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Entangled electronic states in multiple-quantum-dot systems
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We present an analytically solvable model of P colinear, two-dimensional quantum dots, each
containing two electrons. Interdot coupling via the electron-electron interaction gives rise to sets
of entangled ground states. These ground states have crystallike interplane correlations and arise
discontinously with increasing magnetic 6eld. Their ranges and stabilities are found to depend on
dot size ratios, and to increase with P.

Recent experimental and theoretical interest in
quantum-dot systems has opened up the fascinating area
of highly correlated, few-body quantum phenomena in
the traditionally large-N field of semiconductor physics.
Complex ground state behavior as a function of magnetic
field has been predicted for single two-dimensional (2D)
quantum dots containing % electrons. Even for as few
as N = 2 electrons per 2D dot, "magic number" ground
state transitions are predicted as a function of mag-
netic field as a result of the competition between (single-
electron) confinement energy and (many-body) electron-
electron interactions. ' Remarkably, such transitions for
N = 2 have recently been observed experimentally. ' Ar-
rays of coupled dots have been attracting increasing
attention, partly because of the possibility of application
as ultrasmall logic gates. Adjacent dots can be cou-
pled by "optical wiring, " i.e., coupled by the two-body
electron-electron interaction between electrons in adja-
cent dots, which can be nonzero even in the absence of a
single-body tunneling term. Such few-electron coupled
2D systems are also interesting in that they can repre-
sent the small-N analogs of coupled, parallel 2D electron
gases. Given the complex ground state behavior in a
single 2D dot as a function of B field, the coupled 2D
dot system ofFers the interesting possibility of competi-
tion between electron correlations on the same dot (i.e. ,
intradot interactions V;„t, ) and correlations between ad-
jacent dots (i.e. , interdot interactions V;„q„).

This paper predicts the existence of entangled ground
states with crystallike interdot correlations in multiple-
quantum-dot systems. These ground states occur discon-
tinously with increasing magnetic field, being interdis-
persed with states having negligible interdot correlations.
The ranges and stabilities of the crystallike states depend
on dot size ratios and increase with the number of dots
P. Our model is solved analytically and consists of P
colinear 2D quantum dots, each containing two electrons
but not necessarily identical in size. The model considers
a sufBcient number of electrons as to contain both inter-
dot and intradot electron-electron interactions, and yet
still admit analytic solutions. These analytic solutions
implicitly include mixing with all Landau levels.

Figure 1 shows our system for a pair of dots (P
2). The dots are arranged vertically with separation s.
This vertical geometry is of specific experimental inter-

est given the possibility of fabrication via etching of a
multiple-quantum-well structure (see Ref. 14 for P = 2).
Following several single-dot studies, we model each of
the P dots by 2D (xy plane) parabolic potentials with
a perpendicular magnetic field B (z direction) of suK-
cient strength to spin polarize the electrons. Electro-
static confinement in the z direction is taken to be suf-
ficiently strong that the electrons are frozen in the low-
est z subband. We take the electron-electron interac-
tion potential to be of inverse-square forin, ~ where P
is a positive parameter; this interaction for a single layer
gives quantitatively similar results to the bare Coulomb
interaction. ' Interdot tunneling is assumed to be neg-
ligible. The Hamiltonian for the system of P dots is (with
a symmetric gauge) H = Ho + V with
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p; and r; are the momentum and position of electron
i in dot o.. Each electron has effective mass m* and z
component of angular momentum L;. The cyclotron
frequency is u, and w2(B) = uo2 + w, /4. The electro-
static confining potential ~0 is in general difFerent for
each dot (N.B. the dot size uo ). The dominant in-
terdot coupling is due to interactions between electrons
on adjacent dots; we therefore take V = V;„&, + V;„&,
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FIG. 1. Schexnatic illustration of the P = 2 dot system.
Each dot contains two electrons.
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For V;„q, ~ 0, the exact eigenstates of H are products of
P single-dot states. For finite V;„t„,no exact analytic
solutions are known. Our approach is to Taylor expand
V;„t„under the assumption that ~r; —r(~ i) ~~ & s .
Having solved the resulting problem, we can check from

2
the analytic expressions for (e.g. ) —", that any particular
set of dot parameters is consistent with this assumption.
Hence

m=2)3, ...,P i,j k=0
kf fr; —r(,), /

The exact analytic solution of H is now possible including
terms of order Pr /s in V;„t„, (analytic) perturbation
theory is then employed for the Pr /s terms.

We now discuss the method explicitly for P = 2. Em-
ploying an orthogonal transformation, with coeKcients
depending on the relative dot sizes w1 and w2, allows
exact solution of II including terms of order Pr /s4 in
V;„t,. The only nontrivial contributions to H to this or-
der are those which depend on the relative positions of
the electrons within each dot. The corresponding eigen-
states contain quantum numbers m (the relative angu-
lar mamentum between the twa electrons in dat n). The
ground and low-lying states of the P = 2 system have
all other quantum numbers zero; these states can be la-
beled ~mi, m2) (signifying the direct product of ~mi) and
~m2)) and are used as a basis for the Pr /s perturba-
tion. Figure 2(a) shows the ground state transitions as a
function of B field in the hmit s —+ oo (i.e. , V;„i„-+0)
for the case of equal dat sizes (wi ——cu2). As a demon-
stration of the (lack of) interdot correlation, the insets
show the charge density in a given dot with the electrons
in the other dot fixed opposite one another at the crosses.
The plots are angularly symmetric (i.e. , negligible inter-
dot correlation). The radial localization increases as the
ground state m increases (i.e. , as B ~ oo, each dot ap-
proaches its own classical limit). Figure 2(b) shows the
corresponding diagram for finite s. The main feature is
that new entangled states arise as a result of finite V;„q,
(i.e. , including terms ta order Pr4/ss). The density plots
show the strong interdot correlation which characterizes
the new entangled ground states.

These entangled states can be easily understood for
equal dot sizes. First note that in the exactly solved (i.e.,
order Pr2/s4) system the states ~m, mb) and ~mb, m, )
are degenerate. Secondly, the perturbation (i.e. , or-
der Pr /s terms) only mixes ~m, mb) and ~m„mg) if
m —m, = mg —mb = 0 or +2. The mixed (i.e. , entan-
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FIG. 2. (a) Energies (in Kelvin relative to an arbitrary
zero) of low-lying eigenstates ~rni, m2) as a function of B for
P = 2 dot system in limit 8 —+ oo. Lowest curve at a given B
corresponds to the ground state. From left to right the solid
lines represent successive ground states ~1, 1), ~3, 3), and ~5, 5);
dashed lines correspond to the degenerate pairs (~3, 1), ~l, 3))
and (~5, 3), ~3, 5)). Contour plots are ground state charge
densities in a given dot with electrons in the other dot fixed
at the crosses. (b) As (a), but with finite s. The degenerate
pairs from (a) split to form entangled states; the dashed lines
to the left represent new states ~3, 1)+ and ~3, 1); those to
the right are ~5, 3)+ and ~5, 3) . States ~3, 1) and ~5, 3)
become ground states; their charge densities are shown.

gled) states are therefore (~m+ 2, m) 6 ~m, m+ 2) ), which
we write as ~m+ 2, m)+ and ~m+ 2, m) . It is remark-
able that; as B increases, the ground state switches back
and forth between "pure" states (mi ——m2) and entan-
gled states (N.B. the ~m, m) states are now not strictly
pure because of a very small nondegenerate perturbation
mixing. ) For large B (B ) 10 T), the entangled states
prevent the pure states from becoming ground states.
As B —+ oo, the classical limit is reached of four point
charges situated at the corners of a square when pro-
jected onto the xy plane. An alternative view of the
formation of these entangled states is as a resonance phe-
nomenon; for example, the state ~3, 1) can be thaught of
as continually exchanging energy with ~1, 3) via virtual
photons (i.e. , via the electromagnetic field representing
the electron-electron interaction). This is equivalent to
the resonant Forster process, which is well known as an
energy transfer mechanism for biological molecules and
proteins. In excitonic language, the states ~3, 1) and

~
1, 3)

correspond to the ~1, 1) vacuum plus an electron-hole
excitation (exciton) of angular momentum 2 on dots 1
and 2, respectively; the formation of the entangled state
~3, 1) represents the resonance between these two adja-
cent excitons.

Figures 3(ia) and 3(ib) show in detail the region near
the ~l, 1) and ~3, 3) crossover discussed above. Figures
3(iia) and 3(iib) shaw the corresponding region for the
case of unequal dot sizes (wi g w2). In this case ~m, mb)
and ~mb, m ) are no longer degenerate. However, by
keeping ~mi —w2

~
&& uri, we can arrange that the two
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states are energetically much closer to one another than
to any other state with which they can mix. Under these
conditions we can again solve the problem analytically;
the entangled states are (pIm+2, m) +q~m, m+2)) where
p, q are unequal and depend on the energies of the com-
ponent states. Figure 3(iib) shows that the stability of
the entangled ground states, i.e. , the gap between the
entangled ground states and the other competing states,
is greater than the corresponding gap in Fig. 3(i b). The
gap scales approximately as ge + (AE) where e is the
gap in the equal dot system [Fig. 3(ib)] and AE is the
energy difFerence between component states [i.e. , the sep-
aration of the dashed lines in Fig. 3(iia)]. The results of
Figs. 3(i) and 3(ii) are analogous to linear and quadratic
Stark effects; in both Figs. 3(i) and 3(ii) we essentially
have two-level systems with the former being degenerate
while the latter is nondegenerate.

Figures 3(iii a) and 3(iii b) consider the case of P = 3
equal-size dots. Exact analytic treatment to order Prz/s4
proceeds as above. The ground and low-lying states are
now characterized by three nonzero quantum numbers
describing the relative angular momentum between elec-
trons on each of the three dots; we label these states
~mi, mz, ms). Just as for P = 2 with wi ——cuz to this
order (i.e. , Pr /s ) we find degeneracies: ~ma, mb, m, )
is degenerate with ~m~, mb, m ). In the limit of large s
all other states formed by permuting m, mg, m would
also be degenerate. Having exactly solved for P = 3
to order Pr /s, we again turn to perturbation theory
to treat the terms of order /3r /s (which we will de-
note by h). The nonzero matrix elements of 6 in the
nearly degenerate subspace are found to be of the form
(m~ + X, mb + Y, m, + Z~h~m~, mb, m, ) where (X,Y; Z)
is any permutation of (—2, 0, 2). For example, ~3, 1, 1)
mixes with ~1, 3, 1) and Il, 1, 3) yielding three new mixed
(i.e. , entangled) states. These entangled states then com-
pete with each other to become ground states for finite
s [see Fig. 3(iiib)]. The entangled states are the P = 3
dot analogs of the interdot correlated, crystallike states
for P=2.

As the number of dots P increases, the gain in energy of
the entangled (i.e. , interdot correlated) states at finite s
actually increases as compared to the 8 ~ oo limit. This
increase is nonlinear with P. Note that we can think of
the earlier cases of P = 2 and P = 3 as a "diatomic
molecule" and "triatomic molecule, " respectively. Con-
sider the "polyatomic molecule" with P identical atoms
(dots) all in. the m = 1 state. The state m = 3, for
example, can be created on any one of these dots yield-
ing P degenerate tight-binding combinations or molecu-
lar states in the limit 8 ~ oo. The degeneracy of these
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states is broken for finite 8 by the coupling between adja-
cent dots. In contrast to an actual tight-binding molecule
where it is the single-body tunneling term that couples
atoms, here the coupling is via the two-body interaction
V;„q,. The states represent "Frenkel excitons"; the exci-
ton (i.e. , m = 3 state) on a given dot can transfer its en-
ergy resonantly to all members of the chain. For large P,
the analysis is simplified considerably by introducing pe-
riodic boundary conditions. This removes "end effects, "
introducing translational symmetry into the problem and
allowing application of Bloch's theorem. Consider a sys-
tem of P dots with a lattice structure; if u; = u for
i = 1, . . . , P then this is a "monatomic crystal. " If al-
ternating w's differ, we have a "diatomic crystal. " The
entangled states are now traveling wave excitations and
yield an exciton band structure.

In summary, we have presented details of entangled
ground states arising in colinear, multiple dot structures.
The tendency for formation of such states increases with
the number of dots.

This work was supported by an EPSRC Studentship
(S.B.) and the Nuffield Foundation (N.F.J.).

FIG. 3. Energies (in Kelvin relative to an arbitrary zero) of
low-lying states as a function of H for three difFerent systems.
(i) P = 2 dots of equal sizes. Parts (a) and (b) are magni-
fications from Figs. 2(a) and 2(b), respectively. (ii) P = 2
dots of unequal size. (iii) P = 3 dots of equal size; in (a) each
dashed line is triply degenerate while in (b) only the lowest
two of the six entangled states are shown.
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