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We consider two-dimensional Fermi liquids in the vicinity of a quantum transition to a phase with
commensurate, antiferromagnetic long-range order. Depending upon the Fermi-surface topology,
mean-field spin-density-wave theory predicts two different types of such transitions, with mean-
field dynamic critical exponents z = 1 (when the Fermi surface does not cross the magnetic zone
boundary, type A) and z = 2 (when the Fermi surface crosses the magnetic zone boundary, type
B). The type-A system only displays z = 1 behavior at all energies and its scaling properties
are similar (though not identical) to those of an insulating Heisenberg antiferromagnet. Under
suitable conditions precisely stated in this paper, the type-B system displays a crossover from
relaxational behavior at low energies to type-A behavior at high energies. A scaling hypothesis is
proposed to describe this crossover: we postulate a universal scaling function which determines the
entire, temperature-, wave-vector-, and frequency-dependent, dynamic, staggered spin susceptibility
in terms of four experimentally measurable, T = 0 parameters. The scaling function contains the
full scaling behavior in all regimes for both type-A and -B systems. The crossover behavior of the
uniform susceptibility and the specific heat is somewhat more complicated and is also discussed.
Explicit computation of the crossover functions is carried out in a large N expansion on a mean-
field model. Some new results for the critical properties on the ordered side of the transition are
also obtained in a spin-density-wave formalism. The possible relevance of our results to the doped
cuprate compounds is brie8y discussed.

I. INTRODUCTION

A number of recent works have proposed a descrip-
tion of the low-temperature spin dynamics of strongly
correlated electronic systems using their proximity to an
actual or hypothetical zero-temperature, magnetic, quan-
tum phase transition. Such an approach has the advan-
tage of allowing development of a systematic expansion
about a point with nontrivial spin correlations and with
strongly interacting excitations. Some of these proposals
have arisen in the context of two-dimensional interacting
electron models of the doped cuprate superconductors,
while others considered the heavy-fermion compounds.
The ideas of this paper will be presented in the former
context, although our approach may be of a more general
utility.

We begin our discussion by reviewing two recent com-
plementary approaches to magnetic quantum transitions
in the cuprate compounds. A united picture of spin
fluctuations in the lightly doped cuprates obtained from
these past approaches, and our present work, is provided
towards the end of this paper in Sec. V. We wish to
emphasize at the outset that all of the discussion in this
paper refers to spin fluctuations associated with commen-

su@ate antiferromagnetic ordering; for the cuprates this
corresponds to an ordering wave vector Q = (n, vr). We
have little to say here about the case of incommensurate
ordering.

The erst approach begins &om an insulating parent
compound, like La~Cu04, whose spin fluctuations can
be modeled by a spin-1/2 Heisenberg antiferromagnet on
a square lattice. The low-energy excitations of the anti-
ferromagnet are believed to be well described by a contin-
uum O(3) nonlinear o model field theory. The nonlinear
cr model is parametrized by a single coupling constant g,
which measures the strength of quantum fluctuations in
the system; for g (g, the system has Neel order, while
for g ) g„ it is in the quantum-disordered phase. The
transition at g = g has been studied in some detail-
it has a dynamic critical exponent z = 1 and leads to
a quantum-disordered phase in which at T = 0 the low-
energy magnon excitations have a gap and an infi. nite life-
time. The current experimental and theoretical consen-
sus is that the S = 1/2 Heisenberg antiferromagnet has
macroscopic Neel order in the ground state, and there-
fore should map onto a 0. model with g & g . Now con-
sider doping this antiferromagnet with a small number of
holes. At very small doping, the holes form small ellipti-
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cal pockets at (vr/2, vr/2) and symmetry-related points
in the magnetic Brillouin zone. ~~ Quantum fluctua-
tions associated with these holes decrease the spin stiff-
ness of the antiferromagnet and should therefore drive
the effective value of g closer to the quantum transition
point at g = g, . (We are assuming here that conditions
are such that there is a direct transition from a com-
mensurate long-range-ordered state to a commensurate
quantum-disordered state with increasing doping; we
are neglecting the possibility of an intermediate incom-
mensurate long-range-ordered state. ~s ~4) Suppose that
quantum fluctuations are strong enough that the disor-
dering transition occurs while the holes still occupy small
pockets. The critical properties of such a transition were
studied by one of us in the framework of the Shraiman-
Siggia model: It was found that the dynamic critical
exponent remained at z = 1, and the mobile charge car-
riers only introduced a small damping of the magnon
excitations at the critical point. The full structure of the
quantum-disordered phase in this model and, in particu-
lar, the topology of its Fermi surface are not well under-
stood: We will discuss these issues further in Sec. III C.

The second approach begins with the opposite limit of
large doping, where the dilute system of electrons is pre-
sumably well described as a Fermi liquid. Using mean-
Geld spin-density-wave ideas, a scenario for the onset of
antiferromagnetic order in such a Fermi liquid was pro-
posed many years ago by Hertz and extended recently
by Millis. 5 It turns out to be important to distinguish
two cases depending upon the value the ordering wave
vector Q [for our case Q = (m, m)], and the shape of the
Fermi surface in the quantum-disordered phase.

(A) Damping of spin excitations tvith momenta near
Q, due to conversion into particle-hole pairs, is forbid
den: This is the case when Q cannot connect two points
on the Fermi surface. For a circular Fermi surface this
corresponds to Q ) 2kF where k~ is the Fermi wave
vector. The transition then has the mean-Geld exponent
z = 1 and is rather similar to the discussion above on the
Grst approach. The scaling results of Ref. 4 apply mostly
unchanged: Some simple modifications are necessary for
the uniform susceptibility, and are discussed in Sec. IV A.

(B) Damping of spin excitations with momenta near
Q, due to conversion into particle hole pairs, is -allowed:
This is the case when Q can connect two points on the
Fermi surface, which for a circular Fermi surface cor-
responds to Q ( 2k' . This transition has z = 2 in
mean-Geld theory. Accordingly, the magnon excitations
in the quantum-disordered phase are overdamped and re-
laxational.

We will not discuss the special case Q = 2k~ in this
paper.

A phenomenological form for the magnetic suscepti-
bility near a type-B transition was introduced in con-
text of cuprate superconductors by Millis, Monien, and
Pines to explain NMR data in YBa2Cu307. The z = 1
to z = 2 crossover with doping was later proposed by
Sokol and Pines and by Barzykin et aL to describe the
evolution of the experimental NMR and neutron scatter-
ing data with oxygen concentration for YBa~Cu306+
Very recently, Liu and Su considered a two-component

"Kondo-lattice"-type model of the cuprates, with sepa-
rate localized spin and itinerant electron degrees of free-
dom. They assumed conditions that were appropriate to
have a type-B phase transition with z = 2, and found
behavior characteristic of this value of z at the lowest
energies or temperatures. At higher temperatures, how-
ever, they found a crossover to behavior characteristic
of z = 1. Earlier, the temperature-induced crossover
to the z = 1 regime was discussed in Ref. 17 in rela-
tion to YBa2Cu306 63 It is not difBcult to see that this
crossover is in fact a rather general phenomenon for type-
B systems —there will always be reactive terms
(u is a measuring frequency) in spin response functions
which will overwhelm dissipative terms at large enough
cu. The crossover should be especially pronounced in sys-
tems where the damping constant p is small.

The main purpose of this paper is to discuss the scal-
ing properties of the quantum-disordered phase of sys-
tems near transitions of type B. We will also make a few
comments about type-A systems to which the analysis
in Ref. 4 will mostly apply. We will assume that con-
ditions in the type-B system are such that the higher-
energy crossover to type-A behavior occurs at energies
which are significantly smaller than other high-energy
cutoffs like the Fermi energy or the exchange constant.
(For type-B systems which violate this condition, our
results reproduce the correct asymptotic critical singu-
larities, but make a particular choice for numerical scale
factors which are in fact nonuniversal in this case; these
statements will be made more precise later. ) We also as-
sume, of course, that no other unrelated low-energy scale
appears. We will propose a scaling hypothesis, in which
the wave vector (q), frequency (u), and temperature (T)
dependence of the staggered spin susceptibility can be
expressed in terms of a scaling function which involves
only four experimentally determinable T = 0 input pa-
rameters. Only these four parameters are dependent on
the details of the microscopic interactions in the ground
state; everything else is universal and can, in principle,
be computed in a long-d. istance Geld theory. The general
scaling arguments will be presented in the Sec. II. The
crossover behavior of the uniform susceptibility and the
specific heat is somewhat more complicated and requires
additional microscopic parameters —this is discussed in
Secs. IVA and IVB.

We will then illustrate these scaling ideas in two model
calculations.

In Sec. III we consider magnetic phase transitions in
a standard spin-density-wave (SDW) formalism. We will
examine a simple model —a Hubbard model with Grst

(t) and second neighbor hopping (t') for the fermions-
which displays a transition of either type A or type B,
depending on the ratio t/t'. Note that in both cases,
the Fermi surface in the quantum-disordered phase is
large (i.e. , encloses a volume given by the total num-
ber of electrons). The SDW results for the magnetic
susceptibility will illustrate the important differences in
the nature of the spin excitations between type-A and
-B transitions. SDW theory will also be used to ob-
tain new mean-field results for critical properties on the
magnetically ordered side of the transition. Finally, we
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will brie8y discuss the relation between the SDW results
and those for the Buctuation-driven magnetic transition
within the Shraiman-Siggia model.

In Sec. IV, we Grst use the results of Sec. III to mo-
tivate a model Geld theory S to describe the quantum-
disordered phase in case-B and its crossover to type-A
behavior. The model S, which relies on a mean-field ap-
proximation for the fermions, will turn out to be precisely
the one proposed by Liu and Su; we caution, however,
that the validity of S as a description of the underly-
ing fermionic excitations has not been conclusively es-
tablished asymptotically close to the critical point. We
will use a large N expansion to compute explicit results
for the crossover scaling functions of S.

Finally in Sec. V we will discuss the experimental rel-
evance of our results and state our main conclusions.

II. SCALINC HYPOTHESES

functions of these four parameters only. Imagine we have
available, either through experiments or computer sim-
ulations, the T = 0 value of the imaginary part of the
local, on-site, dynamic spin susceptibility y'L (u) of the
system of interest; the local susceptibility is obtained by
integrating the dynamic susceptibility over momenta in
the vicinity of Q [where it equals g, (q, ~)j. In an in-
sulating antiferromagnet, whose transition is described
completely by the primary, z = 1 Gxed point, yL would
have the form shown in Fig. 1(a): There is gap below
which the spectral density is strictly zero, a discontinu-
ity at the gap, and for large u we have yl' u" where
g is an anomalous dimension of the z = 1 fixed point. '4

Here, by large u, we mean &equencies which are large
compared to the spin-Buctuation energy scale, but small
compared to upper cutoEs like the an exchange constant
or the Fermi energy; this and similar restrictions will be
implicitly assumed in the remainder of the paper. Let
us now examine the change in the spectrum due to a
relevant perturbation which moves the system toward

We now present some general scaling ideas to describe
the crossover between type-A and type-B transitions. In
the terminology of the well-developed theory of crossover
phenomena between two critical points in classical phase
transitions, we need to distinguish between the pri-
mary and secondary fixed points: The primary fixed
point has two relevant directions, while the secondary
point has only a single relevant direction associated with
the "thermal" operator which drives one across the tran-
sition. In our case, it is clear that the primary Gxed. point
is the type-A fixed point with z = 1. The mean-Geld
value of z = 1 for type A is expected to be robust and not
suIII'er any corrections Rom Huctuations, as the coupling
between the spin Quctuations and fermionic quasiparti-
cles is quite weak in this case. Adding any damping to
the magnon excitations should be a relevant perturbation
at this Gxed point as it introduces additional low-energy
excitations (it could be dangerously irrelevant, a possi-
bility which we shall brieHy refer to later, but not ex-
plore in any detail). The coupling, analogous to g, which
tunes the system across the transition is the other rele-
vant perturbation. The type-B fixed point must therefore
be secondary. (We are also assuming here that the effect
of the damping is associated with only a Single relevant
operator; there could be more than one. It should be
easy to extend the following scaling analysis to this case,
but we shall not do it in the interests of simplicity. ) An
important feature of the standard crossover theory
is that the crossover scaling functions between the two
Gxed points are expressed. in terms of eigenoperators and
exponents of the primary fixed point, while the critical
singularities of the secondary Gxed point appear as non-
analytic behavior in the crossover functions themselves.
This result forms the basis of our analysis below.

We will restrict our scaling results below to the to the
quantum-disordered side of the transition. We begin our
discussion by introducing the four parameters which will
characterize the quantum-disord. ered ground state; the
Gnite-temperature properties of the staggered. spin sus-
ceptibility y, will then be described by universal scaling
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FIG. 1. Sketch of the imaginary part of the local dynamic
susceptibility y'I, (obtained by integrating over momenta in
the vicinity of the antiferromagnetic ordering wave vector)
of a nearly antiferromagnetic Fermi liquid in thoro dimensions
at zero temperature. (a) The T = 0 damping constant I' is
exactly 0, as is the case for an insulating antiferromagnet in
a quantum-disordered phase; A is then the spin gap. (b) The
consequences of a small value of I', there is noir no true gap,
only a gaplike knee in the spectrum. (c) A large value of I'
makes the spectrum relatively featureless.
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the secondary, type-B, fixed point. Under appropriate
conditions, mobile fermionic carriers can act as such a
perturbation, and the damping due to the particle-hole
continuum will introduce some subgap absorption:
will then look like Fig. 1(b). The gap has turned into a
pseudogap, and yL ~ for small ~. However, we will
still have gL ~~ for large ~ as the primary fixed point
behavior is expected to continue to hold at large u. We
now extract three parameters &om this form for g&.

(i) An overall amplitude Z: This is defined by

be included in the scaling functions. We consider only
case of the scaling function of the staggered susceptibil-
ity y, here, leaving for later other observables which have
a somewhat more complicated crossover behavior. Using
the fact that I' was defined above to have the dimensions
of energy, we can write

y, (q, (u) =
i i

4, (q, V, A, I'), (2.3)
Z f Aced'

k~T ~ (k~T)

Z=4 lim atT=O~i(~)
~-+~ (~)& (2.1)

where 4, is a fully universal, dimensionless crossover
function, and the dimensionless arguments measure val-
ues of the parameters in units of k~T: Thus

The factor of 4 is for convenience in a later model calcu-
lation.

(ii) and (iii) Two energy scales 4 and I', which measure
the pseudogap and the strength of the damping, respec-
tively. These are obtained by solving the constraints

both at T = 0. (2.2)

The factor of 8 in the 6rst equation is chosen to be exactly
twice the factor 4 in (2.1); the factor of 4m in the second
equation is arbitrary and is for future convenience. The
parameter M is the energy below which the anomalous
scaling of the primary fixed point yJ' u" stops, and
a convenient choice is M = o.max(I', 4), where n is of
order, but larger than, unity. The factors of M" above
also ensure that L and I' have units of energy. Because
of the tiny value of g 0.03, the M" can be dropped
while determining I and 4 from the data; this is, how-
ever, not true in any analytical computation of scaling
functions, as they are essential in canceling cutofF depen-
dences and obtaining a universal result. The pseudogap
4 has therefore been defined as the &equency at which

yL falls to half its large &equency value (modulo factors
of M"), while I' is determined &orn the subgap absorp-
tion. For I' & 4, 4 is roughly the location of the knee
in y'L(u), while I' is its width [see Fig. 1(b)j; however,
the definitions above hold for all I'/b. . For very small I',
when the system is very close to the primary 6xed point,
I' and L measure the strength of the two relevant per-
turbations away &om it; this is no longer true for large
I'/4, but our scaling results below will continue to be
valid.

(iv) The final parameter sets the normalization of
length scales. A convenient choice is to use the T = 0
spin-wave velocity c, de6ned by the q dependence of the
peak in the imaginary part of the staggered spin suscepti-
bility g, (q, w) at large q (in all expressions for y, only, it
is implicitly assumed that, wave vectors q are deviations
&om the ordering wave vector Q).

Scaling functions of the primary z = 1 fixed point were
studied in some detail in Ref. 4, and we can easily ex-
tend t;hat analysis to write down the crossover scaling
functions for the present case. The main di8'erence is
that we have a new relevant parameter I', which must

q=, ~=, ~=, I'—: . (2.4)
hcq Lu — L — I'

kg T' kgT ' k~T' k~T

All letter exponents il, v (to be used later) refer to the
primary fixed point. The main condition for the validity
of (2.3) is that the five energy scales hck, Ru, A, I', and
k~T are all significantly smaller than upper cuto8's like
the Fermi energy or an exchange constant. The ratios of
the 6ve energy scales can, however, be arbitrary.

At I' = 0, 4', reduces to the result of Ref. 4 (there are
some minor differences in conventions), and we obtain
the scaling function for case A. The criticality of the
secondary 6xed point appears in the I' + oo limit. Then
4, should collapse into a secondary scaling function C,
(Refs. 18, 19) with the I' argument removed. The other
arguments, and the overall scale, of 4, will be multiplied
by powers of I', so that 4, and its arguments have scaling
dimensions appropriate to the secondary fixed point. To
illustrate this point more clearly, let us assume that the
structure of the type-B fixed point is identical to the
Gaussian z = 2 fixed point obtained in spin-density-wave
mean-field theory; then we will have

lim 4, (k, (u, X, I') = 4, ~,u,

up to logarithmic corrections. (2.5)

The logarithmic corrections arise because the z = 2 crit-
ical point has marginal perturbations in d = 2. It is,
however, important to note that these logarithmic cor-
rections, and indeed the entire leading critical behavior
of the secondary 6xed point, are contained completely
within the primary universal scaling function 4, . Ev-
erything about the logarithmic terms is universal and,
in particular, there is no nonuniversal cutofF-dependent
argument to the logarithms. This universality is a key
point, and is a consequence of our earlier choice to define
the scaling functions with respect to the primary fixed
point. In systems with I' so large that it is greater than
a high-energy cuto6' like the Fermi energy, this strong
universality will not hold; however, the large I' limit of
4, can still be used to describe the critical behavior, with
the understanding that the various numerical scale fac-
tors are not correct as they are now nonuniversal.
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III. MEAN-FIELD SDW' CALCULATIONS
FOR THE HUBBARD MODEL

The remainder of the paper will make the rather ab-
stract arguments of Sec. I concrete by presenting explicit
calculations in some simple models. We start with the
mean-field SDW theory of the disordering transition in
doped antiferromagnets. The simplest model which dis-
plays such transition is a one-band Hubbard model given
by

t)— at a, —t' ) aJ a, + U) ntn~. (3.1)
(i,j) (~»')

QsDvir —) Erecg~ck~ + Eiedre~drt. ~,c d (3.2)

where the prime on the summation sign indicates that
it is over the reduced magnetic Brillouin zone, and we
introduced

S(q) = (1/2) P& a&+ o par, p has a nonzero expecta-
tion value at q = Q = (vr, 7r) I.n the SDW approach, i the
relation (P& aI +& gai, ,t) = —(g& a&+& &aq ~) = (9,), is

used to decouple the quartic term in (3.1). After de-
coupling and diagonalization of the quadratic form, one
obtains

Here j and j' label the nearest and the next-nearest
neighbors, respectively, and n = ctc is the particle den-
sity. Depending on the density of carriers and the ra-
tio t'/t, the Fermi surface of free electrons can either be
closed, in which case it is centered at (0, 0) and located
entirely inside the magnetic Brillouin zone, or it can be
an open Fermi surface which crosses the magnetic Bril-
louin zone boundary (Fig. 2). We will not specify the
values of t and t' for which the Fermi surface is open or
closed for a particular doping concentration, but rather
consider the critical behavior of the dynamic spin suscep-
tibility in both cases.

I et us assume that the model has commensurate an-
tiferromagnetic long-range order down to a transition
point (this assumption may not hold for a particular
choice of t and t', but it should always hold for related
models with additional momentum dependence in U;
this momentum dependence, however, does not lead to
new physics near the transition, and we will not con-
sider this complication here). The (7r, vr) ordering implies
that, e.g. , the z component of the spin-density operator

(&) ii k

k„

(b) iI k

FIG. 2. (a) Fermi surface of type A: ordering wave vector
Q = (7r, m) cannot connect two points on the Fermi surface.
(h) Ferini surface of type H: Q can connect two points on
the Fermi surface. Dark regions correspond to unoccupied
electronic states in the 6rst Brillouin zone.

EI', ——Eq + e~, E~ ———E~ + eq, (3 3)

where E& —— N02+ 6'g ) and No ——U S ) E'g

er, +g)/2, and es = —2t(cos k + cos k&) —4t' cos k cos k&.
We will refer to the quasiparticles described by c and
d operators as conduction and valence fermions, respec-
tively. Finally, the self-consistency condition on (S,) is

1 ) w n$ niC

U a E—
k

(3.4)

Below we will assume that t' is negative. This is con-
sistent with numerical calculations ' and fits to the
measured shape of the Fermi surface for YBa2Cu307.

We now describe the evolution of the Fermi surface
with doping. The shape of the Fermi surface is deter-
mined &om E '" = p. At half-filling, the system is an
insulator (~p~ ( Kp), all valence band states are occu-
pied, and all conduction band states are empty. At finite
doping, the chemical potential moves into the valence
band. As the maximum of E& is located at (7r/2, vr/2) and
symmetry-related points, the Fermi surface first opens
in the form of hole pockets located around these points
[Fig. 3(a)]. The subsequent evolution of the Fermi surface
with doping in the SDW phase depends on the ratio t'/t.
For sufficiently large ~t'~, the bottom of the conduction
band also becomes smaller than p above some partic-
ular doping concentration) and. electron pockets appear
in the conduction band [Fig. 3(b)]. The energy gap be-
tween the hole and electron pockets shrinks gradually as
No decreases, and, at the transition point, the electron
and hole pockets merge at (2lp, 7r —zp) and symmetry-
related points, where cosz xp ——~p/4t'~, and the value
of ~p~ is determined from the solutioii of Eq. (3.4) with
Kp -+ 0 [Fig. 3(c)]. It can be verified that this transitloil
is of type B, and Q can span two points on the Fermi
surface in the paramagnetic phase. For small enough
~t'~, the situation is different: The size of hole pockets
continues to increase with doping, and at some concen-
tration xi, the hole pockets extend to (7r, 0) and related
points while magnetic order is still present [Fig. 3(d)].
At concentrations smaller than xq, electron pockets ei-
ther do not appear at all, or they first appear, their size
passes through a maximum, and then they disappear at
some doping concentration x2 ( xq. At some concen-
tration x3 & x2, the long-range order finally disappears,
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the transition point. The pole in y, corresponds to a
positive energy, spin-1 particle-hole bound state which
has center-of-mass momentum near Q, and which lies
below the bottom of the particle-hole continuum at these
momenta.

The transverse, uniform susceptibility at Np + 0 can
be represented as a sum of the interband and intraband
contributions

(c
inter intraX~j + XgJ (3.6)

where we found that X„'"&" O(No ) and X„'"&' const+
O(No ). So X„~ is finite at the transition, as it should be
when reaching a Fermi liquid. However, the assertion by
Millis that the spin-wave velocity should be given by
a hydrodynamic expression2 csw ——p, /X„~ is seen to
be incorrect: cs~ ——c is in fact 6nite at the transition.
The correct relationship actually turns out to be c&~ ——

/xinter

B. Type B

FIG. 3. The evolution of the Fermi surface with doping in
the Hubbard model with first- and second-neighbor hopping.
Shaded regions correspond to hole pockets and black regions
correspond to electron pockets (i.e., doubly occupied states
in the first Brillouin zone). The description of the figures is
given in the text. px.~(0, ~) -—

Pa

i —1
(d

/4No2 —(u2
+ O((u2) (3.7)

The noncommutativity of the limits q, ~ -+ 0 and
Np + 0 now leads to much more complex behavior than
for type A. Consider, first, the transverse, staggered sus-
ceptibility at q = 0; in this case a relatively complete
evaluation is possible, and we 6nd

but the Fermi surface at the transition is located inside
magnetic Brillouin zone boundary [Fig. 3(e)]. The disor-
dering transition is therefore of type A.

We now present results from a mean-field SDW calcula-
tion of the uniform and staggered susceptibilities; details
can be found in the Appendix. We shall mainly be in-
terested in the small q and cu behavior of these responses
when Np is small. We shall And that an important fea-
ture of type-B systems is that the limits q, u ~ 0 and
Np + 0 do not commute. We consider the two cases
separately.

A. Type A.

where p, ~ No2 (g, —g). The first, singular term arises
from interband processes and is due to the integration
over the region of momentum space where the Fermi sur-
face crosses the magnetic Brillouin zone boundary; there
is no such point for type-A systems. The second term
is the regular contribution &om the reminder of the mo-
mentum space; it is similar to that found in type-A sys-
tems. It is clear that the behavior of y, ~ is dramatically
difFerent for ~ (& Np and ~ )) Np.

The q dependence of y, ~ only has a relatively simple
form in the limiting regions. For q, u (( Np we have

x.~(q, ~) = No
c')

The transverse, staggered, susceptibility is found to
behave as

QJ
[bi~ —i b2@(q, (u)]

Np
(3.8)

Np2 1x.~(q, ~) =
P, q2 —A)2/cz —ia(uqNo2

(3 5)

where a, c are constants (i.e., finite as No —+ 0) and p,
No ~ (g~ —g) is a spin stiffness. It is clear that the
damping is negligible as Np ~ 0, and that the limits
q, ~ ~ 0 and Np -+ 0 do commute. The susceptibility is
also that expected for a z = 1 system.

In the quantum-disordered phase we then have y,
(q2 —u~/c2 + b, 2/c2) i, where the gap b, vanishes at

where c, bi, and b2 are constants, and vP(q, ur) = @(~q +
q„], ~q

—
q& ~, u) is a symmetrical function of its first two

arguments, which at q )) u/t is linear in q. The explicit
form of g is presented in the Appendix. We see that the
the lowest-energy excitations are overdamped even in the
magnetically ordered phase, although we indeed have a
Goldstone mode at q = 0. Also, the renormalized spin-
wave velocity (defined in the limit of small b2) decreases
as csw No . In the opposite limit, q, cu )) No (and
for all q, ~ at the transition point) both terms in the last
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bracket in (3.8) become imaginary, and we find

y, ~(q, w) (q —u /c —zero) (3.9)

The magnon excitations are now clearly overdamped. In
the SDW approximation we found that p does not depend
on the ratio u/q. In the quantum-disordered phase we
then have

(3.10)

where L is now a pseudogap and vanishes at the transi-
tion point. Notice also that c is not the velocity of the
longest-wavelength spin-wave excitations in the ordered
phase, though indeed it has the same order.

The same form of susceptibility was proposed earlier
by Barzykin et al. on phenomenological grounds. We
will use Eq. (3.10) below to motivate the field theory for
the critical point and the paramagnetic phase.

As for type A, the transverse, uniform susceptibility
is found to have two contributions from interband and
intraband processes which now take the form

inter intra
X~+ X~J + X~J (3.11)

C. Relationship to results
in the Shraiman-Siggia model

The main weakness of the above mean-field SDW com-
putations is that they underestimate the contribution of
magnetic fIuctuations, which may destroy long-range or-
der at a smaller doping. Such fluctuations may be more
completely accounted for by studying the phase transi-
tion in the Shraiman-Siggia (SS) model, which, however,
has other weaknesses to be described below. In this sub-
section we will review the results of such a study, com-
pare them with the above SDW results, and make some
speculations on how they may be reconciled. Readers not
interested in this issue can skip this subsection without
any loss of continuity.

The SS model is a continuum theory of interactions be-
tween mobile holes and spin fI.uctuations in a t-J model,
i.e., a model in which strong local repulsion between elec-
trons allows one to project out states with more than a
single electron on a site. In the language of the Hubbard
model, there is a significant band gap between the lower
and upper Hubbard. bands, and. the SS model focuses
exclusively on physics within the lower band. At half Bll-

where now y„'"&z" O(NO) and y'„"&' const +
O(No). Again, y„~ is finite at the transition, and
the relationships c2sw ——p, /y„~ does not work as it
would predict cs~ No. The correct relationship is
csw ——p, /y'„"&". In. practice, however, it is difficult to
find conditions when one can neglect the b2 term in (3.8).
Magnon excitations are then overdamped, and the issue
of the behavior of the spin-wave velocity near the tran-
sition is not that relevant. Notice also that as shown
in the Appendix, the O(No) contributions in y„'"&" and

cancel each other, so that y ~ = const + O(N& ) .

ing, the lower and upper Hubbard bands can be identiBed
with the valence and conduction bands, respectively, of
the SDW theory discussed above. Therefore, in the SDW
formalism the SS mod. el describes the physics within the
valence band. Furthermore, in the SDW mean-Beld the-
ory, the minimum, direct band gap between the conduc-
tion and valence bands is proportional to the Neel order
parameter No, and therefore vanishes when long-range
order d.isappears. This is, however, not the case in the
SS model, in which No and the band gap are ind. ependent
parameters, and the band gap is assumed to remain finite
at the point where No vanishes. This is a key difFerence
between the two approaches.

Let us now approach the magnetic transition &om the
ordered side in the SS model. A simple computation,
similar to those in Ref. 12, shows that the transverse,
staggered susceptibility has precisely the form (3.5) ob-
tained above in the SDW theory of a type-A transition;
in particular the result Im(y, ~) i Nouq is also ob-
tained in the SS model [thus the proper interpretation
of the factor of No in (3.5) in SDW theory is that of
the square of the magnetization order parameter, rather
than the valence or conduction band gap]. At the point
where No vanishes, computations in the SS model show
that y, ~ (q —w /c + ia'ur q) . In the mean-
field SDW theory above we have y, ~ (q —w /c2)
with no damping term; however, it is quite reasonable to
expect that including higher-order paramagnon Quctua-
tion corrections in SDW theory will lead to a damping
term rather similar to that obtained in the SS model.
So far, therefore, the spin-fIuctuation properties of the
magnetic transition in the SS model are essentially iden-
tical to those obtained in the SDW theory of the z = 1
transition in type-A systems.

However, difFerences do appear when we consider the
fermionic excitations. The type-A transition in SDW the-
ory has a large electron Fermi surface wholly within the
magnetic Brillouin zone, which changes little between the
two phases on either side of the critical point. On the con-
trary, the Fermi surface of the SS model, on the ordered
side of the critical point, consists of elliptical hole pockets
at the boundary of the magnetic Brillouin zone. The fate
of the elliptical hole pockets in the quantum-disordered
phase of the SS model is not at all clear. Below we
present a reasonable, but speculative, scenario: We pro-
pose that in this phase, the Fermi surface is large (i.e.,
encloses a volume equal to the total number of electrons),
as it was in both types of SDW transitions. However, the
quasiparticle residue is very anisotropic so that at the
transition to Neel state, the residue vanishes everywhere
except for the regions which surround the hole pockets
in the ordered phase. This implies that the critical the-
ory of the z = 1 transition in the SS model in Ref. 12
remains essentially correct. If this large Fermi surface in-
tersects the magnetic Brillouin zone boundary in the dis-
ordered phase, then there will be a finite T = 0 damping
p at q = 0 in the quantum-disordered phase; however, p
will vanish faster than the gap 4 as one approaches the
critical point, thus behaving as a dangerously irrelevant
perturbation (i.e. , a perturbation which is irrelevant very
near transition but leads to a new physics at some dis-



51 CROSSOVER AND SCALING IN A NEARLY. . . 14 881

tance away from the transition). Alternatively, the large
Fermi surface with anisotropic quasiparticle residue may
be entirely within the magnetic Brillouin zone; in this
case the properties of the quantum-disordered phase will
be very similar to those of a type-A transition in SDW
theory.

IV. MODEL FIELD THEORY FOR TYPE B

This section will present explicit computations of the
scaling functions of Sec. II in a model Geld theory appro-
priate for a mean-Geld type-B transition. The motivation
for the model follows the logic of Hertz: The action S
for paramagnon fluctuations in the quantum-disordered
phase should have a propagator which reproduces the
mean-field, type-B, spin susceptibility in (3.9). The par-
tition function of S in Matsubara imaginary time then
has a form

Z= 'Vn x~ b n x~ —1 exp —Sn xv.

s= r)—
2g

2

~n(q, (u„)
~ (q + (u„/e0 + p~(u„~) .

The action is written in Fourier space, and cu is a Mat-
subara frequency. The vector field n(z, r) represents the
local orientation of the antiferromagnetic order param-
eter; we will allow n to have N components to allow
a subsequent large N calculation. We have chosen to
implement a fixed-length constraint n = 1 to mimic in-
teractions between the paramagnon modes. This restric-
tion is, however, not crucial and identical scaling results
would be obtained in a model with a more conventional
(u/2N)(n ) interaction. The scaling results appear a
little more directly in the fixed-length model. The first
two terms in S are those found in the usual O(N) non-
linear o. model. The last term arises &om the damping
induced by the fermion particle-hole pairs. The action
S was Grst explicitly written down by Liu and Su
they used a two-component microscopic model in which
the spins and fermions are locally independent degrees of
freedom, and then integrated the fermions out.

We expect S to provide a reasonable description of
the temperature-dependent crossovers in the quantum-
disordered phase. However, close enough to the critical
point in the quantum-disordered phase, the validity of
S appears to us to not have been established convinc-
ingly. It is likely that it will be necessary to account
for fluctuations involving incipient formation of the spin-
density-wave gap over portions of the Fermi surface
note that these gaps form at precisely the same points
on the Fermi surface which are responsible for the low-
&equency damping on the disordered side; these issues
will be examined in more detail in subsequent work. It is
also easy to see explicitly that S certainly breaks down
on the magnetically ordered side of the transition. On

Z const, 4 (g —g,), I' p(g —g, )" . (4.2)

In the opposite limit p )) (g —g, )( ")" we are much
closer to the critical point and dominated by secondary
behavior; in this case we have

Z const,

i/(i —~)

pl/2 (i—i/2v)/(i —g)g gc) '7

(4.3)

Explicit results for scaling functions of S can be ob-
tained in a 1/N expansion. The methods are very similar
to those discussed at length in Ref. 4 for p = 0; one only
has to add a p~w

~

to each propagator. We will therefore
merely present the final results. At N = oo we found

e."=-(q,~, X,I) = —, , (4.4)
1

q2 —~2 —it'~ + m2(A, I')

We chose the definition of the parameters earlier so that
as T + 0, m = L. For Gnite T, m is given implicitly as
a universal function of L and I' by

this side, the spin-fluctuation propagator changes sub-
stantially when q and ~ become smaller than the order
parameter %0 [see, e.g. , Eq. (3.7)], and these changes
cannot be implemented by simply introducing a conden-
sate of the order parameter into S.

In the remainder of Sec. IV we will focus exclusively
on the model S. We will describe its asymptotic critical
behavior, and compute its scaling functions in a large N
expansion.

It is also interesting to note in passing that the ~u~ dis-
sipation in S is similar to that used in the macroscopic
quantum tunneling literature. There the emphasis is on
the consequence of this dissipation on the quantum me-
chanics of a single, heavy particle, whereas we are study-
ing its efI'ects on a Geld theory describing a large number
of degrees of freedom.

Let us first discuss some general scaling properties of
S from the vantage point of the primary, z = 1 fixed
point. This fixed point clearly lies on the submanifold of
the parameter space with p = 0. The term proportional
to p is clearly a relevant perturbation at the primary
fixed point. Moreover, ~~„~ is nonanalytic in frequency
and leads to a long-range —1/w interaction in space-
time. Theories with long-range interactions of this type
are familiar in the context of finite-temperature classi-
cal phase transitions and many results can be trans-
ferred over. In particular, the ~w

~

term gets no singu-
lar loop renormalizations, and the scaling dimension of
p is exactly 1 —g. Therefore, at T = 0, the response
functions will therefore be scaling functions of the ratio
p/(g —g, ) (i ")".The fully renormalized parameters in-
troduced earlier will have a di6'erent dependence on the
bare coupling constants depending on the value of this
ratio; this dependence can be deduced by standard scal-
ing arguments. For p « (g —g, )( ") we will have
dependences characteristic of the primary fixed point for
which
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dQ f I'0= 2 n arctan
l l, (4.5)e" —1 (m2 —02) '

where the value of the arctangent runs &om 0 to vr as 0
runs &om 0 to oo, and

(4x —1) ~ tan (42: —1) ~ for x & 1/2,

+(*) =
& (1 4 .)i(.

2
(1 4~2)i j2ln,

&
for z & 1/2.

1 + 1 —42:2 i~2

(4.6)

m' —a' m' I'
ln

m2

tan i[A/(m2/I')]
e" —1

for large I'. The only violation of the b, /I' scaling in

Despite appearances to the contrary, P(x) is analytic for
all real x, including x = 1/2. In the limit I' ~ 0,
(4.5) reproduces the z = 1 result of Ref. 4: m
2sinh (e+~2/2). In the opposite limit I' ~ oo we ex-
pect properties of the secondary Axed point —we see &om

(2.5) that m2/I' should be a function of X /I'. This is
exactly what we find Rom (4.5) which reduces to

hc
mT' (4.8)

and the NMR relaxation rates (for a review, see, e.g. ,
Ref. 31), up to known prefactors associated with hyper-
fine coupling constants, are

1 I' 1 1

T] m T2Q mT (4.9)

We plot in Fig. 4 the universal crossover function for
hc/(b, as a function of k~T/b, for various values of I'/A.
For I &( 4 we have two main regimes of temperature:

the above comes from the logarithms, which was also
expected; the arguments of the logarithms, however, re-
main universal. Analysis of the solution of (4.7) for m,

can be shown to yield the same crossovers (including and
upto log-log corrections) as those discussed in Ref. 5 in
the quantum-disordered region for d = 2, z = 2.

The calculations of the 1/N corrections also follow
Ref. 4. The evaluation requires substantial numeri-
cal computations which are currently being carried out.
However, we also know &om Ref. 4 that, at least at I' = 0,
these corrections were quite small, and that the N = oo
results were satisfactory for most purposes [a notable ex-
ception is g"(u) for I' « 4, for which 1/N corrections
are relevant]. The agreement of the large I', N = oo
results with those of Ref. 5 is also encouraging.

A number of experimentally measurable quantities can
be deduced &om the above results. For example, the
antiferromagnetic correlation length is

(a) k&T » 6:

(b) k~T && 6:

t'~a+ 1 n= 21n
2 ) k~T'

kg) T ( b, 5 k~T I'
1 —2 exp

l

—„ l�-

+k~T�

(4.10)

Regime (a) is the z = 1 quantum-critical behaviori' and (b) is the z = 1 quantum-disordered behavior. At very low
temperatures, the damping gives rise to a power law rather than exponential behavior of the correlation length; these
power laws are the same as for quantum-disordered, z = 2 behavior, discussed below. However, unlike for "pure"
z = 2 relaxational behavior, g"(u) has a knee at cu 6, )& T. Based on the presence of such knee [shown in Fig. 1(b)],
we identify this regime as quantum disordered, z = 1.

For I' &) 4 there are three subregimes:

(a') k~T»r:

+2
(c') k&T «

i/5+ 1) hc
2

~
k~T

(k~T 5 hc
I' )I (I k T)

hc vr' CkggT) f 1 )
12 log(I'/b, ) ( b, ) (b. )

(4.11)

with fi(x) a very slowly (logarithmically) varying, nu-
merically calculable function of order unity. Now regime
(a') is z = 1 quantum critical, (b') is z = 2 quantum crit-
ical, and (c') is z = 2 quantum disordered. In the neg-

ligibly small subregime of (b') where ln in(I'/k~T) ))
1, while maintaining k&T » E2/I' we have (
hc/(ml'k~T) ~ [in(I'/k~T)/in ln(I'/k~T)] ~ . Most of
the above asymptotic results are not very useful at any
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0
0

FIG. 4. Universal crossover behavior of the inverse antifer-
romagnetic correlation length 1/g (measured in units of 1/hc)
as a function of the temperature T, for a variety of values of
I'/A. The plot is the N = oo result contained in Eqs. (4.5)
and (4.8). There are no arbitrary scale factors, and the scales
of both axes are universal and meaningful.

z On(1+a) d xd~H. n x
gCO O7

(4.12)

with the expanding (shrinking) of the up- (down-) spin
Fermi surface.

Consider, first, the effect of H on the ~ur
~

term in S.
At small ~, this term arises &om the absorption due to
particle-hole pairs with momentum Q, made up of elec-
trons and holes just above and below the Fermi surface.
A 6eld H will shift the bottom of the band of the up
and down spins in opposite directions. In a model with
a Bat density of states, such a shift should have no effect
on the particle-hole spectrum. So for small H, there is
no change in the ~u

~

term. At larger H there will be
a change, because there is always some structure in the
density of states: This will show up as a 6eld dependence
in the value of the coupling p: p ~ p(1+ AH ) where
A is a small coupling. This is verified in an explicit com-
putation of the 6eld dependence of S discussed in the
Appendix.

The computation in the Appendix also Gnds a preces-
sion term

realistic value of I'/6, and the exact values plotted in
Fig. 4 should be used for experimental comparisons.

The above regimes are sketched in Fig. 6 below, which
will be discussed in Sec. V.

A. Uniform susceptibility

Consider now the response of the nearly antiferromag-
netic Fermi liquid to a uniform magnetic Geld. Unlike
the staggered susceptibility which diverges at the transi-
tion, the uniform susceptibility y„ is expected to remain
finite. As a result, the crossover behavior of g„ is more
complicated and corrections to the leading scaling result
now play a significant role.

The following results are for type-B systems; however,
they can also be applied to type-A systems after imposing
p = I' = 0.

We need the modi6cations to the action S, in the pres-
ence of an external field H. These corrections are equiva-
lent to evaluating the effective three-point and four-point
couplings between the antiferromagnetic order parameter
and the uniform magnetization after integrating out the
fermions; however, as we are mainly interested in the case
of a uniform field, we will just carry the exact field de-
pendence through in all the fermion propagators (see the
Appendix) .

In insulating antiferromagnets, the coupling to the
Geld was given exactly by a symmetry-related argument
with no additional coupling constants appearing. These
symmetry arguments must now be applied with more
caution because of the presence of gapless fermionic ex-
citations in the quantum-disordered phase. In particu-
lar, we need to account for the continuous change in the
Fermi-liquid ground state in the presence of H associated

where we have absorbed in the de6nition of H a factor
g~p~/5 (g~p~ is the gyromagnetic factor). The pref-
actor of (4.12) has been written such that the coupling
n = 0 in the insulating limit; in this limit the precession
rate of the spins is known exactly and hence (4.12) has
no new coupling constants. In the doped system, there
is a correction to the precession rate &om internal Gelds
generated by the polarization of the fermions, and this
is represented by the new coupling n. If the system is
not too strongly doped, we can expect that o. is not too
large.

Finally, there is a term (also derived in the Appendix),
(n x H), which imposes an energetic preference for the

relative orientation of the antiferromagnetic order param-
eter and the magnetic Geld.

All three terms discussed above induce nonuniversal
corrections in the T = 0 value of y„. These may be inter-
preted as corrections to the fermionic Pauli susceptibility
from higher-order interactions between the paramagnon
modes.

Things do simplify, however, when we consider the T-
dependent part of y„. Then the precession coupling in
(4.12) turns out to be the most important in many cases.
The T-dependent corrections from the H dependence
of p can be shown by standard scaling arguments to be
subdominant near the primary fixed point; near the sec-
ondary Gxed point this term turns out to have the same
T dependence as that due to (4.12), but with a prefac-
tor of (p/t)2. Finally, the last (n x H)2 term yields no
temperature dependence in a model with a fixed-length
constraint. In a soft-spin theory, scaling arguments show
that this term is also subdominant near the primary 6xed
point; near the secondary 6xed point, and going beyond
N = oo limit for soft-length spins, one obtains a T de-
pendence similar to that due to the H dependence of
Q 0

We see, therefore, that if p is suKciently large, all three
terms contribute roughly equally to the uniform suscepti-
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bility. The temperature dependence of y„ is then nonuni-
versal, and reliable predictions for experiments are diffi-
cult. To keep our discussion simple, and also because
we think that this is most realistic experimentally, we
will only present explicit results for y for the case when

p is not too large. We will therefore only consider the
T dependence of y„ induced by the term (4.12) which
dominates near the primary fixed point.

We now consider the consequence of (4.12) on the T
dependence of y . Application of our earlier scaling ar-
guments and the results of Ref. 4 allow us to deduce the
following crossover scaling function for y„:

X„(T)—~„(T=0) = (1+ '), C„(X,I), (4.13)

where o.' is a nonuniversal constant, which vanishes when
o. = 0. The function Ci'„ is a completely universal scaling
function which we will compute below at N = oo. The
only nonuniversalities of the above result are therefore
related to the coupling n', and the value of g (T = 0)
which is dominated by the Pauli susceptibility of the
fermions.

The N = oo computation of 4„ for 8 can be performed
as in Ref. 4 we 6nd

2rri' —I' /m�''t

4m2 —I 0 I')
2A —I' ('4) dO 0
4E —I' &1 J o e (m —0) +I'nI

+

(4.14)

where m has to determined &om (4.5) as a function of 6 and I', and the function P(z) was defined in (4.6). A plot of
the universal contribution from 4 „to y„ is shown in Fig. 5, with the nonuniversal prefactor 1+o; dropped. There are
several diferent regimes, similar to those found in the correlation length. Dropping the 1 + o. , we state the leading
behavior of y„(T) in these regimes. For I' « 4 we have the two regimes of temperature:

(a) k&T » 4: (vr5+11 k T
ln

(b) k&T « 6:
For I' &) 4 the three subregimes are

(a') k&T » I':

I fkggT)
k~T) 6&E&)

vr5+11, k~T

(4.15)

Q2
(b') « k&T « I':

Q2
(c') k&T « I' fk~T )''

61n(1'/A) ~ Ec (4.16)

with f2 a function similar to the function fi above in
(4.11). Regimes (a), (b), (a'), (b'), and (c') are the
same as those described for the correlation length [no-
tice that in regime (b), the damping term gives rise to
a power-law behavior at very low T]. Again, as with
the correlation length, most of the the asymptotic ex-
pressions are not useful for realistic I /A and numeri-
cally determinable values of the crossover function should
be used. Within regime (b ), it is possible, as was the
case with (, to have a negligibly small subregime where
ln ln(I'/k~T) && 1 while k~T && 4 /I'; here we find
y„(T) —y„(0) = (k~T/mc ) [ln ln(I'/k~T)]/ ln(I'/k~T).

0.9—

0.6—

0.3—

B. Speci6c heat

The leading contribution to the free energy density of
S is strongly divergent in the ultraviolet A, where A is
an upper cutoK in momentum space. In the model with
p = 0, it was found in Ref. 4 that a single subtraction of
the T = 0 value of the free energy density was sufBcient
to make the T-dependent remainder 6nite. There were
no terms diverging with powers of A smaller than 3—

0
0

T/W

FIG. 5. As in Fig. 4, but now with results for the tem-
perature-dependent part of the uniform spin susceptibility

(T) —y„(0) measured in units of (goy~/hc) . The nonuni-
versal constant n' in (4.13) has been set equal to 0. The
plot is the N = oo result contained in Eqs. (4.5) and (4.14).
Apart from the nonuniversal scale factor associated with n',
the scales of both axes are universal and meaningful.
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a direct consequence of the hyperscaling properties of
the original theory. For 6nite p, we 6nd here that this
simple property does not hold: A single subtraction still
leaves a term that is only logarithmically dependent on
the upper cutoK This is perhaps not surprising as the
secondary Gxed point violates hyperscaling. While most
of this violation is actually cutoff by the crossover to the
primary fixed point at high energies, some manages to
survive.

k Ts
x(T) =x(o)+ „,@(X,r), (4.i7)

where the dimensionless function 4, instead of being fully
universal, has a logarithmic dependence on A/T:

We will restrict ourselves here to presenting the T de-
pendence of the &ee energy density T of the action S in
a N = oo calculation. We found

dn, „, , ( rn ) rn, ((m2 —n')2+r'n'&
4m e+ —1 (m —n2 ) 2 (hcA/T)

mr t', r') a' —2 -2 (m) —2 —2 (&l+m —& +(4m —r )O'I = I+(2& —6m +r )+I =
I4Svr2 ( 2 ) m2 (r) Er) (4.iS)

where m is determined from (4.5) as a function of 4, I'
and the function g is defined in (4.6).

The asymptotic limits of the contribution of 4 to the
specific heat Cv = TB2%/BT—2 were determined in a
manner similar to ( and y„. For I' « b, we have

()k T s c ="~() k5' hc )
NI'k~T hcA

(b) k~T && b, : Cv = ~ ln . (4.19)
6 hc 2

For I' )) 4 the three subregimes are

12((3)N (k~T )
&L-)

Q2 r'k Tl rk2T
(b') « k~T && I': Cv = Nfs

~ I' j hc2'
NE'k~~T hcA

(c') kgyT «: Cv = ln
6 hc 2

(a') k/T )) I': Cv =

(4.2O)

with fs a function similar to the function fi above
in (4.11). Regimes (a), (b), (a'), (b'), and (c') are
the same as those described for the correlation length.
Within regime (b ) above, it is possible, as was the
case with (, to have a negligibly small subregime where
ln ln(r/k~T) )) 1 while k~T )) 62/r; here we find
Ci = (K/12) [rk~T/(hc)'] ln[(hcA) /k~Tr].

V. CONCLUSIONS

We begin this concluding section with a simple, quali-
tative discussion of the physical picture behind the com-
putations in this and related, previous, works on the
spin fluctuation properties of the not too strongly doped
cuprate compounds. A discussion of the relationship of
our ideas to experimental systems will follow. Finally we
will discuss some open theoretical issues.

It is very useful to think in terms of the physics at
different length and energy scales. On the whole, we may
assume that the relevant energy scales decrease uniformly

with increasing length scales, and so the two can be used
interchangeably to move between the different regimes.
In what follows, we describe the sequence of crossovers
as one moves &om larger to smaller energy scales, or
equivalently from smaller to larger length scales.

At the very largest energy scales, the behavior is domi-
nated by lattice scale physics, which is inherently nonuni-
versal. At slightly smaller energies, provided the doping
is not too large, one can neglect the effect of mobile car-
riers. It was argued in Ref. 4 that spin fluctuations at
these scales are quantum critical and well described by
properties of the z = 1 critical point in the O(3) nonlin-
ear o model which separates the Neel-ordered and mag-
netically disordered phases. This proposal has been the
source of some controversy in the literature, although
some fairly convincing evidence has appeared in recent
high-temperature series studies. The excitations in this
z = 1 quantum-critical regime are neither spin waves of
the ordered state nor S = 1 magnons of the disordered
state, but form a critical continuum.

The subsequent crossovers at smaller energies depend
on the doping concentration. At very low doping, the
presence of T = 0 long-range order in the Heisenberg an-
tiferromagnet becomes apparent; there is then a crossover
ft.om z = 1 critical fluctuations at larger energies to the
Goldstone spin-wave modes of the ordered state at lower
energies. At a slightly larger doping, the T = 0 long-
range order is destroyed. The crossover at smaller energy
scales is then into the quantum-disordered state of the
cr model, where the excitations are then gapped, triply
degenerate, spin-1 magnons. At this same doping, and
provid. ed the geometry of the Fermi surface is of type
B, there is a last crossover, at an even smaller energies,
to a state where the mobile carriers induce an important
T = 0 damping of the magnon excitations; ' this damp-
ing leads to to subgap absorption and power-law (in T)
behavior of observables. All power laws are equivalent to
those of the quantum-disordered, z = 2 regime, discussed
below.

This sequence of crossovers has been described for the
case in which the damping is not too large: I' & L in the
notation of Sec. II.
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FIG. 6. Scaling regimes are sketched versus the normal-
ized temperature, T/6, , and the T = 0 parameter I'/A which
describes type-A to type-B crossover. While the asymptotic
T ~ 0 behavior is the same for all nonzero I'/A, an impor-
tant distinction between the quantum-disordered (QD), z = 1
regime at small I'/E and the QD, z = 2 regime at large I'/b,
is the presence of a knee [see Fig. 1(b)j in g"(u) at u
in the former case. We emphasize that the T = 0 parameters
A and I' may have a highly nontrivial, possibly nonmono-
tonic, doping dependence; therefore the boundaries between
different regimes on this phase diagram may have a somewhat
different structure compared to a phase diagram plotted as a
function of doping.

At even larger dopings we may have F & 4; then
the intermediate quantum-disordered, z = 1, regime of
a pure o model is not realized, and the system undergoes
crossovers &om the z = 1 critical regime to the z = 2
critical regime, and then at even smaller energies to the
z = 2 quantum disordered regime with relaxational be-
havior of spin excitations.

The scaling regimes and associated crossovers are
sketched. in Fig. 6. We emphasize that all phase
boundaries between phases on this sketch are smooth
crossovers, and their precise positions are therefore not
meaningful, while the sequence of crossovers and overall
structure of the diagram are meaningful. In terms of this
phase diagram, the Shraiman-Siggia model (type A) cor-
responds to I'/E = 0 (Refs. 4, 12) (modulo dangerously
irrelevant damping terms); models with primarily relax-
ational behavior of spin excitations (type B), similar to
that observed in YBa2CusOq, to I'/A & 1 (Refs. 16, 5);
and, finally, models with moderate I'/b, & 1 exhibit spin
pseudogap behavior similar to that observed in the un-
derdoped Y-based materials, such as YBa2Cu306 63 and
YBa2Cu408. ' The possible relationship of the phase
boundaries to doping levels in the cuprate materials will
be discussed in more detail in a subsequent publication.

Going to a finite T introduces an additional degree of
complication which substantially changes the crossovers
described above. However, all of these T-dependent
crossovers are contained in the universal crossover func-
tion 4, in Eq. (2.3), which was computed in a large N
expansion in this paper. The main results can be under-
stood by keeping a simple rule of thumb in mind: The

primary efFect of a finite T is to thermally quench the ex-
citations at the energy scale k~T, so that the crossovers
at scales below k~T no longer occur. It is therefore pos-
sible to make experimental predictions for temperature
dependences that are remarkably universal.

We now briefly describe the relationship of our re-
sults to experiments on high-T, oxides. We leave de-
tailed quantitative comparisons for a separate publica-
tion which will also contain computations of 1/N correc-
tions; here we underline only the main qualitative points.

Ia2 Sr Cu04. The Fermi surface of La-based ma-
terials has not been measured experimentally. Appar-
ently, they are close to type A (Ref. 20) in the terminol-
ogy of Sec. I, and we expect to see only the features of
the z = 1 behavior. However, these materials also show
nontrivial spin correlations in the metallic phase which
will certainly acct the spin fluctuations at low enough
temperatures. The primary eKect of mobile carriers
on the uniform susceptibility should be a temperature-
independent additive contribution, which increases with
doping. We have suggested earlier ' ' that this behav-
ior may have been observed at a few percent Sr concen-
tration.

YBa2Cu307. Photoemission experiments indicate
that the Fermi surface is large and belongs to type
B. Both our and earlier analyses of the NMR data
are roughly consistent with type-B scaling behavior at
A/I' 1: The measured I/TI T monotonically de-
creases with T, and the ratio TIT/T2 is temperature
independent. A quantitative comparison with the mea-
sured uniform susceptibility is difficult because nonuni-
versal contributions to susceptibility, neglected in (4.15),
(4.16), are relevant for this fully doped material.

YBa2Cu306 6 and YBa2Cu408. For both of these
materials, the measured Fermi surface is large and be-
longs to type B.s ' The measured I/TI and uniform
susceptibility decrease rapidly as temperature decreases
below T 150 K. ' ' Such behavior is characteristic
of the quantum-disordered z = 1 regime and we there-
fore expect that for these materials, I'/A « 1. Note,
however, that we have shown explicitly that due to the
Gnite damping, this decrease, particularly for the uni-
form susceptibility, is not purely exponential as it is in
phenomenological "spin gap" models. We also note that
it is important to include 1/N corrections4 in describing
the behavior of I/TIT in this regime. At high temper-
atures, this system is expected to crossover to z = 1
quantum-critical behavior, where TzT is linear in T and
TIT/T2 ——const; ' this behavior appears to have been
observed in both YBa2Cu306 6 and YBa2Cu408.

We conclude this paper by recalling and raising some
open theoretical questions. The explicit computation of
temperature-dependent crossovers has been restricted to
the quantum-disordered phase, and not too close to the
quantum-critical point. We suggested that S may fail
close enough to the critical point, and saw explicitly that
it failed badly in describing the low-energy excitations on
the ordered side. A drastic change in the action seems to
be necessary, probably much more drastic than adding
some additional dangerously irrelevant coupling which
becomes important only the ordered side. In fact, any



51 CROSSOVER AND SCALING IN A NEARLY. . . 14 887

procedure which uses a truncated power series expansion
in n for the action appears doomed: No such expansion
will correctly capture the appearance of gaps on portions
of the Fermi surface. It seems that the only natural way
of describing the crossover on the ordered side is to work
in a theory in which the fermions are not completely inte-
grated out. It is then possible to obtain an action which
has only regular terms, and which holds on both sides
of the transition. A possible form of the action involves
two species of fermions (corresponding to pairs of points
on the Fermi surface separated by Q) coupled to the n
field. Computing crossovers for such an action remains
an important open problem.

A complementary open problem applies to the analysis
using the Shraiman-Siggia model. In this case the or-
dered state and its crossovers are reasonably well studied.
However, it is also clear that the model cannot apply in
detail on the quantum-disordered side, and the crossovers
between the ordered and disordered sides are not com-
pletely understood.

Finally, we make a few remarks about the effects of
disorder. Hertz~5 did begin to address the consequences
of disorder, but his analysis is seriously incomplete in
all cases. One sign of this is that his value of v (which
equals 1/2 in all the cases considered by him) violates
the inequality v & 2/d, where d ( 4 is the spatial
dimension. It is easy to determine the source of this
violation: The most important perturbation on a soft-
spin version of an action like S is a random-"mass" term

f d"zd7 m2 (z)n (z, 7.) which accounts for Huctuations
in the local value of the critical coupling at which the
magnetic order is destroyed. It can be easily shown that
this term is relevant about the pure fixed point as long
as v ( 2/d. A study of S, with an additional random
mass, along the lines of the work of Boyanovsky and
Cardy44 should be quite straightforward. However, this
approach involves the potentially dangerous procedure
of expanding about a problem with ~ time dimensions,
and a method which works directly with e = 1 would be
preferable.

Note added. Just before this paper was submitted,
we received a paper before publication &om IoKe and
Millis45 which addressed the T dependence of the uni-

form susceptibility near the type-B fixed point. Their
expression for y„ in terms of correlators of n is in gen-
eral agreement with our discussion in Sec. IVA. How-
ever, they focused on the temperature dependence of y„
at very low T (ln I'/T » 1) near the type-B fixed point;
we chose to focus on the term important near the prixnary
type-A fixed point —the latter term gives a universal (up
to an overall prefactor) contribution to y„which should
be dominant at all T unless I'/A is very large.
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APPENDIX: SUSCEPTIBILITIES
IN SDW THEORY AT T = 0

Staggered susceptibility

+ xo (q, ~)
x (q, ) + (Al. )

where

In SDW theory, the spin susceptibility is given by a
ladder series of bubble diagrams. At T = 0, one fermion
in the bubble should be above the Fermi surface and one
below. In principle, the solution of the ladder series in
the magnetically ordered state is a 2 x 2 matrix problem,
as one has to consider bubbles with momentum transfer
0 and Q. 0 For our considerations, it turns out that
all terms with momentum transfer Q disappear at the
critical point, and we have checked that they only ac-
count for small corrections to the expressions obtained
below. We therefore neglect terms ye (q, q+ Q, tu) with
the momentum transfer Q in which case the total trans-
verse dynamic susceptibility is given by

I

Xo (q ~) = 2~) .
C C
k k+q

Ea+, —Ef, + ~)

(E G
EI 6g+ PV p I Ay+ AI n„- n„+,

Ei+g ~ El+q E~ + ~ j
] I 6y 6y+ IVp t Ag+ AI

E„E„(E„--E„-,— (A2)

Here and below we set h = 1. We will now study the
behavior of this result near the magnetic transition where
Np becomes small.

Near q = Q, the coherence factors can be simplified to
k k+q y)

~a ~I+q —~p 2 Np

= 2 —O((Q —q) ),

We first consider the behavior of dynamic susceptibility
at the antiferromagnetic momentum, q = Q. Here e& +
EI + 0) E& + EI +q 2EI &

and one obtains using the
self-consistency condition
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Xo (Q, ~) = U+ y). (nk —n~)
k k

+
2Ei + hP Ei )

(A4)

where D = t/[Sm~t'sin 2xo~], and g looks particularly
simple at t' (( t,

&(lq*+ q. l lq* —q. l ~) = —«1 ~ (q + qy)4

2 ( q~ + qy
—(d

Expanding this expression in w and substituting into
(Al) we obtain [(q q )2 @2]s/2 )

'

[x+ (Q, ~)] ' = —
4~ ).—(" ),

"
k

The dig'erence between type-A and -B transitions now
becomes transparent. In the first case, the integration
over k is restricted to a region which is located entirely
inside the magnetic Brillouin zone. Accordingly, Ek re-
mains finite when No tend. s to zero, and at the critical
point we have [X+ (Q, cu)] w . For type R, however,
the allowed region of momentum integration includes the
vicinity of (xo, 7r —xo) and symmetry-related points where
the Fermi surface crosses the magnetic Brillouin zone
boundary. At each of these points, Ek ——No., i.e. , the
denominator in (A5) diverges as Ko M 0. Expanding
Ek near these points and performing the momentum in-
tegration, we obtain after some algebra

(A10)

U2
Im(x+ ) = D (All)

where w = w/(2tsinxo). We also obtained expression
for g for arbitrary t'/t, but it is more cumbersome and
we refrain from presenting it here. In the opposite limit,
q, w )& No, or equivalently when Wo vanishes, the q/%0
dependence in (A9) transforms into a constant term, and
both pieces in (A2) contribute linear in w terms into the
imaginary part of y+ . The numerical factors for each of
the two pieces contain combinations of 0 functions of the
form, e.g. , 0(4t sin xo~q +q„~ —~w+4~t' si 2nx~(oq —q„)~).
However, we have checked explicitly that the sum of the
two terms does not contain 0 functions. Specifically, we
obtained at No ——0 and arbitrary ratio w/q

U ( Cd

[x (Q, ~)] ' = —D
2 + —2, (A6)c )

Combining the above results, one obtains the expres-
sions presented in Eqs. (3.5), (3.S), and (3.9).

where D = t/Sa~t'sinxo sin 2xo~, and the m term comes
from the integration over the regions far from (xo, 7r —xo).
We see that the leading term in the expansion in cu is now
u /No. As one approaches the critical point, the first
term in (A6) becomes purely imaginary, and at No ——0
one has

Uniforln suscept ibility

X~ = (1/2)(g~pgy/a) lim X+ (q, cu = 0), (A12)

The uniform transverse spin susceptibility is defined as

U2 (.[x' (Q ~)] '= —D
I
'~+ —I.t2 I c2 ) (A7)

Im(X+ )
' ~qN0 .

We see that the damping of magnetic excitations disap-
pears as 1VD ~ 0.

For type-B transitions, the imaginary part of the sus-
ceptibility is a function of q/No and w/1qo. For q, u ((
No, we obtained

I (x+ )
' = D,~ @(lq*+q. [ [q* —q. l )

0
(A9)

We now consider the form of the susceptibility at Gnite
q which we will understand as a deviation &om Q. The
calculations here are straightforward but tedious, and so
we skip some of the details. First, we found that at u = 0,
all potential terms of the form q /No cancel each other
for both type-A and -B transitions. The expansion of
[x+ (q, 0)] i over q is therefore regular for both cases.
Second, we found that when both co and q are finite, the
second piece in (A2) has an imaginary part which for
type-A transition behaves as

where gGp~ is the gyromagnetic factor and a is the
volume per spin. In the q —+ 0 limit, the coherence factors
are simplified and we obtain X~ ——(gG p~/a)2Xo/[2(1—
UX0)] where

1 .~ (Nol' fn~~ —n'„5 1
A: k ~+I k

dfn„+, —n„

k k+q

C C
k k+q

El+, —E~)

As one approaches the critical point, the erst term in
(A13) disappears and x~ takes the familiar random-
phase-approximation (RPA) form of the magnetic sus-
ceptibility in a Fermi liquid. , which is finite at T = 0. For
the type-A transitions, the first term vanishes as O(NO),
and for the type Btransitions it van-ishes as O(&o). The
uniform susceptibility then has forms presented in Eqs.
(3.6) and (3.11). Notice, however, that the full Xo (and
hence, X~) behaves as Xo ——const+0(1VO) for both types
of transitions: For the type-B transition, linear in No
contributions from the first and second terms in (A13)
cancel each other.
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Staggereci susceptibility in a Bnite magnetic fjeld

To obtain the temperature-dependent correction to the
uniform susceptibility &om the Buctuation and interac-
tion of the magnon modes, we will need the form of the
long-wavelength action for antiferromagnetic Huctuations
in the presence of the external magnetic field. To derive
this form, we need to understand how the staggered sus-
ceptibility is modified in such a field. In this subsection,
we will determine this modification in the SDW formal-
ism for the ordered state. We then extend SDW cal-
culations up to a critical point which in turn will allow
us to obtain the Geld-dependent part of the action in a

I

disordered phase.
To be definite, we assume that the field is directed

along the z axis (antiferromagnetic order parameter is
along the z axis). We also introduce new operators as
linear combinations of quasiparticle operators with up
and down spins,

&i,i + &i,2

~2
(A14)

(the indices 1 and 2 correspond to up and down spins,
respectively). The quadratic part of the Hubbard Hamil-
tonian now takes a form

I

&e = ).(~i —~)4i,4k+ (~A+g + ~)0i,+g0i+g —No(4 i,li+g+ 4i,+~4k)

+) (ei+g —H)P„+&Pi+g + (ea + H)g„gi —No(gi, +~0i + 0i,4i+g), (A15)

where H = H/2. Clearly, the magnetic field splits conduction and valence bands for up and down spins, and so we
now have four diferent branches of fermionic excitations. However, we see that the pairs of operators (Pg, gg+~)
and (Pg+g, gy) in (A15) are decoupled &om each other, and therefore the diagonalization is still a 2 x 2 problem.
Performing the standard manipulations we obtain

&sDw = ) Ei, ~i, o'i + Ei, Pi, Pk + Ei, 'Yi, 'Yi + Ei.~i,4,CX p t t b t (A16)

where we introduced

E '~ = e~+ + E~, E~' = ~~+ + E~ +, (A17)

No2+ (~„—H)2, E~+ = No + (e„+H)2. The self-consistency condition now takes the form

U .& (np„—n „ng„—n~„ t

1 —— + E—+ ) (A18)

The computation of susceptibilities proceeds in the same way as without a field, the only new feature being the
appearance of a cross-polarization term yz which makes the RPA ladder summation a 2 x 2 matrix problem even if
we neglect, as we did earlier, small terms with a momentum transfer Q. Specifically, we found

xo""(v,~)[1 —2Uxo'(~ ~)] —»Ixo" (~ ~) I'

[1 —»xo" (v, ~)][1 —2Uxo'(~ ~)] —4U'Ixo (& ~)I"
xo'(~ ~)

[1 —2Uxo" (v, ~)][1—2Uxo'(v, ~)] 4U'Ixo" (~—~) I' (A19)

Below, we restrict the consideration to an analysis of the frequency dependence of the susceptibilities at q = Q. In
this case, the bare susceptibilities are

Xo"(Q, ~) = 4N): (np, —n-. ) I, 2E I+( b. ~. ) I

xo'(Q, ~) =
2

1
+

2E& + (d)

+(ng„—n~„)

xo"(Q ~) = & N). (n~.

/~„+ p~H) ( 1
I("E„-. ) (2E„-+ . 2E„-.+.)+

r e„—paul
E ) (2E„—(u 2E„+o~)

(~„+p,+HI (—(n~. —n~. ) I ,E ++ )I. (A2O)
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Performing the computations, we found that

Xo"(q ~) = + ci s l

1 + -
z I ~ &o'(&~ ~) = &o (q~ ~) cz~o/t2U ts Hoz)

'

(Q, id) = zcsidH/t (A21)

where c, = c;(t /t) and Ho t. For the type-A transition, we found that all three coefficients remain finite at
the critical point. Elementary considerations then show that the dominant field dependence in the denominators
of (A20) coines &om (yo") and is in the form io H . For the n-field action, this implies that the extra term in
the presence of H has a form of Eq. (4.12) (to see this, one simply has to compute correlator n'n" oc y'"). For a
disordering transition of type B, the situation is more complex. The most relevant point is that c3 is still finite at
the transition which implies that there is no term sgn(io) in the coupling to the field. However, we also found that
ci and cz behave as ci ——(1/2)D[(t//4&o —io ) + .], cz ——D[(t/2&o) + .

] where D was defined after (A6) and
the ellipses stand for nonsingular (field-dependent) terms. Right at the critical point, ci ——[(i/2)Dt/ai + . . ], and we
have yuo""' = (1/2U) —igloo(l —H /Ho)/(4U ) + O(~ (1 —H /Hi)). We see therefore that for B type tra-nsitions,
P acquires a field-dePendent Part P -+ P(1 —H /Hoz). Substituting this exPression into (A20), we find an extra field
dependence in the denoininator which has the same ur H form as the dependence imposed by (you), but with extra
prefactor (p/t) . This implies that for the z = 2 transition, there are two difFerent relevant terms in the n-fieid action
which describe the coupling of the antiferromagnetic fluctuations to the field. We discuss the relative importance of
these terms in Sec. IVA. Finally, the effective action indeed contains a term Hz —(Hn)z = (n x H)z which can
be extracted from the longitudinal susceptibility [y (0, 0)] oc Hz Howe.ver, because of the constraint, this term
contributes only to uniform susceptibility at T = 0 which is nonuniversal and is not considered in this paper.
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