ee rectangle-triangle tilings. Note that
the zero-level vertices are occupied by one type of colum-
nar cluster of decagonal symmetry and the v = +1 ver-
tices by a second type of columnar cluster of pentagonal
symmetry. Since the radii of the two types of cluster are
approximantly equal, packing considerations still apply.

The smallest (three-level) periodic approximant possi-
ble in this model is a centered-orthorhombic phase of unit
cell ~5+a by b which has recently been observed in Al-Pd-
Mn (Refs. 21 and 22) [see Fig. 5(a)]. The rhombic unit
cell associated with the Al-Cu-Co(-Si) (Refs. 23 and 24)
and Al-Ni-Co (Ref. 25) "microcrystalline" phases, while
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This cell (which is rarely observed) would naturally be
relatively unstable in the context of the rectangle-triangle
model.

IV. CONCLUSION

FIG. 5. Small rectangle-triangle approximants: (a) v 5ra
by b, (b) v 5ra by r b (fundamental cell rhombic, edge = r b

and 7 = 108').

seemingly very large (edge length &2b = 51 A. , p = 108'),
is actually the smallest known approximant containing a
connected zero-level network [see Fig. 5(b)j. The micro-
crystalline phase might thus be explained as the result of
an instability transition of a quasicrystal to a dynam-
ically accessible twinned approximant state, both based
on clusters of approximately 20 L diameter. Interest-
ingly, an approximant phase with a 36 rhombic unit cell
of edge +2b is not tilable by rectangles and triangles (due
to an odd number of thin 17 A. Penrose tiles per unit cell).

This work (1) gives an inflation rule which proves the
existence of in6nite decagonal rectangle-triangle tilings,
which have been shown to correspond to maximum den-
sity decagonal disc packings, (2) provides a lower bound
on the entropy of this tiling system, and (3) reiterates
the viewpoint that some real decagonal phases are based
on tilings of the rectangle and triangle.

The atomic surfaces for deterministic versions of the
inQation rule are self-similar and disconnected. It is un-
likely that the exact set of atomic surfaces shown in
Fig. 3 correspond to any physical atomic structure.
Real structures are more likely be to based on random
rectangle-triangle tilings; randomization will cause a
"blurring" of the atomic surfaces. In any case, decagonal
structures based on the rectangle-triangle tiling should
have atomic surfaces that cannot be described by simple
shapes such as polygons.
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