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We obtain the phase diagram of a classical simple system of interacting particles. We use the
square-well model potential to study the effect of extremely short-ranged attractive interactions
on the phase diagram. In particular, we focus the attention on the solid-solid. transition recently
reported in the literature [Bolhuis et al. , Phys. Rev. Lett. 72, 2211 (1994)]. We use a functional-
perturbation approximation for the free energy. The theory predicts a 6rst-order transition between
two solid phases with the same structure, in agreement with recent Monte Carlo simulations. A
discussion about the mechanism responsible for this transition is also included.

I. INTRODUCTION

The pair potential describing the interaction between
two particles in a classical simple system, like a rare gas,
consists of two parts: an attractive tail over large dis-
tances (large compared with the particle size) and a re-
pulsive core at short ones. It is known that these two
contributions play different roles when determining the
phase diagram of the system. The attraction between
particles is responsible for the gas condensation into a
liquid phase. On the other hand, the Buid freezing into
a solid phase can be essentially understood in terms of
the packing properties which are controlled by the short-
ranged repulsion. Then, the attraction determines some-
how the relative stability of the liquid phase with respect
to the other phases (gas and solid) present in the phase
diagram. Moreover, when the range of the attractive in-
teraction is small enough, it is expected that the liquid
phase will be absent from the phase diagram. This is
because before a van der Waals loop is generated, as the
gas density increases, the system can reduce its f'ree en-
ergy, transforming itself into a solid. There is not much
evidence of this behavior for simple systems because of
the relatively large range of the attractive interaction of
most of the intermolecular potentials. A possible excep-
tion, recently reported, is the high-temperature phase
diagram of the fullerene C60. For high enough tempera-
tures (above room temperature) Cap behaves as a simple
system. Under these conditions the interaction between
two C60 molecules can be reasonably approximated by
the central Girifalco potential. When this potential is
compared with the standard Lennard-Jones (LJ) poten-
tial (which very accurately matches the interaction be-
tween two rare gas atoms) of the same well depth, a
main difference becomes apparent. The attractive tail
of the Girifalco potential goes to zero signi6cantly faster

than the LJ one does. There is a rough way to estimate
the effect of this difference on the phase diagram and,
in particular, on the stability of the liquid phase of C60.
The main qualitative effect will be a reduction of the
critical point temperature T, (measured in units of the
well depth) while the triple-point temperature Tq can be
expected to be also lowered but in a significantly much
smaller amount. If the reduction in T, is large enough, we
will have a phase diagram where the sublimation line is
always above the liquid-gas coexistence curve. Therefore,
the liquid phase will be absent from the phase diagram.
On the other hand, the ratio between the attraction and
the hard core &ee energy (proportional to the molecular
size) controls, in some sense, the position of the critical
point relative to the triple point. So we compare the ratio

where e is the potential well depth and o is defined. by
y(r = o) = 0, for both the LJ and the Girifalco poten-
tials. When this is done, we find that the ratio (1) for
the LJ potential is 3 times larger than the corresponding
result for the Girifalco potential. If this is combined with
the fact that & 2 for the L3 potential, we conclude
that it is reasonable to expect that the Girifalco potential
will possibly give a phase diagram where the liquid phase
is not stable. Molecular dynainics (MD) simulations and
Gibbs ensemble Monte Carlo (MC) simulations2 as well
as theoretical results ' have been recently presented for
the Girifalco potential. Although the MD results support
the existence of a stable liquid phase in a narrow range
of temperatures, the MC simulations give a phase dia-
gram without liquid phase. The theoretical results seem
to support the MD ones but, after a careful analysis,
they could even agree with the MC results. In summary,
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the Girifalco potential is quite close to the critical in-
teraction potential which precludes the existence of the
liquid phase.

Experimental evidence of this behavior exists for a dif-
ferent kind of systems, namely, in mixtures of colloidal
particles with polymers. The presence of the polymer
can be taken into account through an efFective attractive
interaction between the colloidal particles whose range
is related to the polymer size. 8 This gives the chance
for producing real simp/e systems with extreme pair po-
tentials and, in particular, with very short-ranged at-
tractive interactions. Some computer simulation and.
theoretical efforts have been recently dedicated to
study the phase diagram (including the solid phase) of
simple systems with varying range of their attractive in-
teractions. The expected behavior has been found and, in
particular, the theory predicts a value for the range of the
attractive tail where the liquid phase disappears which is
in reasonably good agreement with the simulation result.
However, an unexpected new transition has been recently
reported by Bolhuis and Frenkel. These authors, using
Monte Carlo simulations, have found that, if the range of
the attractive forces is short enough, a solid-solid transi-
tion emerges in the phase diagram. The effective simple
interaction between colloidal particles has been modeled
through the square-well potential:

oo, r (0.,
y(r) = ( —e, 0. & r ( 0. ~ b,0, r &o-+b,

(2)

where ~ is the diameter of the colloidal particle and e
and h are the depth and width of the attractive well, re-
spectively. The solid-soLid phase transition takes places
between two solid phases of the same structure. It is first
order and. ends at a critical point as the temperature is
increased. These are common features with the usual
liquid-gas transition. However, two main difFerences ap-
pear neatly. The first one is the strong dependence of
the critical point density w'ith the well width parame-
ter b. The second one is that the critical temperature
rexnains almost invariant in all range of b. These two
features are roughly interchanged in the Quid condensa-
tion where the critical density slightly depends on the
attractive range while the critical temperature increases
with this paraxneter. We shall discuss below the physical
mechanism behind these transitions.

In a recent work, Tejero et al. have presented a the-
oretical study of the phase diagram of systems with ex-
treme pair potentials. Their study includes the solid-solid
transition for very short-ranged attractive interactions.
They use a different pair potential model for the sake of
simplicity in their calculations. However, they have used
a difjerent theory for the fiuid phase and for the solid
one. Thus, they lack a consistent description of the full
phase diagram. In particular, they cannot ensure the rel-
ative stability of the different phases. In this paper we
report consistent theoretical calculations of the complete
phase diagram, including the solid-solid transition, for
the square-well potential (2). The rest of the paper is
arranged as follows: In Sec. II we summarize our theo-

retical model and in Sec. III we present and discuss our
results, including the comparison with simulation data.

XI. THE&BR

In this section we summarize the perturbation
weighted density approximation (PWDA) which has been
recently proposed by us. ' The PWDA has been
successfully applied to study the phase diagram of a
LJ system. ~3 A simplified version, SPWDA, has also
been presented and applied to the I J and Girifalco
potentials 4' and to a model of colloidal dispersions.

The standard perturbation scheme, successfully used
in uniform Quids, provides a density-functional approx-
imation for the Helmholtz free energy, I" [p(r)], of nonuni-
form systems. Its general expression is

+ [p(r)1 = +-r[l (r)] + U [p(')]

E, p is the Helmholtz &ee energy of the reference system
and U„ is the contribution to the &ee energy coming &om
the attractive perturbation y„(r). Its explicit form, up
to first order, is

where p, &(r, r ) is, according to first-order perturbation(2) ' ~

theory, the pair distribution function of the reference
system. This function is usually written in terms of

t

g, r(r, r ), the extension of the radial distribution func-
tion (RDF) to the case of the inhomogeneous reference
system, as

f(r r ) = p(r)p( )g &( ).

For uniform phases the density p(r) reduces to the mean
density and the PWDA recovers the standard pertur-
bation theory. The minimization of the functional with
respect to p(r) would determine the free energy and the
equilibrium structure of the system. However, a previ-
ous step is usually needed to use the theory even in the
uniform limit; namely, the &ee energy of the reference
system is generally mapped onto that of hard spheres of
some effective diameter dHs. Thus, some criterion has to
be provided to obtain dHs &om the reference potential.
This is not the case in this work because the natural way
to split the potential (2) into reference and perturbation
parts already gives a hard sphere system of diameter o
as a reference. The remaining problem is, then, the ap-
plication to nonuniform phases, like the solid one. Unfor-
tunately, little is known about the RDF in nonuniform
systems. Then soxne additional approximation should be
introduced to proceed. The main aim of PWDA theory
is to obtain the mapping of the actual g, g into the RDF
of the uniform system at some effective density p which
will, in general, depend on the position. This scheme
has been successfully used with some very simple pre-
scriptions for p(p = p(r), j. = [p(r) + p(r )]/2, etc.) in
cases where the nonuniformity is not very strong like,
for example, a liquid-vapor int. rface far above the triple
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point. ' However, it is clear that this kind. of recipe,
based on the local density p(r), will not work when the
system has a pronounced nonuniformity, like the solid
phase. In these cases the local density may reach val-
ues many times larger than the close-packing density in
the uniform system. The alternative proposed by PWDA
theory is based on the exact local compressibility equation
(see the Appendix in Ref. 13)

dr p(r ) [g„r(r, r ) —1] = —1+ k~T dp(r)
pr dp

where p is the chemical potential. Precisely, p is de-
fined through Eq. (6) substituting the nonuniform RDF
g„r(r, r ) by its uniform limit g„g[]r —r I, p(r)] and. solv-
ing for p(r). It has been showni4 that this prescription
together with a smooth perturbation p„(r) at ]r] = IKiI,
where IRi] is the first-neighbor distance in the solid
phase, gives a very accurate result for the perturbation
energy in the solid phase. The last condition is achieved if
we use the Week-Chandler-Anderson (WCA) criterion
to split the intermolecular potential.

The simplified version, SPWDA, is based on the usual
compressibility equation which can be obtained &om
integration of the local compressibility equation (6). In

I

this version, the g„f(r, r ) is mapped into a RDF of a
uniform system, g„f(Ir —r I, p), where the eff'ective den-
sity does not depend on position. The SPWDA gives
competitive accuracy and significantly reduces the com-
putational efFort without adding any approximation with
respect to the PWDA. The price paid for it is that it only
applies to macroscopically homogeneous systems like the
solid phase. Notice that to elucidate the relative sta-
bility of the difFerent phases (and, therefore, to obtain
the phase diagram) it is important to use a theory with
some grade of sophistication. In particular, the theory
should be able to describe all the involved phases using
the same approximation and, of course, it should be free
of parameter adjustment. Our theory is, so far, the only
one which satisfies both crucial requisites (see Ref. 14 for
a discussion of these points).

set of b values (dotted lines indicate transitions between
metastable states and they are included for the sake of
comparison).

We shall first describe the general characteristics of
these diagrams. For small b (Fig. 1) the phase diagram
exhibits the expanded solid-condensed solid transition
which ends at a critical point. The phase diagram shows
also a Quid-solid transition and a triple point where the
fluid, the expanded solid, and the condensed solid coex-
ist. The Quid condensation, i.e., the gas-liquid transi-
tion, does occur but only at very low temperatures and
between metastable states. As h increases (Fig. 2), the
solid-solid transition moves towards lower densities but
the critical temperature remains practically unchanged.
At the same time, the critical temperature of the fluid
condensation rises but still this transition takes place be-
tween metastable states. For 8 higher than 0.06 (Fig. 3)
the solid-solid critical point becomes a metastable state
with respect to the state of a fluid coexisting with a solid
at the same temperature. Therefore the solid-solid tran-
sition, between stable states, disappears. The critical
temperature of the fluid condensation continues to rise
but still remains below the sublimation line. Therefore
there is a range for b values (approximately from 0.06 to
0.25) where the phase diagram only exhibits two stable
phases, fluid and solid, and a first-order transition be-
tween them (Fig. 3). For b 0.25 (Fig. 4) the gas-liquid
transition emerges above the sublimation line. Then the
phase diagram presents the usual pattern of a simple clas-
sical system: the three stable phases (gas, liquid, and
solid), the three transitions (condensation, sublimation,
and melting), the condensation critical point, and the
gas-liquid-solid triple point. Notice that for b = 0.25
(Fig. 4), the attractive potential still corresponds to a
weak interaction and the stable liquid phase is confined
into a very narrow temperature range between the triple
and the critical temperatures. For b 0.30 the phase
diagram is very similar to that of the LJ diagram, as it
should be.

I I I I

I
I I I I

I
f I I I

III. RESULTS AND DISCUSSION

We have used the SPWDA to determine the phase dia-
gram of the square-well potential. The potential param-
eters o and e are used as distance and energy units, re-
spectively. We have studied the evolution of the phase di-
agram with the parameter b in the range 0.01—1.00. The
lower values correspond to an extremely short-ranged at-
tractive interaction while b = 0.3 would already corre-
spond to the attractive range of the Lennard-Jones po-
tential. In this work we have limited ourselves to study
the face-centered-cubic (fcc) structure for the solid phase.
This will allow us to compare with simulations. Besides,
other possible solid structures, except the hexagonal close
packed (hcp), have a much smaller packing density and,
therefore, they can be ignored. On the other hand, the
&ee energy difFerence between fcc and hcp structures is
quite small. Figures 1—4 show the results for a selected

0 I I I I I I I I I I I I I

0 0.5 1 1.5

FIG. 1. Phase diagram of the square-well potential in the
temperature-density plane for b = 0.01. Labels I", S, and S,
mean Quid, expanded solid, and condensed solid, respectively.
The dotted line at the bottom is the Grst-order transition
between the metastable liquid and gas phases.
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FIG. 2. As in Fig. 1 for b = 0.05.
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FIG. 4. As in Fig. 1 for b = 0.25. Labels G, I, and S mean
gas, liquid, and solid, respectively.

FIG. 3. As in Fig. 1 for b = 0.08. Label S means solid.
The dashed line represents the first-order transition between
the metastable expanded and condensed solid phases.

The qualitative evolution of the solid-solid transition
versus b, discussed above, agrees with the simulation re-
sults of Bolhuis and Frenkel. We shall come back to
this point later. Our theoretical approach also allows us
to determine the complete phase diagram and, in par-
ticular, predicts that the Quid condensation is a difFer-
ent transition from the solid condensation (the expanded
solid-condensed solid transition). In fact the theory pre-
dicts the simultaneous existence of both transitions for
small b values (Figs. 1—3), though the fluid condensation
takes place between metastable states. Furthermore, we
shall show below that the only common feature of these
two transitions is the necessary existence of an attractive
interaction, but the mechanisms giving place to them are
quite difI'erent.

After the above general description of the phase dia-
grams, we shall now pay attention to several qualitative
and important details related to the solid-solid transition:

(1) We have already mentioned that the solid-solid crit-
ical temperature is almost invariant with respect to b
while the critical density decreases as b increases.

(2) The density of the condensed solid which coexists
with the expanded solid depends slightly on the temper-
ature (Figs. 1 and 2) while the density of the expanded
solid which coexists with the condensed solid decreases
significantly with the temperature (Fig. 1).

(3) On the other hand, at a given temperature, this
first-order transition becomes stronger —i.e., the density
jump increases —as h increases (see Figs. 1—3). Notice
that, despite this fact, the transition disappears at high
b, because the coexisting phases become metastable with
respect to the Quid-solid transition.

(4) The Quid-solid transition at high enough temper-
atures tends to the melting transition of hard spheres,
as it should be. In Figs. 1—4 it can be appreciated that
the coexistence fluid and solid densities of this transi-
tion tend to p = 0.9433 and p = 1.0609, respectively,
the values predicted by the present theory for the hard
sphere melting. The interesting point is that, for high
b', the Huid-solid transition bends towards lower densi-
ties as the temperature decreases (Figs. 3 and 4), as
is expected. However, for low b it bends towards higher
densities (Figs. 1 and 2). Moreover, this bending towards
higher densities ends at the fluid-solid-solid triple point.
At temperatures lower than this triple point the Quid co-
existence density recovers its expected dependence with
temperature.

We shall discuss now the mechanisms giving place to
all the above features with the help of our theory. Bolhuis
and Frenkel have already given an intuitive argument
to explain the solid-solid transition dependence on the
parameter b. Basically, the transition would appear at
the density where the nearest neighbors (NN) distance
is comparable to the well width b. Under this condition,
each particle significantly reduces its interaction energy.
If this reduction outweighs the loss of entropy, the tran-
sition takes place. This pure geometrical effect is clearly
refIected in the phase diagram and, in fact, the critical
density is located at the density where the NN distance
of the fcc structure is just o + b. At high enough tem-
peratures the eKect of the entropy cancels any efI'ect of
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FIG. 7. As in I'ig. 6 but for po = 1.35.

dependence of the solid-solid critical temperature on the
parameter b [point (1)]. Let us consider the free energy
per particle (i.e. , per Gaussian) in k~T units. This is the
sum of the temperature-independent hard sphere contri-
bution (ideal gas free energy plus hard core free energy
excess) and the attractive energy. The latter is an inte-
gral restricted over the square well. At densities lower
than the critical one the Gaussian is practically outside
the square well. Then the contribution to the free energy
is very small. The free energy (Fig. 6) and n (Fig. 5) do
not dier too much &om those of hard spheres except for
low enough temperatures. But just for densities equal or
greater than the critical one the Gaussian is essentially
inside the well and, then, the attractive energy per par-
ticle must be of the order of 6e/k~T (a—s seen in Fig.
7). This free energy depleting when crossing the criti-
cal density only depends on temperature; if this is small
enough, the free energy will decrease significantly and it
will drive the transition. An essential point is that this
result does not depend on b; then the solid-solid critical
temperature is expected to be b independent. In fact, we
have found that, over the entire range of b values, the
attractive contribution per particle at the estimated crit-
ical point is F t, /Nk~T, = —1.01 (with an error around
1%). It is then quite appealing to infer that only when
the thermal particle energy k~T is lower than the well
depth e is the Gaussian captured in the well and the tran-
sition can take place. It is interesting to notice that the
attractive energy works in a diferent way in the liquid-
gas condensation. In this case the attractive energy per
particle clearly depends on b. In particular, in a mean
field approximation (i.e.

&
approximating g„f by a step

function) it is proportional to h, and therefore tl. crit-
ical temperature will increase with b as is well known in
simple classical Quids.

We can now easily understand point (2). Figure 8
shows the solid &ee energy versus mean density for
b = 0.01 at diferent temperatures. Notice that, as we
have discussed above, the &ee energy does not change
appreciably with temperature for densities below the crit-
ical one (p = 1.37). However, above the critical density,
i.e. , when the equilibrium position of the particles is in-

side the attractive wells, the free energy suKers a local
depletion with the appearance of an elbow (see Fig. 8).
%hen the temperature decreases the elbow size increases,
but its position remains practically unchanged. The com-
mon tangent method, applied to the &ee energy curves of
Fig. 8, immediately gives the coexistence densities of the
condensed and expanded solid phases. Clearly, the coex-
isting density of the condensed solid is rather attached
around the minimum of the elbow, while the coexisting
density of the expanded solid moves towards lower densi-
ties when the temperature decreases. Figure 1 shows this
characteristic asymmetric behavior of the solid-solid. co-
existence curve. Of course, at high enough temperatures
(above the critical one), the elbow is very flat and no
common tangent can be drawn in the free energy curve:
There is no solid-solid transition.

The coexistence densities of the Quid-solid transition
are anchored at high temperatures, practically above
k~T/e = 5, at the coexistence densities of the fluid-solid
transition of hard spheres, as it should be. This compels
those coexistence densities, at low temperatures, not to
be very diferent from those at high temperatures and to
be rather independent of b, as Figs. 1—4 show [see, how-
ever, discussion of point (4) below]. On the other hand,
the coexistence densities of the solid-solid transition, as
we have discussed, decrease as 8 increases (though its dif-
ference increases; i.e. , the transition is stronger). There-
fore, at some b value, the solid-solid transition is pre-
empted by the Buid-solid transition (see Fig. 3). Thus
point (3) is also explained.

Finally we will discuss the last characteristic of the
phase diagram [point (4)]. Figures 1 and 2 show that the
density domain of stability of the Quid phase increases
with respect to that of the hard sphere Quid as the tem-
perature decreases until the Quid-solid-solid triple point
is reached. When the temperature is further decreased,
below the triple point, the Quid density domain of sta-
bility begins to decrease. This can be easily understood
in the light of the previous discussions. We have already
noticed that the expanded solid hardly detects the attrac-

18

g

I

1.4

FIG. 8. Free energy density of the solid phase (in knT
units) versus mean density for 6 = 0.01 at knT/e = 2.0,
1.5, 1.2, and 1.0 (from top to bottom).
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tive square well. However, the fluid particles (o. = 0) are
able to see it at any density. Therefore the fluid is, obvi-
ously, much more eKcient in reducing its free energy (and
hence increasing its stability) than the expanded solid
phase. This explains the bending of the fluid-solid transi-
tion towards higher densities for temperatures above the
triple point. However, for temperatures below the triple
point, the fluid. must compete with the condensed solid
phase. As we have already seen, the NN distance in this
phase is smaller than 0 + b and therefore all particles are
inside the attractive wells reducing the free energy quite
efBciently. Then the density range of fluid stability re-
cedes below the triple point (Fig. 2). For larger values of
b, when all the expanded solid states become metastable
(Fig. 3) or when the expanded solid state becomes unsta-
ble (Fig. 4), the usual bending of the fluid-solid transi-
tion towards lower densities at low temperatures is recov-
ered. Notice that this unusual bending of the fluid-solid
transition at low enough h (around or less than 0.01)
gives place to an interesting eKect: Starting froxn a solid
phase at low densities and at high temperatures we can
arrive at the fluid phase (through a transition) lowering
the temperature but keeping the density constant.

Now we compare our results with the computer sim-
ulations (Monte Carlo) due to Bolhuis and Frenkel. ~

All the qualitative features of the solid-solid transition
in the phase diagram obtained by simulation have been
reproduced by the theory. As one could expect from
a mean field. approach, the estixnated critical tempera-
ture (k~T, /e = 2.7) is larger than the simulation result
(kgyT, /e 1.7). However, it is too large, at least if we
take into account the corresponding result for the liquid-
gas critical temperature where the discrepancy is around
10%%uo. Unfortunately, there are no simulations of the Huid

phase for the range of b where the solid-solid transition
is present in the phase diagram. Then an important part
of our predictions cannot be compared with simulations.
We think that our theoretical predictions would be con-
firmed in future simulations, at least qualitatively. For
example, Fig. 9 shows the critical density of the solid-
solid and liquid-gas transitions and the so.id-solid-liquid
and the solid-liquid-gas triple points. The agreement
with the simulations is excellent for the solid. -solid tran-
sition. The agreement is the expected for the case of
the liquid-gas transition at high values of b. ' It would
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be very interesting to know if this remains so for low b
values. Our theory predicts the (solid-liquid-gas) triple
point for classical fluids in agreement with simulation re-
sults; then we expect the same behavior at low b values
for this triple point. We expect a similar agreement also
for the solid-solid-fluid triple point. However, obviously,
this will fail when the liquid-gas critical temperature is
close to the solid-liquid-gas triple temperature (Fig. 4) or
when the solid-solid critical temperature is close to the
solid-solid-Auid triple temperature (Fig. 2).
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FIG. 9. Critical and triple-point densities versus b.
Solid-solid critical density (solid circles). Liquid-gas criti-
cal density (open circles). Expanded solid density at the
solid-solid-Quid triple point (solid triangles). Liquid density at
the solid-liquid-gas triple point (open triangles). The crosses
are the Bolhuis-Frenkel simulation results for the solid-solid
transition and the simulation results of Vega et aL for the
liquid-gas transition.
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