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Theory of the energy spectrum of excess electrons in highly polarizable Suids
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The energy of the bottom of the conduction zone and the efFective mass of excess electrons injected
into a nonpolar fluid with high polarizability is considered. Pseudopotential theory of electrons in a cel-
lular medium is extended to conditions where polarization attraction predominates over electron-fluid
interaction. The solution is obtained in the Wigner-Seitz cell for the case where the scattering length of
electron in the fluid is negative. The calculated density dependences of the conduction-zone bottom and
efrective mass of electron in noble fluids are in satisfactory agreement with available experimental data.

I. INTRODUCTION

The problem of the excess-electron state in Quids has
attracted the attention of many researchers for a long
time. A noble Quid with excess electrons is the simplest
system with strong interaction between charged particles
and a dense medium. Here two opposite effects manifest.
themselves. In weakly polarizable Quids the electron is
self-trapped; in Quids with high polarizabilities thermal
electrons have high mobility and may be considered al-
most free. The last phenomenon is a result of the
counterbalance of the polarization attraction and the
core repulsion in a dense medium and allows one to speak
about the "conduction zone" for the electron motion.
Today the physics of the almost free state seems to be
clear. However, some important questions remain open
for discussion (see the recent reviews given by Schmidt'
and Christophorou ).

The ground-state energy of the electron (the energy of
the conduction-zone bottom) passes through a wide
minimum with decreasing density. Recently, this
dependence was successfully described in a number of in-
teresting papers. ' However, some strong assumptions
were made. Explicit representations of the electron-
atomic potential, the short-range component of which is
unknown, are especially questionable (see the correspond-
ing criticism given in Refs. 11 and 12). As a result, it
turns to be impossible to describe by the same approach
the density dependences of both the bottom energy and
the electron mobility. The last dependence passes over a
sharp maximum and is very sensitive to any inaccuracy.
The position of the mobility maximum is very close to the
position of the minimum of the bottom energy.

These difhculties may be avoided by using a pseudopo-
tential theory developed on the basis of the ideas of
Springett, Cohen, and Jortner. ' In Refs. 14—16 the
pseudopotentials were constructed for s and p waves of
electron scattering from a unit cell of the Quid. The
analytical expression for the density dependence of the
scattering length was obtained. In agreement with the
Lekner prediction' the calculated scattering length, be-
ing negative in a gas, becomes positive at high densities.
The density dependencies of the electron mobility and en-

ergy of the bottom of the conduction zone were calculat-
ed without any adjusted parameters and were in satisfac-
tory agreement with experimental data. The inputs to
the theory are the scattering length (i.e., s-wave phase
shift) on an isolated atom, its polarizability, and the
binary correlation function of the liquid, which are
known experimentally.

In this paper the peculiarities of the energy spectrum
are considered. The ground-state energy and electron
effective mass are calculated for the whole liquid-density
regime with the use of a cellular model without adjust-
able parameters. For this purpose a solution of the wave
equation for an electron in the Wigner-Seitz cell is ob-
tained for the case of negative electron scattering length.
It extends the possibility of description of electron states
in a Quid, while the average environment of an atom has
a spherical symmetry. The electron effective mass is cal-
culated in the same approach. It is proved that the densi-

ty dependence of the reduced effective mass tends to uni-

ty with decreasing density, not monotonically but passing
through a maximum which exceeds unity. So the
effective mass tends to unity from above in a diluted gas.

In Sec. II below, we review the cellular description of
electron states and obtain the solution for the case of neg-
ative scattering length. The density dependence of the
ground-state energy is calculated. In Sec. III, the
relevant expression for the effective mass is obtained and
a qualitative analysis of the density dependence of the
effective mass is given. In Sec. IV, effective Inasses in Ne,
Ar, and Xe are calculated. This requires the knowledge
of p-wave phase shifts. The dependences of the p-wave
shift on electron energy and Quid density are obtained.

II. ELECTRON IN A CELLULAR HIGHLY
POLARIZABLE FLUID

Consider the ground state of an electron in the
Wigner-Seitz cell with the radius r =(4m.N/3) 'i, where
X is the atomic density. It is convenient to write down
the wave equation for the radial wave function g(r),

d yldr +[q —2m' U(r)]y=0,
where g(r)=rg(r), g(r) is the electron wave function,
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g(r)= A (qor) 'sin[qo(r L)],— (2)

where A is the normalization constant. The eigenvalue
of the wave number q satisfies the equation

and q is the wave number. The ground-state wave func-
tion is symmetrical about any atom (i.e., the center of the
cell), so that the following boundary condition has to be
satisfied: (dg/dr)=0 at r =r. In a dense medium the
electron finds itself in a muffin-tin potential field U(R).
Within the Wigner-Seitz cell U (r) is represented by the
electron interaction with an atom situated at the center of
the cell, and with the mean interaction with the cell envi-
ronment. At short distances from the cell center U(r) is
known. However, psuedopotential theory does not intro-
duce explicitly the electron-Quid interaction potential. '

If the scattering length of the electron from a cell, L, is
small, one can follow the approach of the zero-radius po-
tential, and use the second boundary condition in the
form g(L) =0. In the case L )0, this results in the wide-
ly used solution (e.g. , Ref. 13)

g(r) = A (~or) ' sinh[~o(r —L)] .

The eigenvalue Kp satisfies the equation

tanh[vo(r —L)]=@or . (7)

The energy of the ground state is negative, and the
momentum is imaginary:

Aq =imp .

Instead of Eq. (4), we have

Vo =uo —&'~o/2m .

Equation (6) gives the approximate solution of the
wave equation. It does not satisfy the condition g(0) =0.
On the contrary, the solution diverges at the origin.
However, if the domain of the pseudodescription is small
compared with the cell volume (~L~ (&r ), the diver-
gence is not important. It does not prevent the normali-
zation of g(r):

tan[qo(r —L)]=qor . (3)
A =—', (~or) [ sinh[2~o(r —L)]

Vo=uo+A' qo/2 . (4)

Here up is the result of the mean polarization of the
medium.

The potential U(r) inside every cell has a short-range
repulsive component and a long-range attractive one.
The last component represents the nonuniformities of po-
larization of the Quid. At high densities the strong over-
lap of the electron-atomic polarization potentials
smooths out the potential field considerably. That leads
to weakening of the attractive component of U(r). Be-
cause of it the short-range repulsion dominates at high
densities, and the scattering length is positive. In highly
polarizable liquids with decreasing density the attraction
strengthens and the scattering length becomes nega-
tive. ' In this case, Springett, Cohen, and Jortner
modified Eqs. (2) and (3). They described the short-range
repulsive component of U(r) by some scattering length
L„which is positive, and replaced the second boundary
condition by P(L, ) =0. As to the long-range component
of U(r) it was smeared inside the cell. This simplified ap-
proach helps one to understand some important relation-
ships. However, it is too ambiguous to give an accurate
description. Moreover, it does not describe the observed
minimum in the density dependence of Vp. "'

Fortunately, another more reasonable approach may
be proposed for the case when the scattering length is
negative but its absolute value is small. The ground-state
energy is negative now. We denote it ( —fi xo/2m). The
wave equation in the same approach of the zero-radius
potential is reduced to

This solution is used successfully in the electronics of
Quids. The energy of the conduction-zone bottom' is

+ sinh(2voL) —Zvor ] . (10)

This means that the electron will not be localized in the
potential well of the unit cell. Second, a transition exists
in the Fermi optical approach at low densities,

ao/2= 3L /2r—
The correct low-density limit is a feature of some well-
known Wigner-Seitz formulas, although the cellular ap-
proach loses the validity of course.

Calculations of ground-state energy require the depen-
dence of the scattering length on atomic density. Scatter-
ing lengths extracted from measured mobilities' are
used below, and calculated' L (X) for densities where ex-
perimental L are absent.

Table I contains the input data. Figure 1 demonstrates
the calculated dependences of electron scattering length
and ground-state energy on the density of fluid argon.
The ground-state energy is positive at high densities,
where L &0, passes through zero at the density N*,
where L becomes zero, and becomes negative with de-
creasing density.

TABLE I. Atomic polarizability a, scattering length on soli-
tary atom Lo, distance of the closest approach o, and calculated
radius of pseudopotential core for p waves.

If it is necessary, one can use some methods to eliminate
the divergence of g(r) at the origin.

There are two consequences of the relation (7). First,
we have the inequality

R «oz/2m ~A /2mr

d y(r)/dr x~(r)=0 . —

With the boundary condition g(L) =0, the solution of (5)
takes the form

Fluid

Neon
Argon
Xenon

a (ao)

2.663
11.08
27.11

Lo (ao)

0.20
—1.63
—5.90

(a, )

5,25
6,50
7,66

1.65
2.36
3.10
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FIG. 1. Density dependences of scattering length L and
ground-state energy of electrons in Ar.

Now it is possible to calculate the energy of the bottom
of the conduction zone in a wide range of Quid densities.
The second component of Vo is given by the expres-
sion' '"

uo= —3ae (2r ) 'f fg(R)R dR

FIG. 3. Density dependences of energy Vo in Xe. Squares
{Ref.5) are experimental data.

r which is less than cr. ' If r & o., the following estimate
canbe used: uo=——3ae (2r ) 'f.

The calculated results are shown in Figs. 2 and 3 and
compared with the experimental data. The theory de-
scribes the passage of Vo through the minimum, but it
underestimates Vo systematically. We discuss this in the
last section of the paper.

3ae Io(2—err ) 'f, (13) III. EFFECTIVE-MASS DENSITY DEPENDENCE

where g (R ) is the binary correlation function of the
medium, o is the distance of the closest interatomic ap-
proach (the parameter of the Lennard-Jones potential),
and f =(1+2ar )

' is the Lorentz local-field correc-
tion. ' The integral

Ill= Jg(R)R dR

is calculated using the Verlet radial distribution functions
g(r) of the Lennard-Jones Quid. ' These functions de-
scribe adequately the real structure of simple liquids in a
wide range of densities. So in Eq. (13) the changes in in-
teratomic correlation with the density variations are tak-
en into account, including the reduction of the number of
nearest neighbors. The integral Io -=1.2 in the domain of

The wave function of an almost free electron in a liquid
can be represented as a free-electron wave, modulated by
the cellular functions (2). The kinetic energy of excess
electrons E(k)=Pi k /2m, ir is counted from Vo, where

ff is the electron effective mass and haik is the electron
momentum. The effective mass of such an electron can
be calculated by the method proposed by Bardeen and
described in Ref. 22. It is a perturbation theory which
uses the expansion in powers of (k/qo) . Hence the va-
lidity domain of the theory is limited to kinetic energies
which are small in comparison with the ground-state en-
ergy in the Wigner-Seitz cell. As to the calculated
effective mass, it has to differ not too much from the
free-electron mass.

The Bardeen formula reads

(m, ir/m) '=g (r )[d 1ngi(r )/d 1nr —1], (14)

0.0
,

—0.2

where yl(r) is the single-site radial p-wave function of an
electron at the bottom of the conduction zone and yi(r )

is taken at the cell boundary. In the ease I. )0, Eq. (14)
was used in Ref. 23. It was converted to a form suitable
for calculations:

d 1nyi/d 1nr =(qor) tan(qor+51)

X [tan(qor +51)—qllr ]
' —1, (15)

0611 I I I I I I I I I I I I I I I I 1111 I I I I I I I I I I I I

0,0 0.5 1.0 1.5
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I I I I I ) I I I

2,0

where 51—=51(qo ) is the p-wave phase shift.
Consider now the case L &0, where the ground-state

energy is equal to ( —III Ko/2m). The wave function yi(r)
is the solution of the wave equation which we consider in
the approach of the zero-radius potential,

FIG. 2. Density dependences of energy Vo in fluid Ar. Cir-
cles (Ref. 6), squares (Ref. 4), and triangles {Ref. 3) are experi-
mental data.

d gl /dr + [2r Ko]pi =0

Here it is supposed that the phase shift 5& is a result of
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the potential action at distances which are smaller than r.
The solution has the form

g, = sinh(Kpr+5, )/Kpr —cosh(Kpr +5i) . (17)

Let us remember that the considered state is the state
with imaginary momentum iKp. The function 5, is
defined on the plane of complex momenta. The func-
tion 5,(iK) represents the analytic continuation of the
function 5,(q}, determined at the axis of real momenta q,
to the axis of imaginary momenta i~. On the imaginary
axis the phase shift from the short-range potential is to-
tally imaginary. Note that for the sake of space Eq. (17)
contains 5, —:Im5, (iKp), i.e., the symbol Im is omitted.

Hence in Eq. (14) we should substitute P(r) (6) and the
derivative

d 1 ny, (r)/d lnr = —(Kpr ) tanh(Kpr+5, )

U(r) = V(r)+u (r), ri & r &r,
V(r)= —ae /(2r ),

(22)

2r 3ru(r}=- — f Ii +I4
2r 0 3o Sar

(23}

Integrals I2 arid I4 are calculated in the same way as Io
in Eq. (13). If r &cr, Iz=—1.6 and I4 —=1.8. If r & cr, pa-
rameter rr has to be replaced by r in Eq. (23), and factors
Iz and I4 by unity.

In this case the p-wave shift is given by

ever, here we chose a somewhat simpler way of calcula-
tion. Consider the ensemble-averaged potential consist-
ing of three components: the hard core of radius r &, the
polarization potential of the central atom, and the envi-
ronment potential. Therefore outside the core we have

X [tanh(Kpr+5, ) —Kpr ] ' —1 . (18) 5, =5;+Pj'+5i,
We discuss now the density dependence of m, s/m in a

wide range of liquid densities. Near the triple point,
where the electron-liquid interaction is repulsive (L )0),
m, s/m is smaller than unity. It grows with decreasing
density, i.e., with growth in r. At some density X the
scattering length passes through zero. This corresponds
to the maximum in the electron mobility. For example,
in xenon the peak mobility is nearly four orders of magni-
tude larger than the low-density value. It is clear that the
electron is almost free here and its effective mass must be
very close to the mass of the free electron, m. Using Eqs.
(14), (2), and (15) and (14), (6), and (18), we obtain the fol-
lowing relationships near r'=(4mN'/3)

where 5i is given by the textbook formula for a hard
sphere of radius r, and P, and 5", are generated by the po-
tential (22). The potential well does not contain a bound
state, so the Born approach may be used:

9&'+5i=(2 m/A k )f U(kr)J3&2(kr)dr .
r,

(25)

It may be refined by the replacement of one of the func-
tions of free motion by the pseudofunction y, (r), which
vanishes at r =r, and contains the phase function 5,(r),

8,'+5",= (2m/—A k ) J "U(x)(sinxlx —cosx)

m, tr/ml e -=1—95,(qp)(qpr') ',
m, s/m~ + —1+91m5,(iKp)(Kpr')

(19)

(20)

X [sin[x —5,(x)]/x
—cos[x —5,(x) ]I dx, (26)

where s~0. Hence the ratio m, s/m is close to unity.
At r =r ' the derivative of m, s/m is given by

d (m, trim)/dr ~,
=—(3/2r )dL/dr —9d [5,(qp)(qpr') ]/dr' .

(21)

It is positive because dL/dr' &0. Hence m, s/m grows
with decreasing density and exceeds unity. At smaller
densities m, s/m after passing over the maximum begins
to decrease and in a gas approaches unity from above.

In reality the formulas given above lose their validity
somewhat earlier because the cellular model of fluids fails
in a gas.

IV. p PHASE SHIFT
AND El'X'ACTIVE-MASS CALCULATIONS

The pseudopotential approach does not use the explicit
form of the potential U(r} at small distances. Adequate
information about the short-range interaction can be ex-
tracted from the phase shifts of partial waves scattered
on an isolated atom. It allows one to describe the
electron-Quid interaction with high accuracy. ' ' How-

—x f (2r i /Sr ) ln( r /r
&

)

—x [1—(r, /r) ]/15] . (27)

This formula amends the formula for S,' which was given
earlier in Ref. 15. For scattering on a cell environment
we use the expression from Ref. 15:

5i ~(2ak r/63ap)(r/cr) f
X [I2[1—

—,', x ]+ ,'~I4(r/o ) [1—
—,', x ]]—. (28)

For determination of r, it is necessary to calculate the
p-wave scattering on an isolated atom. In this case,
5, =5;+P,' The last ter. m may be calculated by moving
the upper limit of the integral in Eq. (26} to infinity. It is
convenient to calculated r

&
using the position of the zero

of 5i as a function of momentum, 5,(k )=0. With k'
from Ref. 26, the value of r

&
for argon is equal to 2.36ao.

At the triple point, (ri /r ) -=0. 16. It is small even at the

where x =kr, x =kr, and x
&

=kr &.

As the first approximation it is possible to use 5& as the
phase function, 5,(x}=—5;=- —x3/3. If x «1, one ob-
tains in this case

~( ak3r/9ap)(1 —3r, l(2r)+(r, lr) l2
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triple point, and the pseudopotential core may be intro-
duced.

Calculated phase shifts are given in Fig. 4. At the tri-
ple point, where the polarization is weakened
significantly, scattering on the core dominates and 5, (0.
At smaller densities the components of 5, almost cancel
and the phase shift becomes small. With further decrease
in density the attractive interaction continues to increase,
and 5, becomes positive as in a gas. The values given by
the series (27) and (28) compare well to the results of nu-
merical integration in (26).

For Xe this approximation is insuScient because of the
high polarizability of the Xe atom. An attempt was un-
dertaken to refine the procedure of calculation. The fol-
lowing phase function was inserted in (26):

5,(r)=5;—(2nr /i)t2k2) f U(y)(siny/y —cosy)
1

.06 i [ ~ ~ [ ~ ~ & I
I

l [ i i l I t I I
I

I I I I I I I 10.

0.04—

0.02—

0.00

-0.02—

X I sin[y —5,(y)]/y
—cos[y —5,(y)] jdy,

(29)

—0.04
0.0 0. 1 0.2

WAVE NUMBER

0.3

(bohr

I I [ i I I 1 I i I I I I i I I I I i I i

and self-consistent calculations of 5i with the use of Eqs.
(26) and (29) were carried out. The self-consistent core
radius r, =3.lao. The calculated 5, are compared in Fig.
5 with the results of the simpler approach which was
used for argon. One can see how self-consistency
modi5es the results.

The reduced effective masses m, s/m are given in Figs.
6 and 7. The m, s/m density dependences demonstrate
the qualitative peculiarities which are discussed in the

l I I i I I I I I I I I I I I I I I I I I i f 1 1 it I I l I I I I I I I I 1

444

0.02—

FIG. 5. Wave-number dependences of p-wave phase shifts in
xenon. Atomic number densities in units of 10 cm: curve 1,
1.41; curve 2, 1.20; curve 3, 1.00; curve 4, 0.80. Solid lines, re-
sult of self-consistent calculations. Dashed lines, calculations by
Eq. (26). Triangles, isolated atom (Ref. 27).

previous section. However, in xenon m, s/m passes
through unity at a Xe density which is considerably
lower than N =—1.2X10 cm . We cannot aflrm that
p phase shifts are calculated for Xe so satisfactorily as for
Ar.

Finally, consider an electron in neon. The scattering
length on an isolated atom is positive and small,
Lo =0.17ao. In neon, depending on density and tempera-
ture, electrons can be observed in highly mobile states as

1.2 I I I I I I 111 I I I I I I I I I I I I I l I I I I 11
I I I f I I I I I I

0.00

1,0

—0.02-

—0.04
0.0

I I l I I I I i I I I I I I I I I I l I i i i I I I I I I I I I I I I I I I

0. 1 0.2 0.3 0.4

WAVE NUMBER (bohr )

FIG. 4. Wave-number dependences of p-wave phase shifts in
argon. Atomic number densities in units of 102~ cm 3: curve 1,
2.16; curve 2, 1.20; curve 3, 0.80; curve 4, 0.60. Solid lines, re-
sult of numerical integration. Dashed lines, expansion of 5&{k)
in powers of wave number. Triangles, isolated Ar atom {Ref.
24).
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O22 —
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FIG. 6. Density dependences of reduced effective masses in
Ar and Ne. Square, experiment {Ref. 28). Position of zero of
scattering length in Ax is indicated.



14 946 IGOR T. IAKUBOV AND VALENTIN V. POGOSOV 51

e 0.8

I I I I I I I I I
I

I I i I I
.

I I I T
I

I I t I I I I I 1 As to the reduced efFeetive mass in neon, it is close to
units at the density range N & 1.7X10 cm, where Vo
is small. Calculated values of m,z/m exceed unity slight-

ly at low densities. The increase over unity cannot be
considered as something exotic. For example, the re-
duced e6'ective mass of the positron, injected into con-
densed matter, exceeds unity. However, we cannot say
now that this peculiarity in neon is not a result of our ap-
proximations.
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FIG. 7. Density dependences of reduced e8'ective mass in Xe:
curve 1, result of calculation; curve 2, dependence obtained
from measured data (Refs. 29,30).
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well as being self-trapped electrons. '
The scattering length of an almost free electron in Quid

Ne (Fig. 8) increases due to the weakening of the attrac-
tive component of U(r) with the increase in density. At
the triple point, I. attains 0.74ao. The energy of the
conduction-zone bottom demonstrates the specific
behavior. It is positive at the triple point in accordance
with measured data. With decreasing density the energy
fails and becomes small at N =—1.7X10 cm . Remain-
ing small, Vo passes through zero, and becomes negative.

It is worth mentioning here that the problem of excess
electron in a dense medium differs from the Fermi prob-
lem of weakly bound electron-ion pair. The energy Vo is
represented by the sum of two terms, namely, 4 qo/2m
and uo. Both of them are induced by an injected elec-
tron. ' In diluted neon values of fi qo/2m -=2m% L/2m
are positive but small, and uo, which is negative, prevails.

V. DISCUSSION

The modeling of the electron-liquid potentia1 field is
the basic problem for every investigation of excess-
electron behavior. The problem requires answers to two
questions. First, how do we describe the short-range in-
teraction with atoms of the Quid? Second, how do we
build. the potential field in the interatomic space taking
account of the structure of the medium?

The short-range component of the electron-atomic po-
tential is unknown. Explicit introduction of it leads inev-
itably to introduction of adjusted parameters. However,
it is the set of scattering phase shifts which is required,
not the potentia1 itself. This is the starting point for the
pseudopotential theory. The phase shifts caused by the
short-range component of the interaction may be calcu-
lated from the phase shifts of partial waves scattered by
isolated atom. These phase shifts remain unchanged in
dense media.

The structure of the electron-liquid potential field in in-
teratomic space is determined by the polarization of the
liquid by an injected electron in the framework of the cel-
lular model. The cellular (or muflin-tin) model uses the
averaged symmetry of a simple liquid. The radius of a
spherical cell has to be equal to the mean interatomic
spacing. The field inside a ee11 has to be calculated with
the use of the radial distribution functions of the liquid.

The pseudopotential theory was suggested by
Springett, Cohen, and Jortner in Ref. 13 and it was used
successfully by a number of authors. In Refs. 14—16 and
in the present paper the theory is extended, and now it
helps to describe a large body of experimental data ob-
tained during the last decade in a wide range of densities.

However, the theory is a mean-field theory and does
not account for Quctuations of the potential field due to
the density Quctuations. Apparently, this is a reason for
the overestimation of the calculated

~ Vo~ which one can
see in Figs. 2 and 3.

Consider for a start the mean squared Quetuation of
the energy of the medium polarization,

0. 1 5uo=(duo/dN) 5N =(uo/N) 5N (30)

—0. 1

0.0 1.0 2.0 3.0

N (10 cm )

0.2

FIG. 8. Scattering length I. and energy of conduction-zone
bottom Vo as functions of Ne density.

were 5N is the mean squared Quctuation of the density.
An a priori estimate of 5N is not obvious, because the
volume of optimal Quctuation is not clear. Fortunately,
the value of 5N can be obtained from the measured max-
imum value of the electron mobility in the liquid, p,„,at
the density N =N*. The thing is that the value ofp,„is
determined by the Quetuations of the scattering length
5I. . The measured mobility data allow one to evalu-
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ate (5L ) =0. 1 lao in argon. On the other hand, we can
write

5L =(dL/dN) 5N

Hence

5uo =(uo/N) (dL/dN) 5L

(31)

(32)

This results in (5u0)'~ =0.09 eV at the minimum of the
density dependence of Vo in argon.

Now it is possible to estimate the influence of the small
density fluctuations on the ground-state energy of an
electron in the unit cell, TO=A qp/2m. Small density
Quctuations are given by the Gauss distribution

F(N)=(2~5N }exp[ (N —N)/—5N j,
where N is the mean particle density. Near the density
N=N*

TO=2M m 'NL(N) . (34)

Taking into account the almost linear dependence L (N}
(Fig. 1), To may be approximated by

To =2M m 'N(N —N' )dL /dN . (35)

The value of To at the mean density N=N is equal to
zero, but the mean value To(N*) is finite. Straightfor-
ward averaging of (35) over the distribution (33) leads to

To(N*) =2+8 m '5L (dL/dN*) (36)

where 5L and dL/dN' are taken at N=N', and may
be evaluated from the measured mobilities. This yields
the significant value To(N" ) -=0.024 eV.

We emphasize, however, that the given analysis ac-
counts for spherically symmetric fluctuations of the cell
environment and does not account for the development
of asymmetry. So the influence of fluctuations is consid-
erably bigger, and it is comparable to the overestimations
of Vo in Fig. 2.

A theoretical model which properly accounts for fluc-
tuations is based on the Feynman path-integral (PI) ap-
proach. It was proposed by Chandler and Wolynes.
The partition function for the quantum-
electron —classical-liquid system was written as the in-
tegra1 of the path-dependent action over all paths in
imaginary time. Monte Carlo (MC} and molecular-
dynamics (MD) techniques were then be used to evaluate
the path integral. Results have been reported for an elec-
tron in fluid helium, in helium, and in xenon. ' Con-
siderable progress was achieved later. '

In principle, path-integral and MC or MD calculations
can yield results with high precision which take account
of the inherent disorder of the Quid. Note that the theory
requires an explicit form of the electron-atomic potential
as input. The potential has to reproduce faithfully the
scattering of electrons from the atom. In the opposite
case, PIMC and PIMD calculations would not give an
adequate description. The first calculations for xenon
used an inaccurate potential and could not describe the
minimum in the density dependence of Vo. It is not
sufficient to require a good reproduction of the cross sec-
tion. The potential must reproduce the phase shifts of
partial electron waves scattered from the atom and do it

at low energies, lower than
~ Vo ~.

Up to now correlation functions for quantum electrons
are in general difficult to calculate over the complete
range of densities, using the present computation tech-
niques. That is why the RISM polaron theory is attrac-
tive. ' RISM theory was originally introduced by
Chandler to study the structure of liquids. By joining the
Feynman polaron approximation with RISM theory, a
method was given which ignores fluctuations of large am-
plitudes, but provides a practical procedure for attacking
a number of problems. Chen and Miller explained by
what approximations the results of PIMC calculations
can be reproduced by the RISM polaron theory in the
difficult problem of self-trapping in highly polarizable
liquids.

In Ref. 7 a semiclassical attempt was made to explore
the problem including disorder. Considerations are based
on the semiclassical idea that a particle of sufficiently
high energy (exceeding Vo ) may percolate throughout the
sample. The idea was used by the theory of electron self-
trapping. A corresponding criticism is given by Hernan-
dez. The relation between such a classical percolation
threshold and quantum delocalization is not established.

If the ground-state energy is calculated, one may be in-
terested in the determination of the effective mass. The
calculated effective masses are shown in Figs. 6 and 7.
They agree satisfactorily with experimental data near the
triple points of Ar and Xe and in xenon at densities down
to 0.9X10 cm . The Reshotko et al. measurements
of exciton creation energies were combined with the
Nakagawa et al. experimental data on the continuum
edge to obtain the experimental dependence of m, s/m
on xenon density.

A somewhat different density dependence of m, ir/I
was calculated in Ref. 44. The reported m, s/m increase
monotonically with decreasing density from the triple
point, so they arrive at unity in a diluted gas only. It is
impossible to indicate unambiguously the reason for such
a behavior because the procedure of the calculations is
entirely numerical and phase shifts 60 and 5& are not
displayed. However, it is clear that it would be impossi-
ble to describe the observed maximum in excess-electron
mobility using these phase shifts.

In a diluted gas our calculations describe the approach
of m, ir/m to unity. The wide range of densities exainined
in this exploration extends well beyond reasonable physi-
cally values, but it helps to highlight the qualitative
trends. We understand that another formalism is re-
quired here for reliable quantitative calculations. It is the
Green function method of many-particle theory. We in-
tend to consider this question later.

The values of m, ~/m given in Figs. 6 and 7 do not
differ much from unity. Therefore the requirement of
validity of the approach of almost free electrons, used by
the Bardeen theory, is satisfied.
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