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Electronic structures of transition-metal mono-oxides in the self-interaction-corrected
local-spin-density approximation
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The electronic structures of transition-metal mono-oxides are calculated using the self-interaction-
corrected (SIC) local-spin-density approximation (LSDA). The LSDA-SIC has many solutions and
various possible solutions are examined. It is shown that the total energies of these solutions are
strongly a8ected by the choice of exchange-correlation energy functionals. Alternatively, if the
solutions are chosen so that all orbitals are localized as Wannier functions, the energy gaps are
overestimated by 1.5—3 eV. However, in these solutions, the relative positions of occupied transition-
metal d bands and oxygen p bands are consistent with the analysis of photoemission spectroscopy
by the cluster con6guration-interaction theory.

I. INTRODUCTION

The modern electronic structure calculations are based
on the local-spin-density approximation (LSDA) to the
density-functional theory (DFT).~ Within this approx-
imation, we can obtain the ground state properties
from the variational principle for the energy functional
E~sDA[n~, ntj of spin density n (r) (o =g, j.). In this
energy functional, the exchange-correlation (XC) energy
is not known exactly and is approximated as the integral
of the local exchange-correlation energy, which is deter-
mined from the XC energy for the uniform electron gas.
Since the correlation energy is not known exactly even for
the uniform electron gas, many parametrization schemes
are proposed. '

The LSDA has been widely applied to atoms,
molecules, and solids. While it has succeeded to ex-
plain the ground state properties of a variety of mate-
rials, the failures of this approximation are also known.
The most serious one is an underestimation of energy
gaps for semiconductors and insulators. The suppression
of magnetic ordering for antiferromagnetic insulators is
also known as a failure of the LSDA. For transition-metal
mono-oxide insulators (MnO, CoO, FeO, and NiO), the
relative positions of transition-metal d bands and oxy-
gen p bands are inconsistent with the analysis of photoe-
mission spectroscopy by cluster configuration-interaction
(CI) theory. These relative positions are important
to clarify whether they are Mott-Hubbard insulators or
charge-transfer insulators. In Mott-Hubbard insulators,
the occupied d bands of transition-metal atoms appear
at higher energy than the occupied p bands of oxygen
atoms, while the relative positions are reversed in charge-
transfer insulators. The lowest unoccupied band is, in
both cases, transition-metal d states. In the LSDA, the
transition-metal d bands appear at higher energy than
oxygen p bands and therefore they were considered as
Mott-Hubbard-type materials. Such LSDA results do not
agree with those by experiments and the CI theory, where
MnO is assigned as intermediate of a charge-transfer and

Mott-Hubbard insulator and NiO as a charge-transfer in-
sulator.

The purpose of the present paper is to study whether
these problems in the LSDA are improved by the self-
interaction correction (SIC). The SIC removes unphys-
ical self-interaction for occupied electrons and decreases
occupied orbital energies. Perdew and Zunger applied
the LSDA SIC to isolated atoms and showed that the
highest occupied orbital energies are in better agreement
with experimental ionization energies. From these re-
sults, the SIC is expected to improve the electronic struc-
tures of the insulators and semiconductors. How-
ever, the application of the LSDA SIC to solids has se-
vere problems since the LSDA SIC energy functional is
not invariant under the unitary transformation of the oc-
cupied orbitals and we can construct many solutions in
the LSDA SIC. If we choose Bloch orbitals, the orbital
charge densities vanish in the infinite volume limit. Thus
the SIC energy is exactly zero for such orbitals. This does
not mean that the SIC is unnecessary for solids since we
can construct localized Wannier orbitals that have finite
SIC energies. In many calculations for solids, the SIC
was adapted to the localized orbitals, which are selected
under some physical assumption. These methods have
partly succeeded to improve the electronic structures of
wide-gap insulators and semiconductors.

Recently, Svane and Gunnarsson and Szotek et al.
performed self-consistent calculations for the transition-
metal mono-oxides within the LSDA SIC and obtained
the energy gaps and magnetic moments, which are in
good agreement with experiments. They did not impose
any physical assumption and chose the solutions from a
comparison of the total energies. The selected solutions
are composed from localized orbitals for transition-metal
d bands and extended Bloch orbitals for oxygen p bands.
In other words, the SIC is effective only for the transition-
metal d orbitals and the oxygen p orbitals are not affected
directly by the SIC.

In this paper, we present our results for the transition-
metal mono-oxides (MnO, FeO, CoO, and NiO) by the
LSDA SIC. We carefully examine the criterion to choose
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orbitals. We try both solutions with localized and ex-
tended oxygen p orbitals. As an XC energy, both
parametrizations proposed by Barth and Hedin4 (BH)
and Vosko et al. (VWN) are used. We show that the
choice of the XC energy functional infiuences the com-
parison of the total energies for various solutions.

We also study the relative positions of transition-metal
d bands and oxygen p bands to solve the discrepancy
between the LSDA and experiments. Previous results by
the LSDA SIC (Refs. 16 and 17) predict all materials as
charge-transfer insulators and. do not agree with the CI
theory. We show that the relative positions of occupied
bands are consistent with CI theory if the solutions with
localized orbitals are chosen.

This paper is organized as follows. In Sec. II we ex-
plain the LSDA SIC and our calculation scheme. Special
attention is paid to the criterion to choose the orbitals.
We show our results for transition-metal mono-oxides in
Sec. III and discussions in Sec. IV. Section V is a sum-
mary.

where minimization is taken over for all Slater deter-
minants (@, ) with spin density n . Inserting (2.4) in
Eq. (2.1), we can obtain the energy functional for (g,

E" "[(0'-)]=) (&'-I —+I&* )
2'

+ d rV,„g(r) n(r)

+E ["]+E""[ ~ ~] (2.5)

B. LSDA SIC

It is easily verified that the xninimization of Eq. (2.1) with
respect to spin density is equivalent to the minimization
of Eq. (2.5) to the one-particle orbitals (g, ). The Kohn-
Sham equation (2.2) can be also obtained from the Euler-
Lagrange equations for Eq. (2.5). This energy functional
is corrected for the self-interaction as explained in the
next subsection.

II. THEORY

A. LSDA

The LSDA energy functional is defined as

E [nr, rrg] = T [ng, rrgr]+ f d~rV q r[) rr[)

+E~ [n] + Exc [nt. , ng], (2.1)

where n(r) = nt(r) + ng(r). The Tp is the kinetic en-
ergy for a noninteracting system with the same spin
density n (r), V,„t is an external potential, E~ is a
static Coulomb energy (Hartree energy), and Exc A is an
exchange-correlation energy within the local-spin-density
approximation. From the variation of Eq. (2.1), the
Kohn-Sham equation can be obtained as

IIi,SnAWjl7 (r) = ~j qj 0 (r)1 (2.2)

1
~r.sea = & + V~~~(r)

2m

+ fn(r'), , SE'sn" [n„,n„]
, dr +

Ir —r'I bn (r)
(2.3)

&0[ng, n, ] = min ).(@'-I —&I@'-) (2 4)

where the last term is an XC potential Vx&(r). Thus we
can calculate electronic structures by solving the Kohn-
Sham equation self-consistently.

Strictly speaking, the SIC is not directly included in
the energy functional defined by Eq. (2.1). The en-
ergy functional of orthonormalized one-particle orbitals

) must be constructed instead of a functional of spin
density. ~

The kinetic energy To in Eq. (2.1) can be written as

In the LSDA, the d bands in the transition-metal ox-
ides split by the spin-dependent XC potentials and sym-
metry of crystals. According to Ref. 11, the NiO and
MnO become insulators by these effects. The calcu-
lated energy gaps are, however, 1.0 eV (MnO) and 0.4
eV (NiO), which is 10—25% of the experimental val-
ues 3.6—3.8 eV for MnO and 4.0—4.3 eV for NiO. For
other transition-metal mono-oxides, the spin-dependent
exchange-correlation potential and the crystal Geld split-
ting in the LSDA are not enough to predict the insulating
ground states.

As Mott proposed, the on-site Coulomb repulsion U
for the d orbitals on transition metals is important to
understand the electronic structures of transition-metal
oxides. It splits the one-particle energies for the occupied
and unoccupied d orbitals. The LSDA fails to reproduce
this splitting. This shortcoming of the LSDA also ap-
pears in the calculation of isolated atoms. Namely, the
LSDA gives almost the same one-particle energies for the
occupied and unoccupied d orbitals with the same spin
since both orbitals experience the same local effective
potential. On the other hand, they have different energy
in the Hartree-Fock (HF) approximation since the effec-
tive potentials are nonlocal. Thus, even for the actual
transition-metal oxides, we may get larger energy gaps
by the HF approximation.

This difference between the LSDA and the HF approx-
imation arises &om the treatment of the exchange en-
ergy. The HF approximation uses the exact exchange
energy and the effective one-body potentials are nonlo-
cal. On the other hand, the exchange energy in the LSDA
is approximated by the function of the local spin density
and the effective potentials are approximated by the lo-
cal form. As a result, the self-Coulomb energy EH[n; ]
and self-exchange energy Exc +[n, ] for orbital g; with
charge density n; (r) = I@, (r) I

do not cancel out and
the self-interactions remain Gnite. This means that occu-
pied electrons experience unphysical potentials by them-
selves. These unphysical potentials raise the one-particle
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energies of occupied orbitals. To overcome this failure,
the self-interaction correction ' is formulated by using
the energy functional

%ACT

(2.6)

In this expression, the Esp~ is defined as

This is a nonlocal self-interaction free XC energy func-
tional. If we derive the Kohn-Sham equations using the
above XC energy, the eigenvalues do not agree with those
from Eq. (2.8) in general. Thus the one-particle ener-
gies calculated in the LSDA SIC do not have a direct
relation with the Kohn-Sham eigenvalues. The improve-
ment of orbital energies of isolated atoms by the SIC is
attributed to the orbital-dependent potentials which cor-
rectly describe the asymptotic behavior and reduce the
relaxation effect.

&S«[~* ] = (@II[n' ]+@XC "[~' O]) (2.7)

and removes the self-interaction explicitly. The varia-
tional procedure of Eq. (2.6) with respect to @, yields

(USDA + +SIC(r)H'*' (r) = ).@ (r)s *

2

lb gELSDA I~ p

ir —r'i bn; (r)

The V&IC is a SIC potential for an orbital g; and re-
moves the unphysical self-interaction potential. The La-
grange multipliers e~;, which are introduced to ensure
the orthogonality of «; j, must satisfy the localization
condition s.; = (s; )' so that the total energy is sta-
tionary about the unitary transformation of g; . From
Eq. (2.8) s;. satisfies

&,-, = W'-l&LBDA+ sIc)I@i-)
= (@'-I (IILsDA + +sIC)I@i-) (2.1O)

@LSDA SIC[
]

~ gLSDA SIC[y ]t 4 (y }
(2.11)

If we use this energy functional, the LSDA SIC can be
considered as a DFT where XC energy functional is ap-
proximated as

ELSDA SIC[
]

@LSDA[
]

min ) ((@; )

—A(@, )

—&~[~'-] —&xc "[~'- o])

Tarn~, ngj I. —(2.12)

Thus c;. may be considered as a matrix element; of an ef-
fective one-body Hamiltonian. One-particle energies for
occupied orbitals are obtained by diagonalizing the La-
grange multiplier matrix. (One-particle states that diag-
onalize s; are called canonical orbitals. ) For unoccu-
pied states, we diagonalize the LSDA Hamiltonian in the
subspace orthogonal to the occupied orbitals.

To end this section, we comment about the relation be-
tween the SIC and the DFT. Since the energy defined by
Eq. (2.6) is a functional of orbitals, it is not directly con-
nected to the DFT. We can define the energy functional
of spin density by constrained minimization as

C. Choice of orbitals in the LSDA SIC

As mentioned in Sec. I, the energy functional defined
by Eq. (2.6) is not invariant under unitary transformation
for the occupied orbitals. Therefore the results depend on
the choice of orbitals. If we solve the LSDA SIC equations
with extended Bloch orbitals, the SIC's do not contribute
because the orbital charge densities vanish as (volume)
in the infinite volume limit. On the other hand, there ex-
ist solutions which are assembled &om localized Wannier
functions. Though these orbitals are not the eigenstate of
crystal momentum k, the Lagrange multiplier matrix c;.
has translational symmetry. By diagonalizing e, . , we re-
cover the energy bands c &. Since each occupied orbital
experiences the attractive SIC potential, the one-particle
energies for occupied bands are lowered and rearranged.
These results are completely different from those by the
LSDA. Thus, to apply the LSDA SIC to solids, we need
well-defined criteria for a choice of orbitals. Such criteria
are especially important if there are many inequivalent
orbitals in a unit cell, since each orbital can be chosen as
an extended Bloch or a localized Wannier function and
we have many solutions in the LSDA SIC.

The most plausible criterion seems to be the choice of
the lowest energy solution ' since the LSDA is based
on the variational principle. Another criterion is that of
the localized orbitals ' ' because the LSDA SIC has
been successfully applied to atoms and molecules.
Until recently, these two criteria were believed to be
equivalent, i.e., the localized orbitals were believed to
give the lowest energy. While this would be true for wide-

gap insulators, the lowest energy solutions that Svane
and Gunnarsson chose for t;ransition-metal oxides are
composed &om localized transition-metal d orbitals and
extended oxygen p orbitals. We discuss the inadequacy
of this choice of orbitals and argue that the total energy
criterion for the LSDA SIC has a few fundamental prob-
lems.

First, the localized orbitals must have the negative SIC
energies to become the lowest energy solutions since the
SIC energies for the extended orbitals are exactly zero.
To investigate this point, we plot the SIC energy for the
1s-like orbital v/i(r) = Ce '~ in Fig. 1(a) using various
XC energy functionals. If we ignore correlation energy,
the SIC energy of this orbital is always negative, as sug-
gested for general orbitals by Perdew and Zunger. The
correlation energy, which is smaller than the exchange
energy, is responsible for the sign of the SIC energy. As
shown in Fig. 1(a), a small difference between the BH
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and the VWN XC energy can change the sign of SIC
energies. Thus it depends on the XC energy function-
als whether the localized orbitals become lowest energy
or not. The contribution of the SIC potentials to one-
particle energies is plotted in Fig. 1(b). According to
this figure, the SIC potentials are attractive in the wide
parameter region. Even if the SIC energies are positive,
the SIC potentials are attractive. We also find that the
form of the XC energy functionals is not important for
the SIC potentials compared with their absolute values.
These two figures present the difFerent behaviors of the
SIC energy and the SIC potential and suggest that the
SIC potentials for localized orbitals are important even
if the corresponding SIC energies are positive. In other
words, the criterion that uses the total energy might be
problematic.

Second, the charge densities for extended orbitals van-
ish only in the infinite volume limits. They remain 6-
nite for finite size clusters. If the size of the clusters is
fairly small, extended orbitals are energetically unfavor-
able and the localized orbitals have lowest energy. As
the cluster size increases, the SIC energies for extended
orbitals become small. Then the lowest energy solutions
would change kom localized orbitals to extended orbitals

if the SIC energies for localized orbitals are positive.
Therefore, if the lowest energy solution is chosen, the
electronic structure would change discontinuously when
the cluster size changes. It is unlikely that this discon-
tinuous change has a physical origin since the distinction
between the extended and localized orbitals is introduced
by the SIC and does not exist in the HF approximation
or the LSDA. On the other hand, if we apply the SIC to
localized orbitals and choose the lowest energy solutions
within such orbitals, we can get solutions where all or-
bitals are a6'ected by the SIC potentials. These solutions
are directly related to corresponding atomic or cluster
calculations and do not have any discontinuous changes
as cluster size increases. Thus the SIC for localized or-
bitals is a natural extension to the SIC for atoms or small
clusters.

D. Adoption of the SIC
in the linear mufHn-tin-orbital method

To calculate charge densities of localized orbitals, the
basis sets of extended wave functions such as plain waves
are not appropriate. The localized basis set is necessary.
We use the linear muKn-tin-orbital2s (LMTO) method
with the atomic sphere approximation. The notation in
this paper is the same as in Ref. 25.

The basis functions of the LMTO are written as
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IxRL) —I4'RL) + ). I&~ L )&~ L, , RL„
R', L'

(2.13)

where B and L denote atomic sites and angular momenta
(I, m), respectively. The spin index cr is omitted for siin-
plicity. PRL, is a solution of the Schrodinger equation
with fixed energy E„ in each atomic sphere and PRL, is
its energy derivative. They are created by solving the ra-
dial Schrodinger equations without SIC potentials. Due
to the second term in Eq. (2.13), the Iy~l. ) has a tail
within a region of a few neighbor atoms around the cen-
tral atom at B and slightly overlapped with each other.
In the LSDA, we may ignore these overlaps and treat
them by first-order perturbation theory. However, in
the present calculation, these overlaps are important be-
cause the spatial extents of orthogonal orbitals determine
the SIC energies and potentials. If we ignore the over-
laps between LMTO basis functions, the orbitals @; can
be more localized and the absolute values of the SIC en-
ergies would be overestimated. We therefore treat the
overlaps rigorously.

The localized orbitals @; are described by the linear
combination of IyRL, ),

FIG. 1. (a) &be SIC energy and (b) the contribution of the

81C potential to one-particle eigenvalue (be = (vpI&sicIQ))—r/A
as a function of A for the 1s-like orbital g(r) = Ce
Solid hnes represent the results by the BH and dotted lines

by the VWN. The dashed lines are the results for which the
correlation energy is ignored.

R,L
(2.14)

The energy functional in Eq. (2.6) is evaluated for these
orbitals. To solve Eq. (2.8), we use simulated annealing
methods,
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IQ') =
Y 4 HLsDA + vsic I@') ) .I@i)si'dt

(2.i5)

1
~ij =

2

((Nil�(~LsDA

+ vsic jlO, )

+(@'l(HLSDA + sic)l@j)) (2.16)

so that the orthogonality condition to (@;) holds dur-
ing the time evolution. When

& Ig;) = 0 is achieved, the
orbitals satisfy the LSDA SIC equations and the localiza-
tion condition ez, ——(e';~)'. From Eqs. (2.14) and (2.15)
we get

Equation (2.15) is integrated numerically using the dis-
crete time slice At. The Lagrange multipliers c~, are
chosen as

We use a supercell and corresponding k points to calcu-
late URL ~ and U„L . In the following, the supercell with
500 atoms was used. The orbital charge densities and the
SIC potentials are expanded to the linear combination of
the spherical harmonics in each atomic sphere. About 50
atoms around the central atom are treated. This approx-
imation can be justified since the self-consistent orbitals
are localized within a few neighbor atoms. Details of the
calculation are presented in the Appendix.

In our program code, the calculation of the nonspher-
ical XC energy and the potential consumes much CPU
time because of the nonlinearity of the XC energy func-
tional. Therefore, most calculations were performed un-
der the spherical approximation to the orbital charge
densities. The contribution of the nonspherical SIC will
be discussed in Sec. IV.

III. B.ESULTS

d
URI, , 'Y ') (O H)RL, R'I 'UR'L', '

R',I '

+ ):& 'm.
,RL (xRL Ivsic14")

R', L'

—) U~g, ,r,; ),
2

(2.17)

where

HRs. ,R L = (xRLI JILSDA IXR r, ) ~ (2.i8)

'ORL, R L = (XRLIXR L ). (2.19)

k —1 k k
dt
—UL„———P ) (0 H)1, LUL„

—lk k ~ k k+) 0 „L,LVL „—) UL
~l LI fn

(2.20)

v."r.,„——) .e '"' (x. L lvs"icl@.),
T

(2.2i)

The term 0 in Eq. (2.17) makes the calculation in
real space diFicult. We assume translational symme-
try with periodically aligned localized orbitals. Under
this assumption, the orbital index j can be written as
(n, T), where n denotes orbitals in a unit cell and T is a
translational vector. By this symmetry, we can transform
Eq. (2.17) into reciprocal space

We calculated the electronic structures of TO (T=Mn,
Fe, Co, and Ni). Below Neel temperature, they are an-
tiferromagnetic insulators. Magnetic moments on the
transition-metal atoms in a [111)plane are aligned in the
same direction and they are in opposite directions in suc-
cessive planes. We use perfect rock-salt structures with
lattice constants listed in Table I. In the ionic descrip-
tion, these materials are understood as T +0 with
[Ar]3d"4s configuration for the transition-metal and
[ls22s ]2p for the oxygen. The Ar-shell of transition-
metal ions and the 1s shell of oxygen ions are treated as
&ozen cores. The oxygen 28 bands appear about 0.7—
1.0 Ry below other valence bands and have small disper-
sions. They are self-consistently determined in the LSDA
using a difFerent energy panel &om other valence bands
and are Axed to this self-consistent charge density in the
LSDA SIC calculations. Thus the valence bands are gen-
erated &om the transition-metal d level and the oxygen
p level. The initial wave functions are chosen to satisfy
these configurations, i.e., they have n localized d orbitals
on a transition-metal atom and six on an oxygen atom.
The occupied orbitals on the transition-metal atoms are
chosen so as to maximize spin magnetic moments. Since
each orbital extends to neighbor atoms, the actual ion-
icity in each atomic sphere need not be +2 and depends
on the size of atomic sphere radii. We choose them as
presented in Table I so that each sphere maintains almost
charge neutrality in the LSDA.

We choose three kinds of possible solutions. In the type
1 solution all orbitals are extended. For this solution,

k ~ - —ikTU„L„=g e U(„T)L„,
T

(2.22)

TABLE I. The lattice constants, average atomic sphere
radii (S „), and atomic sphere radii used in the present cal-
culations (ST for transition metal, So for oxygen).

where r denotes atomic sites in a unit cell and (r, T) is a
composite label for atomic sites. Since the size of matrix
in Eq. (2.20) is determined by the number of atoms in a
unit cell, it is easily calculated as in the standard band
theory.

The (y„LIVsicl@„) must be calculated in real space.

Parameter (a.u. )
Lattice constant

S
ST
~o

Reference 30.

MnO
8.381
2.600
2.993
2.027

FeO
8.145
2.526
2.884
2.020

CoO
8.050
2.497
2.832
2.035

NiO
7.927
2.488
2.749
2.077
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the results are the same as those by the LSDA. In the
type 2 solution all orbitals are localized. In the type
3 solution transition-metal d orbitals are localized and
oxygen p orbitals are extended. These three types of
solutions exist at least as stationary points for the LSDA
SIC energy functional.

We found that the physical properties such as energy
gaps or magnetic moments are not sensitive in each case
to the choice of the XC energy functional. In the follow-
ing, we present the results by the BH XC energy func-
tional. Only the comparison of the total energies depends
on the choice of the XC energy functional, which will be
discussed in Sec. IV.

A. Type 1 (LSDA)

To compare with other solutions, we brieBy summa-
rize the results for type 1 (LSDA). The calculated en-
ergy bands are shown in Fig. 2. Narrow d bands ap-
pear at higher energy than the oxygen p bands for all
compounds. By the spin-dependent XC potential, the d
bands split into five majority and minority spin bands.
For MnO, the energy gap appears between them. The
five bands also split into two e~ bands and three tqg bands
by the symmetry of crystals. While NiO has a small en-
ergy gap between them in the previous calculation, the
present one does not give an energy gap and eg and tzg
bands slightly overlap. The origin of this discrepancy is
attributed to the difFerence of atomic sphere radii and the
treatment of oxygen 28 orbitals. If we choose the same
atomic sphere radii for both Ni and 0 and treat the oxy-
gen 28 bands in the same energy panel with other valence
bands, we get the an energy gap of 0.4 eV. Prom this ob-
servation, we should point out that the relative positions
of the energy bands shift & 0.5 eV by these difI'erent ap-
proximations. The energy gaps and magnetic moments
are listed in Table II. The energy gap for MnO is 1.1
eV, which is about 30% of experimental value 3.6—3.8
eV. For other compounds, there are no energy gaps. The

magnetic moments are also underestimated in the LSD.
Especially for NiO, the agreement with experiments is
worse.

B Tgp6 2

The calculations were performed from the initial wave
functions in which each orbital is completely localized
on one LMTO basis function. When the convergence
is achieved, each orbital is extended to neighboring
atoms. For MnO, 94%%uo of the orbital charge density of a
transition-metal d orbital stays inside the central atoms
and 75%%uo of that for an oxygen p orbital. This result
indicates that the transition-metal d orbitals are more
localized than the oxygen p orbitals.

The energy bands are shown in Fig. 3. The attrac-
tive SIC potentials shift the occupied bands downward
and we get larger energy gaps for all compounds. These
changes are not the simple rigid shifts since the SIC po-
tentials depend on the spatial extents of orbitals. The
transition-metal d orbitals are more localized than oxy-
gen p orbitals. Thus the SIC potentials are larger in d
orbitals. As a result, the d bands and p bands, which
exist separately in the LSDA, appear at the same energy
region and strongly hybridize. The unoccupied bands
slightly shift upward by 0—1 eV and the lowest band has
weights mainly on transition-metal d orbitals.

We list the magnetic moments and energy gaps in Ta-
ble II. The energy gaps are 1.5—3 eV larger than exper-
imental values. The magnetic moments also increase by
the SIC and agree with experiments for MnO and NiO.
For FeO and CoO, they do not agree with experiments.
It is probably due to the neglect of the spin-orbit inter-
action and orbital polarization.

The main difference between these compounds appears
in the partial density of states (PDOS) as shown in Fig. 4.
For MnO, the PDOS for oxygen and a transition metal
distribute in the whole region of occupied bands. While
the distribution of oxygen PDOS is uniform, the distri-

(a) Mno (b) FeO (c) CoO (d) NiO

L /

-10

I [100]

FlG. 2. The energy bands by type ]. (LSDA) in the [111]and [100] directions. The dashed lines represent Fermi energies and
the arrow indicates the energy gap.
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TABLE II. Band gaps and magnetic moments.

Compound
MnO
FeO
CoO
NiO

Type 1 (LSD)
1.1
0.0
0.0
0.0

Band gap (eV)
Type 2 Type 3

6.5 3.4
6.1 3.4
5.3 2.7
5.6 2.8

Expt.
3.6—3.8

2.4
4.0,4.3

Spin magnetic
Type 1 (LSD) Type 2

4.5 4.7
3.2 3.7
2.0 2.7
0.7 1.7

moment (pa)
Type 3

4.7
3.6
2.6
1.5

Expt.
4.7974.58

3.32
3.35,3.38

1.77,1.64,1.93

Reference 16.

butions of transition-metal PDOS has peaks at a lower
energy region. This indicates that the Mn d orbitals have
slightly lower energy than oxygen p orbitals. For NiO,
the Ni PDOS shifts to lower energy and they have sharp
peaks. Therefore, the separation of the d level and the p
level is larger for NiO than for MnO.

o compare the relative energy of d orbitals a dan p or-
ita s, we list the average values of diagonal elements

of Lagrange multipliers I; in Table III. These values are
one-particle energies when all hybridizations are switched
ofF. The energy difference (eg) —(e~) is 1.3 eV for MnO
and 2.9 eV for NiO, where (e'g) and (s'&) are average val-
ues of occupied transition-metal d orbitals and oxygen

p orbitals, respectively. We compare these values with
the difference between the charge-transfer gap 4 and the
Coulomb energy U obtained from the analysis of photoe-
mission spectroscopy by CI theory. These values can be
a measure of the difference of orbital energies between
the transition-metal d level and the oxygen p level. The
U —L for MnO and FeO are 0.5 eV and 0.8 eV, respec-
tively. They are about 3 eV smaller than that for NiO.
We found that such a qualitative difference between these
materials is reproduced by the (e~) —(s„), though they
are slightly larger than U —4 for MnO and FeO and

smaller for NiO. If we take into account the different def-
initions of (e~) —(c„)and U —A, we can conclude that the
relative positions of d bands and p bands are consistent
with the CI theory.

C. Type 3

The energy bands and PDOS for type 3 solutions are
shown in Figs. 5 and 6. In these solutions, oxygen p or-
bitals are Bloch functions and are not inQuenced by the
SIC potentials directly. They are indirectly affected b
he SIC potentials for transition-metal d orbitals through

orthogonalization of orbitals and charge redistribution.
Thus the positions of oxygen p bands are almost un-

changed while the transition-metal d bands shift about 10
eV and appear below oxygen p bands. As a result, the
relative positions of d bands and p bands are reversed
from the LSDA for all compounds. The highest occu-
pied level has weights mainly on oxygen p orbitals and
slightly mixed with transition-metal d orbitals. There-
fore, all compounds are described as charge-transfer-type
insulators.

The diagonal elements of Lagrange multipliers are pre-

(a) Mno (b) Feo (c) CoO (d) NiO

-10

I I I

1 [100]

FIG. 3. The energy bands by type 2 in the [111]and [100] directions. The arrows indicate the energy gaps.
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FIG. 6. Total and partial density of states of (a) MnO and (b) NiO for type 3. The arrows indicate the energy gaps.

sented in Table III. The energy difFerences (s'„) —(eq) are
4.2—5.7 eV, which also indicates that all compounds are
described as charge-transfer insulators. Thus these solu-
tions cannot reproduce the difference between MnO and
NiO.

The energy gaps are about 3 eV for all compounds. For
MnO and CoO, they are in better agreement with exper-
imental values than those by type 2. For NiO, the energy
gap by type 3 is 1—1.5 eV smaller than experiments and
the one by type 2 is 1—1.5 eV larger. The magnetic mo-
ments are almost the same values as those by type 2.
These solutions are chosen by previous works ' &om
total energy comparison. If we choose these solutions,
the results agree with those in Refs. 16 and 17.

IV. DISCUSSION

In Sec. II B, we showed that the total energy criterion
has a few problems Rom a general point of view. Here
we compare the total energies of NiO and show that they
really depend on the choice of the XC energy functional.

The total energies of NiO with various approximations
are presented in Table IV. If the BH is used as the XC en-

ergy and the SIC energy is spherically approximated, the
type 3 solution has the lowest energy. The energy differ-
ence is, however, about 0.3 eV per electron, which is the
same magnitude as the difference between the BH and
VWN XC functionals. Therefore, the lowest energy solu-
tion depends on the choice of the XC energy functional.

TABLE III. Average values of diagonal Lagrange multipliers: (sq) for occupied d orbitals and

(sz) for occupied p orbitals. U —b. is the difference between the charge transfer gap A and the
Coulomb energy U obtained from the analysis of photoemission spectroscopy in Ref. 8 (eV).

Compound
MnO
FeO
CoO
NiO

Type 2
—11.5
—11.7
—12.9
—13.9

Type 3
—11.3
—11.4
—12.3
—13.3

Type 2
—10.3
—10.6
—10.8
—11.0

Type 3
—6.1
—7.2
—7.4
—7.6

Type 2 Type 3
1.3 5.3
1.2 4.2
2.1 4.8
2.9 5.7

0.5
0.8

3.5
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TABLE IV. Total ener
up o lsic is included.

o a energy (e je ec ron foror iO with various a rox'us approximations. Nonspherical SIC

XC
BH

VWN
BH

VWN

&sic
0
0
4
4

Etype 2 ELSDA
—0.03
—0.51
0.44

—0.06

type 3 @LSDA
—0.28
—0.57
0.30

—0.02

Lowest energy
type 3
type 3
type 1

type 2
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0—

(a) Type 2 (b) Type 3 the energy bands with nonspherical SIC up to I & 4. The
nonspherical contribution to each orbital does not have
the symmetry of crystals. As a consequence, the energy
bands split. The relative positions and energy gaps also
change at most by 0.5 eV. The overall structure is qual-
itatively unchanged and the spherically averaged SIC's
may be acceptable approximations for physical proper-
ties.

V. CONCLUSION

-10

-15

I I I I I

1110] r [100]

FIG. 8. The energy bands of NiO for (a) type 2 and (b)
type 3. The nonspherical contribution of the SIC potentials
are included.

for types 2 and 3. Therefore, the criterion to choose the
localized orbitals predicts VO as an insulator. This is
another problem of the present method. However, we
can see the difI'erence between VO and other compounds
even in these calculations. The relative positions of en-
ergy bands are reversed from other compounds. Namely,
the occupied transition-metal d bands appear at higher
energy than the oxygen p bands. Thus the VO can be
characterized as a Mott-Hubbard-type material.

The advantage of the criterion to choose localized or-
bitals is that it can be widely applicable for insulators
and semiconductors. We are calculating the electronic
structures of the semiconductors by the LSDA SIC and
these results will be published elsewhere. If the total
energy criterion is used for Si, on the other hand, the ex-
tended orbitals have lowest energy and the SIC does not
contribute. This is in contrast to the improvements of
electronic structures by the simplified SIC.

Finally, the nonspherical contribution of the SIC to
physical properties was examined for NiO. Figure 8 shows

In conclusion, we calculated the electronic structures
of transition-metal mono-oxides by the LSDA SIC. Solu-
tions with localized and extended oxygen p orbitals were
examined. Both solutions give larger energy gaps and
magnetic moments than the LSDA results. From gen-
eral arguments, we proposed a simple guiding principle
that the SIC should be included in all occupied bands
of insulators. Such solutions seem to describe occupied
states in better agreement with experiments and. the CI
theory, though they give energy gaps 1.5—3 eV larger
than the experimental values. These calculations pro-
vide good starting points for further analysis by the GW
approximations or other methods that incorporate
the correlation effect.
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APPENDIX: EVALUATION OF THE SIC

The charge density of the orbital in Eq. (2.14) can be
written as

n(r) = ) 0R(r) rIRL(&)+L(&),
g4~

I

(A1)
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+RL(r) = V 4% ) CLL~L2 IURL2URLs4'RI2 (r)4'Rl~ (7) + URL URLSQRI~ (T)QRI~ (r)
L1,Lg

+URL URLs g Rl~ (r) O'Rl~ (r) + URL~ URL3 (tIRI~ (7)0'R/~ (r) j. (A2)

Here we omit the orbital index j for simplicity. The
OR(r) is a step function that is unity inside the atomic
sphere B, CLL, L, is the Gaunt coefficient

) hRLRgLg URAL~ ~

R1,L j
(A4)

and U is

CLL, L, = dOYgYL, YL, , (A3)
The SIC energy Eq. (2.7) and potential Eq. (2.9) must
be evaluated for this orbital charge density. We separate
the contribution into the static Coulomb part and the
XC part as
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()=-V ()-V ()

&sIc[n] = —&H [n] —&xc "[n,o]. (A6)

The VRL in Eq. (2.21) is calculated as

VRr. = V"(& & «) + V"(& & «)
+ ) 6„"L„,L, V"(p, p, r'L') + V"((t, p, r'L')

R
Err[n] = — ) drr nRL(r)VRL (r)

-R,L

1 ):
R,L,R2, L2

QRLSRL, R~Lg QRgL2 (A7)

The contribution from the XC is a local function of charge
density. We calculated them directly on mesh points in
atomic spheres. The resulting potentials are numerically
expanded to linear combinations of spherical harmonics
in each atomic sphere. As regards the contribution from
static Coulomb energy, we get the expressions

Here

r', L'

(A13)

(A14)

V"(p, p, «) = ) e '"
(4 .(, T) Ll VscIl4(. , T), L)

T,L'

xU(~ T) L (A15)

V"(0, 0 «) = ) e (4(.,T),LIVsrcl&(~, T),L')
T,L'

xU(~ T)

Vrr(r) = ) 0R(r)+47rYL(r"R)
R,L

VRr. ("R) + VRL ("R) (A8) (A16)

V"((t, p, «) = ) e *
(4 (~, T), LlVsIcl4'(~, T), L)

T,L'

xU(„T) L,

7'0—0 1+2
VRL (r) =

l I+, ""2"2 nRL ("2)2L+ 1 r'+' 0
r

dr, r, r nRL(r2)1—/

rl
VRL (r) =

l 1 I+I g ~ RL)RgL2 QR2L2
2 2l+1 to+i

R2+R, L2

(A10)

SR

QRL
1 l+2

(2t + 1)toI o
drr nRL (r) (A11)

VsIc(r) = ).OR(r) «7rYL(rR)VR'L'c(rR)
R,L

(A12)

Here m is the average atomic sphere radius and SRL R,L,
is the unscreened structure constant. Prom these equa-
tions, the SIC potential is expressed as

(Q, f, rL) = ) e ((t'(,T),LlVSIcl(t'(, T),I,')
T,L'

xU(„T) L . (A17)

(4(r,Tl, LlVSIcl4'(r, T),L~)

= ) V 4vrCL LL
L2

S„
x drr P„I(r)V(„'Tc)L (r)P„I, (r).

0
(A18)

The evaluation of the SIC can be performed indepen-
dently for each orbital. Thus the required computational
time scales linearly with the number of occupied orbitals
and the required memory does not depend on it.

The (P(„T)L lVsIc lg(„T) L ) and similar quantities can be
calculated by the radial integration in the atomic sphere
(r, T) as
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