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We describe a general and efficient method, based on computer simulations and applicable to a
general class of fluids, that allows us to determine (i) bounds on the transition densities of the melt-
ing transition that are valid in the thermodynamic limit and (ii) the order of the phase transition.
The bond-orientational order parameter, its susceptibility, and the compressibility are measured
simultaneously on many length scales, and the latter two quantities are extrapolated to the ther-
modynamic limit by application of the subblock analysis method of finite-size scaling. We include a
detailed analysis, related to the subblock method, of the cross correlations of the fluctuations of the
density and the order parameter. The behavior of the extrapolated order parameter susceptibility
yields precise upper and lower bounds for the melting and freezing densities, respectively. We apply
these techniques to the two-dimensional melting transition in large systems of 16 384 hard disks using
canonical Monte Carlo computer simulations. The measured bond-orientational susceptibilities are
found to be incompatible with predictions of the Halperin-Nelson-Young theory of two-dimensional
melting. This and the behavior of the bond-orientational cumulant are two strong pieces of evidence
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of a first-order phase transition.

I. INTRODUCTION

Two-dimensional liquids have been the subject of com-
puter simulation studies for more than 30 years. De-
spite their apparent simplicity, they still pose a number
of challenging questions that have not been fully resolved
to date. Two such issues that have attracted consider-
able and continued interest are the character of the melt-
ing transition'™® and the precise values of the transition
densities for specific model fluids, see, e.g., Refs. 6 and
7. These two issues are the focus of the present paper,
which deals with the simplest of these models, the hard-
disk fluid.

The two-dimensional case is of particular interest be-
cause the type of order that distinguishes the solid from
the liquid phase is different from that in three dimensions.
In three dimensions, the solid possesses long-range posi-
tional order, i.e., the density-density correlation function
decays to a finite nonzero constant at large distances.
In the two-dimensional (2D) positionally ordered phase,
henceforth called the 2D solid, positional order is only
quasi-long-range, i.e., the correlation function decays al-
gebraically to zero. This was shown by Mermin® in an
extension of the Mermin-Wagner theorem?® to the contin-
uous case. As a result, no Bragg peaks in the strict sense
exist in the 2D solid in the thermodynamic limit. Al-
though it is true that Mermin’s proof is strictly valid only
for continuous potentials as is the case for the rigorous
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proof,'? there is little reason to believe that hard disks,
which have purely repulsive interaction, should possess a
higher degree of order than systems whose potential has
an attractive part. However, as already pointed out by
Mermin, there exists a different type of order that is truly
long range in the 2D solid, namely bond-orientational or-
der. Here, “bond” denotes the imaginary line connecting
the centers of two neighboring particles. A configuration
possesses bond-orientational order if the angles between
these bonds and an arbitrary fixed axis are correlated
over arbitrary distances. Although true positional or-
der implies bond-orientational order, the latter can exist
without the former.

A melting transition in 2D was first seen in a system
of hard disks in the classic computer simulation study
by Alder and Wainwright.!? From the observation of a
“loop” in the density vs pressure curve, they concluded
that the transition is of first order. For the freezing den-
sity, the highest possible density at which the pure fluid
phase can exist, they obtained the value p;y = 0.880,
and for the melting density, the lowest possible density
of the solid phase, the value p, = 0.912. (Throughout
this paper we refer to densities reduced by the hard-
disk diameter.) These findings were essentially confirmed
by subsequent investigations by Hoover and Ree,'? who
obtained the values py = 0.878 and p, = 0.922. The
system sizes in these early studies did not exceed 870
particles, and the effect of the finite sizes of the sim-
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ulated systems was not examined in a quantitative way.
Nonetheless, the assumption of a first—order transition re-
mained unquestioned for about a decade, until Halperin
and Nelson!®* as well as Young'® presented a theory of
defect-mediated melting. This theory, henceforth called
the HNY theory, is an extension of the ideas of Berezin-
skii'® and of Kosterlitz and Thouless!? to complete melt-
ing in off-lattice models and proposes a possible alter-
native melting scenario. According to this theory, 2D
solids might melt via two continuous phase transitions.
The first transition, driven by the dissociation of dislo-
cation pairs, transforms the solid with quasi-long-range
positional order and long-range orientational order into
a novel intervening phase that possesses short-range po-
sitional order and quasi-long-range orientational order.
This pure phase was termed “hexatic.” The unbinding
of disclination pairs finally transforms the hexatic phase
into an isotropic fluid in which both types of order are
short range.

The HNY theory gave rise to numerous computer
simulation studies of hard disks and other simple two-
dimensional fluids, see Refs. 1-5 for detailed discus-
sions and reviews. The bond-orientational order param-
eter was first measured in a computer simulation of a
Lennard-Jones liquid by Frenkel and McTague,'® who,
however, used only 256 particles and disregarded the ef-
fects of finite system size. The size dependence of the
bond-orientational order parameter was first examined
by Strandburg et al.,'® who measured the order param-
eter distribution on four different length scales. From a
semiquantitative decomposition of the distributions into
a solid and a fluid part, they concluded that the hard disk
and the Lennard-Jones melting transitions are of first or-
der. A more quantitative finite-size analysis of the first
moment of the bond-orientational order parameter was
carried out in a Lennard-Jones system of N = 12480
particles by Udink and van der Elsken?® to determine
the degree of bond-orientational order in the transition
region. Again, only four different systems sizes were ex-
amined, and no measurements of the susceptibility or the
cumulant were made.

Glaser and Clark,® recently proposed a detailed the-
ory of the melting mechanism that yields a first-order
transition. They used the local bond-orientational order
parameter to probe the local geometry of 2D systems
of strongly repulsive Weeks-Chandler-Andersen particles
and of hard-core particles. Several investigations of sys-
tems of Yukawa and r~12? particles, which were stimu-
lated and guided by experiments on 2D melting in col-
loidal systems, have been carried out by and Naidoo and
co-workers?! and by Léwen.?2 However, these two papers
concentrate on issues other than the melting transition
such as the impact of boundary and initial conditions
and on dynamical aspects and relaxation phenomena. In
none of these studies were finite-size effects taken into ac-
count on a systematic basis. Recently, careful large-scale
molecular-dynamics simulations of steeply repulsive but
continuous potentials, such as the =2 fluid, by Ander-
sen et al.?® added new momentum to the debate. (See
the outlook in the last section.)

Without having exhausted the vast literature on 2D
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fluids with continuous potentials,' ™ we concentrate from
now on on recent studies of the hard-disk system. In
1989, Zollweg et al.® carried out detailed investigations
of large systems of hard disks (and of 2 particles) us-
ing various systems sizes of up to N = 16 384 particles.
Their results unambiguously demonstrate a pronounced
size dependence of the defect density, the shear elastic
constant, the mean-square displacement, and the bond-
orientational order parameter in systems of hard disks
near melting. The authors draw no conclusions as to the
order of the melting transition, but their work demon-
strates that it may be impossible to identify the true
character of the 2D melting transition without a quanti-
tative appreciation of finite-size effects.

In view of these pronounced size effects, Zollweg and
Chester” reexamined the early values obtained by Alder
and Wainwright!! for the transition densities. Using
large systems of N = 16384 particles, they revealed
that the tie line is indeed much shorter (p;y = 0.887,
ps = 0.904) than previously observed by Alder and
Wainwright!! and by Hoover and Ree.'? However, Zoll-
weg and Chester did not carry out a systematic quan-
titative finite-size analysis. Therefore, their results for
the transition densities only yield an upper bound on the
length of the tie line. Based on additional simulations of
systems of up to 65 536 particles, they concluded that the
tie line might become even shorter, or vanish entirely, if
the system size is increased further.

Recently, Lee and Strandburg?* carried out constant
pressure simulations of hard disks in the vicinity of the
melting transition. They measured the distribution func-
tion of the system volume, calculated the free-energy
difference and carried out a Lee-Kosterlitz finite-size
analysis.2® They interpret their results as very strong ev-
idence of a first-order transition. However, their simu-
lated system consisted of no more than N = 400 parti-
cles, and the simulation possibly lacked sufficient sam-
pling of the competing phases of different volumes; see
Ref. 26 for a discussion of the “equal weight” vs the
“equal height” criteria to locate the transition.

Fraser et al.?” measured the edge length distribution
function of Voronoi polygons in order to locate the melt-
ing transition in systems of 102 and 408 hard disks. This
approach is similar in spirit to ours because it also ex-
ploits geometrical information rather than equation-of-
state data. However, the analysis of Fraser et al. is
largely qualitative. No finite-size analysis is carried out,
and no numerical values are reported for the transition
densities. Finally, theoretical estimates by Todo and
Suzuki?® combining the Padé approximant and the coher-
ent anomaly method have supported previous evidence of
a first-order transition in hard-core systems.

In a recent paper,?® we used a finite-size scaling
method to determine directly the order of the transition
and to obtain bounds on the transition densities. Here we
develop and describe this method in detail and show how
it can be used in practice. At the heart of our method is
the measurement of the first, second, and fourth moments
of the bond-orientational order parameter distribution on
a wide range of length scales obtained in simulations at
only one total system size. From these moments we
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calculate the susceptibility and the reduced fourth-order
cumulant of the order parameter. We extract the system
size dependence of the susceptibility and extrapolate to
the thermodynamic limit. From the sharp increase near
the transition of the susceptibility as a function of the
density, we obtain upper and lower bounds of the melt-
ing and freezing densities, respectively, which are valid
in the thermodynamic limit. As it turns out, the suscep-
tibility data in conjunction with theoretical predictions
also provide evidence of the order of the transition. Fur-
ther independent evidence can be derived from the be-
havior of the order parameter cumulant as a function of
density.

As our methodology is quite general in spirit, it can
easily be applied to any 2D or 3D liquid, and can be
combined with essentially any simulation procedure. For
the sake of comparison with the largest body of detailed
data available, we focused in the present study on hard
disks as our model system and used standard canonical
Monte Carlo simulations to obtain the ensemble aver-
ages. The hard-disk system is the minimal off-lattice
model that possesses a melting transition and contains
no adjustable parameters. As the potential lacks an at-
tractive part, the system does not possess distinct liquid
and gaseous phases. The disordered phase of the system
is therefore termed “fluid.”

The remainder of this paper is organized as follows.
The main ideas of our approach are developed in the
following section. In Sec. III, we discuss the technical as-
pects of the simulations performed. In Sec. IV A, we
present the data obtained from these simulations, de-
scribe their analysis in terms of susceptibilities and com-
pressibilities, and discuss correlations between various
fluctuating quantities. Finally, Sec. IV B contains our
central results concerning hard-disk melting, and a dis-
cussion of the conclusions that can be drawn from them.
We summarize the paper in Sec. V and close with some
speculations.

II. METHODOLOGY
A. Bond-orientational order parameter

As pointed out above, the suitable quantity for the
investigation of the 2D melting transition is the global
bond-orientational order parameter. It is denoted here
by ¢ and is defined!®'4 by

V=g e 1)

Nbond 3

where ¢ runs over all particles of the system, j runs over
all neighbors of ¢, ¢;; denotes the angle between the bond
connecting particles 7 and j and an arbitrary but fixed
reference axis, and Nponq denotes the number of bonds
in the system. The order parameter v is conveniently
viewed as the absolute value of the sixth Fourier compo-
nent of the bond angle distribution function, which is a
constant in the isotropic fluid and consists of six equally
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spaced peaks in the solid phase. An expression for an
orientational order parameter in three dimensions can be
found in Ref. 30. Using this expression, our general pro-
cedures can be applied to three-dimensional fluids. The
mathematically precise definition of a neighborhood in
terms of a Voronoi construction is computationally very
expensive. Various simpler definitions have been used in
the literature.1®3%31 It has been observed3® that as long
as the shell of next-nearest neighbors is excluded, details
of the neighborhood definition have a negligible influence
on the results. In the present article we define two parti-
cles to be neighbors if their distance is less than 1.3 times
the hard-disk diameter.

In simple fluids, the bond-orientational order parame-
ter 1 is expected to have the following dependence on the
particle density p in the thermodynamic limit. It should
vanish for p < ps, assume a finite value less than unity
at p = p,, and increase towards unity as the density is
increased towards the close-packing density. The behav-
ior of 9 between the transition densities depends on the
underlying melting scenario. If the transition is of first
order, then, according to the lever rule, ¥ should increase
linearly from +(ps) = 0 at ps to 1(p,). The HNY theory,
on the other hand, predicts!®!* that bond-orientational
order should be quasi-long-range in the postulated hex-
atic phase, i.e., the correlation function should decay as
r~7P), Thus, in the thermodynamic limit, the order
parameter should vanish throughout the hexatic phase.
Furthermore, a jump discontinuity in 9 is predicted to
occur at ps.

Thus, in principle, a measurement of ¥(p) may appear
to be sufficient to determine the order of the transition.
However, the measurement of the first moment of 1 alone
is not sufficient for our purposes for two reasons: it pro-
vides no access to the freezing density\pf if the transi-
tion is of the HNY type, and, more seriously, the finite
size of the simulated systems will necessarily lead to a
pronounced rounding of the ¥ vs p curve, which will ren-
der impossible the determination of either the order of
the transition or the transition densities. This is demon-
strated clearly by Fig. 1 in Sec. IVA. Information of
greater value can be extracted from higher moments of
the order parameter such as the ordering susceptibility
and the corresponding fourth-order cumulant.3? We dis-
cuss these quantities and their dependence on the system
size below.

B. Ordering susceptibility

The bond-orientational susceptibility in the thermody-
namic limit, denoted by x and defined by (4) below, mea-
sures the size of the fluctuations of bond-orientational
order present in the system. It should therefore show
a dramatic increase as the transition densities are ap-
proached from within the pure fluid and solid phases,
respectively. The precise behavior of the susceptibility
at the transition points again depends on the assumed
melting scenario. If the transition is of first order, the
susceptibility should assume finite values (not necessar-
ily equal) at the transition densities, and interpolate lin-
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early between them. The HNY theory, on the other hand,
predicts that the bond-orientational correlation function
decays algebraically in the hexatic phase, and that the
bond-orientational correlation length &

£ ~ exp {b(Pf - p)‘l/z} . PPy (2)
diverges as the transition density is approached from the
fluid and stays infinite throughout the hexatic phase;
b denotes a system-dependent constant. Because close
to criticality it holds that x o< ¢277, and because 7
is predicted to vary between n(p — p;f) = 1/4 and
n(p = p;) = 0, the same behavior is expected for the
susceptibility as for the correlation length. Thus, an es-
sential singularity is predicted!®!* for the ordering sus-
ceptibility at the freezing density py, i.e.,

x(p) = X exp {b’(pf —p)_l/z}, p—=p;  (3)
as the freezing density is approached from the fluid phase;
x and b’ are system-dependent constants.

By measuring x as a-function of the density p, we can
obtain tight upper and lower bounds on the melting and
the freezing densities, respectively. A fit of (3) to our
subsystem-extrapolated data for the susceptibility Xoo in
the fluid phase, see below, will yield a HNY prediction pf
of the freezing density. As we will show in Sec. IV B, this
value of 5¢, obtained under the assumption that the HNY
theory correctly describes the melting of hard disks, al-
lows us to draw conclusions as to the order of the melting
transition.

We now discuss how the bond-orientational suscepti-
bility can be measured as a function of the density. For
the purpose of computer simulations, the susceptibility
is most conveniently defined analogously to the common
fluctuation relations

p=L (@ - ()1) (4)

where L is the linear dimension of the system under con-
sideration and d is the dimensionality of space; as we are
dealing with an athermal system, we have absorbed the
usual factor of kgT into the definition of xr. Whereas
(4) allows us to measure the susceptibility xz in a sys-
tem of finite linear dimension L, what we require for our
analysis is the susceptibility xo, in the thermodynamic
limit. An estimate of the latter can be obtained by mea-
suring x 1, on a range of length scales L and extrapolating
L — oo.

A series of separate simulations of systems of various
total sizes would be a very computer—time intensive way
to obtain data on a range of length scales. Instead, we ap-
ply the subsystem analysis method, which was originally
introduced for lattice models,3? for a review see Ref. 33,
and was recently generalized to off-lattice systems.3* Ap-
plications to the liquid-gas transition in the 2D Lennard-
Jones system34 736 as well as in a 2D fluid with inter-
nal quantum states373® clearly demonstrated the power
of this approach. In the present study, the subsystem
method is further generalized to off-lattice simulations
of solids. For each value of the density p, we simulate
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only one large system of total linear dimension S. For
measurement purposes, we divide the total system into
subsystems of linear dimension L = S/M,, resulting in a
total of M subsystems per length scale. The length scale
parameter My is increased in integer steps My = 1,2, --
up to a value at which the subsystem size becomes too
small for a meaningful analysis. This allows us to mea-
sure, in a single simulation run, the moments of the order
parameter and other averages on a‘wide range of length
scales simultaneously. Note that pe?l\odic boundary con-
ditions are only applied on the length scale S of the to-
tal system, i.e., properties measured in the subsystems
are not affected by periodic beundary conditions on their
length scale L. \

For a given total system size S, we can now obtain an
estimate of the susceptibility Xoo in the thermodynamic
limit by observing343%:37:38 that, to leading order, x 1, will
differ from xoo by a boundary correction term of order

/L, ie.,

XL:Xoo(l_c%>a L>>€v (5)

where c is a system-dependent dimensionless positive
constant of order unity, and ¢ denotes the bond-
orientational correlation length. This relation is valid
in the asymptotic regime where L > £. It can be justi-
fied as follows, see Ref. 35. The susceptibility is essen-
tially a sum over two-bond correlation terms. Significant
contributions to this sum arise only from bonds whose
separation is less than the correlation length . In the
infinite system, all pairs of bonds (with a distance of less
than £) contribute to the sum. If, however, the system
is divided into subsystems, then pairs of bonds that be-
long to different subsystems will cease to contribute to
the sum. The “forgotten” contributions will come from
layers of thickness £ about the surface of each subsystem.
Provided the subsystem size L greatly exceeds the corre-
lation length &, the size of these forgotten contributions
will essentially be proportional to the volume £L4™ of
a layer, whereas the total of the contributions will be
proportional to the volume L? of the system. Thus, the
relative correction will be of order /L, as stated in (5).

Given (5), an estimate of the susceptibility in the ther-
modynamic limit can be obtained by plotting xr vs L1
and extrapolating from the linear region to L — oco. As
a by-product of this procedure, the abscissa intercept of
the extrapolation line represents an estimate of the corre-
lation length £ if we neglect the constant factor ¢, which
is of order unity. The availability of the finite-size extrap-
olation rule (5) for the susceptibility is the main reason
that the susceptibility is more useful, for the present pur-
poses, than the order parameter itself.

Note that in the above argument we have implicitly
assumed the total system to be infinitely large. As this
assumption is necessarily violated in the simulation, there
is a possibility that secondary finite-size effects from the
size of the total system will not be captured by the ex-
trapolation I, — oo from the subsystems.3? Such sec-
ondary finite-size effects were observed by Hennecke3® in
simulations of a diluted Ising model. In order to check
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for secondary finite-size effects and estimate their magni-
tude, we carried out additional simulations for one value
of the density in which we varied the total system size.
The results, to be presented in Sec. IV A, show that in
the present case secondary finite-size effects are small in
comparison with those already captured by the subsys-
tem extrapolation.

C. Cross correlations and subsystem extrapolation

Another aspect of the subsystem analysis method that
requires a more detailed discussion is that in the total
system the density is constant, whereas in the subsys-
tems the density fluctuates as a result of particles moving
across subsystem boundaries. In the largest subsystems
(in particular those with M, = 2,3) the density fluctu-
ations of the various subsystems will be coupled, but in
subsystems much smaller than the total system the den-
sity fluctuations can essentially be regarded as free. With
the subsystem method we thus have, in a loose sense, a
crossover, parametrized by My, from the canonical en-
semble (with constant density p) in the total system to
the grand canonical ensemble (with constant chemical
potential u) in sufficiently small subsystems. Now it is
well known in statistical mechanics that, although the av-
erages of thermodynamic observables such as the order
parameter are the same in all ensembles in the thermo-
dynamic limit, the fluctuations of the observables will in
general differ from ensemble to ensemble, see, e.g., Ref.
40. In the present case, this difference may manifest it-
self as a difference between the susceptibilities x, and
X, measured at constant density and at constant chemi-
cal potential, respectively. If such a difference exists, the
crossover between the canonical and the grand canonical
ensembles will be visible in the plot of xz vs L~!. This
has important consequences for the finite-size extrapola-
tion, because care must then be taken that all data points
through which we extrapolate were obtained in the same
ensemble and are outside the crossover region. As only
the case M}, = 1 is strictly canonical, and the crossover
immediately starts for M} > 1, it is clear that the extrap-
olation will have to be carried out in the grand canonical
regime. This means that if x, and x, differ, the first
few data points with small M}, will have to be excluded
from the extrapolation. Note that these complications
do not arise in lattice systems because the density does
not fluctuate in such systems.

Owing to the relevance of the possible difference be-
tween x, and x, to the extrapolation, it is important to
examine in detail the circumstances under which such a
difference does in fact occur for our model. Our claim
is that x, and x, will differ precisely in those circum-
stances where the fluctuations of the density and the or-
der parameter are correlated. Given such a correlation,
the fluctuations in ¢, and hence the susceptibility, will
be larger if p is allowed to fluctuate freely than if p is
clamped to a constant value. This will be true regardless
of whether the cross correlations (A Ap) between 3 and
p are positive or negative. Any nonvanishing (A Ap)
will lead to x, being larger than x,.
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In order to substantiate this claim somewhat more
rigorously, we make the following phenomenological
ansatz.? We assume that in systems whose linear dimen-
sion L is much larger than the order parameter correla-
tion length £ the joint probability distribution of order
parameter and density can be described by the Gaussian
approximation

L ((Aw _Avap (Ap)z)} ’

Pr(¢,p) x exp{“7 XLo poss L

(6)

with the fluctuations Ay = ¥ — (¢), and Ap = p—(p)L.
The susceptibility measured in a system of linear dimen-
sion L at constant density p is denoted by xr,., and vL
is the coupling parameter measured on the same length
scale L. The large-yy regime corresponds to weak cor-
relations (A Ap)y,. Finally, 14 denotes the compress-
ibility measured on length scale L at a constant value
1 of the order parameter. This ansatz is correct up to
interfacial free-energy contributions whenever the linear
dimension L of the system is much larger than the length
scale ¢ of the order parameter fluctuations. In particular,
it should be a good approximation in the thermodynamic
limit. According to (6), ¥ and p each fluctuate about
their average values in keeping with a Gaussian distri-
bution if the other quantity is kept constant. This is
an approximation because v, defined in (1), is the abso-
lute value of a multicomponent order parameter, so that
the true distribution of v is necessarily an asymmetric
Gaussian.4! If both ¥ and p are free to fluctuate, a cou-
pling between them arises from the second bilinear term
in the exponential, which was chosen by virtue of being
the simplest form that produces such a coupling.

From (6) we can derive an expression for the differ-
ence between xr,, and xr,, by calculating the second
moments of the distribution, ((A%)?)1, ((Ap)?)L, and
(AY Ap)r, and solving for xr, and xr,. The well-
known result is

_ (XA AZ>) ’ G
LA(Ap)°)

Xp — Xp
where we have dropped the subscript L because this re-
lation holds for finite and infinite systems alike. Further-
more, the moments in (7) are understood to be measured
in the absence of constraints on 1 or p, i.e., at constant
chemical potential yu, as realized in truly grand canonical
subsystems. We therefore omit the subscript g from the
moments.

Relations such as (7) have previously been derived*?43
by means of general thermodynamic considerations.
However, we believe that the phenomenological reasoning
given above makes its physical content more lucid. The
relation shows that a difference between x, and x, is, to
lowest order, indeed a result of a correlation between v
and p.

Next we identify the physical situations in which such
correlations exist. As (A Ap) can be written
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1 o)

<A¢AP)=/3V 5y (8)

and the order parameter (1) vanishes in the fluid phase
in the thermodynamic limit, no bilinear coupling should
be present in the fluid phase. In the solid phase, however,
the order parameter will increase monotonically with in-
creasing density. Thus, in the solid phase a fluctuation
of the density should increase the probability of an order
parameter fluctuation in the same direction. As a con-
sequence, we expect x, = X, to hold true up to finite-
size corrections not captured by the Gaussian approxi-
mation (6) in the fluid phase, but we expect x, < Xxp.
in the solid phase. We shall return to this in Sec. IVA
when we interpret our results for the susceptibility.

D. Cumulant intersection method

The second valuable quantity that involves higher mo-
ments of the order parameter distribution is the reduced
fourth-order cumulant of the order parameter Uy, defined

32
as

W
Ur=1-302z

(9)

where L is again the linear dimension of the subsys-
tem under consideration, and the chosen normalization
is somewhat arbitrary, see Ref. 33 for a review. The cu-
mulant has been studied extensively for various types of
phase transitions, and has frequently been used to locate
transition points, see Refs. 32, 33, 38, 41, and 44-47 for
applications in a variety of models. In the present study,
we will use the cumulant to obtain evidence of the order
of the 2D melting transition, i.e., to distinguish between
the HNY critical scenario and the first-order scenario.
We now discuss the behavior of the cumulant to be ex-
pected in each of these cases.

In the case of a conventional continuous phase tran-
sition, the cumulant shows the following behavior:3%:33
away from criticality, in the limit of infinite system size,
the cumulant assumes different trivial limiting values in
the ordered and the disordered phases. For finite systems
the value of the cumulant depends on the system size: the
smaller the system the more the cumulant deviates from
the limiting values. At the critical point, however, the
cumulant Uy assumes a nontrivial universal fixed value
U*, which in the scaling regime is independent of the
system size L. As the HNY theory predicts!3 % that
the bond-orientational correlation length should diverge
throughout the hexatic phase, i.e., that the hexatic phase
is an extended critical phase, we would expect the cumu-
lants for different system sizes L to collapse onto a line
of fixed points U*(p) over the entire range of densities
pr < p < p, if the melting transition in the system of
hard disks is of the HNY type. Concerning further de-
tails, we refer to Chap. 2. of Ref. 48 for a discussion of
finite-size scaling generalized to the Kosterlitz-Thouless
case, and to Chap. 10.2.3 (i) of Ref. 49 for the application
of the cumulant intersection method in the framework of
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such transitions.

For the case of a temperature-driven first-order tran-
sition, on the other hand, a recent study*' has shown
that although the cumulants U for different L do not
all intersect exactly at the transition point, the distance
between an intersection point for finite L and the tran-
sition point in the thermodynamic limit vanishes as L?¢
for sufficiently large system sizes. Therefore, provided
the simulated systems are sufficiently large, the cumu-
lants Uy, will, within the resolution of the data, exhibit
an effective common intersection point at the transition.

The reasoning in Ref. 41 can be carried over to the
case of a density-driven first-order transition with a co-
existence region. The transition density pcross at which
the cumulants Uy, effectively intersect then corresponds
to the density at which the phases coexist with equal
statistical weight,?® i.e., the density at which the areas
under the two peaks of the bimodal order parameter dis-
tribution function are equal.

A plot of U, vs p for various L, where L is sufficiently
large, should thus allow us to distinguish between the
proposed melting scenarios. A clear demonstration of the
viability of this approach in a situation very similar to the
HNY scenario has been given by Challa and Landau.*”
They performed simulations of the six-state clock model
on a lattice in order to determine its phase diagram and
the types of the various transitions. Between the disor-
dered phase at high temperatures and the ordered lock-in
phase at low temperatures, this model possesses an inter-
vening XY -like critical phase of the Kosterlitz-Thouless
type. It also possesses an essential singularity of the
type (2) with temperature as the control parameter. In
the critical phase, Challa and Landau observed, for suf-
ficiently large systems, a clear collapse of the cumulants
onto a line over an extended range of temperatures. This
lattice model is probably the closest simple qualitative
analogy to the HNY scenario with a fluid phase, a 2D
solid phase, and the intermediate hexatic phase.

III. SIMULATIONS

We have carried out a series of canonical Monte Carlo
computer simulations of systems of hard disks. It is
clear that grand canonical and Gibbs ensemble simula-
tions would be hampered in the high-densities regime,
especially in the 2D solid phase. We used the standard
Metropolis algorithm, which was reduced to a linear de-
pendence of the run time on the number of particles N,
with virtually no overhead, by the introduction of a “bi-
nary cell structure.” These cells are chosen so small that
each of them can be occupied by no more than one par-
ticle at a time. This partitioning allows efficient identifi-
cation of and direct access to all potential neighbors j of
a central particle i, as is required for particle moves and
for the calculation of the order parameter (1).

The particle number was fixed to N = 16 384 through-
out the production runs. We also performed exploratory
runs over 2 000 000 Monte Carlo sweeps with systems con-
sisting of 32400 and 65536 particles, respectively. The
area of the simulation box was kept constant during each
run, and was varied from run to run to cover a range
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of values of the only control parameter, the density p.
A minimum requirement that must be satisfied during
simulations of crystalline solids in order to minimize the
influence of the simulation box upon the structure of the
system is that the box be a unit cell of the expected
crystal structure. We therefore chose a rectangular sim-
ulation box of aspect ratio /3: 2. However, as Swope and
Andersen®® have argued, this condition is by no means
sufficient to avoid such influence. The simulation box
with its periodic boundary conditions will always con-
strain the net number of vacancies in the system, i.e.,
the number of interstitials minus the number of vacan-
cies, to a constant value, which is not necessarily its true
equilibrium value. This problem could in principle be
circumvented by the application of the bicanonical simu-
lation method proposed by Swope and Andersen;%® unfor-
tunately, this method requires at least an order of magni-
tude more computer time than conventional simulations.
For the present purposes, therefore, we need to confine
our investigations to the case of the net number of va-
cancies in the total system being equal to zero. However,
we believe that this constraint has a smaller effect in the
present simulation than it would have in a conventional
canonical simulation. This is due to the fact that we are
using the subsystem method described above. Although
the canonical total system is, according to Ref. 50, not
guaranteed to ever reach full equilibrium as a whole, it
may still be expected to reach equilibrium locally on the
length scales L of the subsystems on which the relevant
measurements are carried out. The reason for this is that,
unlike the periodic boundary conditions of the total sys-
tem, the imaginary boundaries of the (grand canonical)
subsystems impose no constraints upon the structure of
the system.

The starting configurations for our simulations con-
sisted of particles uniformly distributed over the simula-
tion box on a triangular lattice. A rough lower bound on
the time required for equilibration before the beginning
of the measurements was estimated in the following way.
We generated an initial configuration of an average den-
sity of p = 0.892 by placing all particles in a close-packed
droplet in the middle of the simulation box, and leav-
ing the surrounding space empty. We then measured the
time required for the particles to redistribute uniformly
over the box. We also examined the time evolution of
the order parameter and measured the time required for
the order parameter to reach a steady-state value. We
obtained a lower bound of approximately 100 000 Monte
Carlo sweeps (attempted 2D displacements per particle),
which we chose as the minimum equilibration time for
all densities. For each density we then equilibrated fur-
ther until the block-averaged order parameter suscep-
tibility stabilized, which took another 1000000 Monte
Carlo sweeps for densities near the transition. Only con-
figurations that satisfied these equilibration criteria were
used for the actual measurements, extending over a min-
imum of another 500000 sweeps; some runs with a con-
siderably higher number of sweeps were carried out as
additional equilibration checks. It was mainly these equi-
libration requirements that prevented us from choosing
system sizes significantly beyond 16 384 particles.
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We measured the first, second, and fourth moments
of the bond-orientational order parameter defined in (1).
Applying the subsystem method described above, we ob-
tained these moments in one simulation run per value of
the density over a range of length scales corresponding to
values of the subsystem parameter of M, = 1,2,...,32.
In order to determine a reasonable value for the fre-
quency of measurements, we performed a preliminary run
at p = 0.95 to measure the time autocorrelation function
of the order parameter in the canonical total system of
linear dimension S:

C(t) = 82 [(¥(0) %(t))s — (¥(0))3] . (10)
By fitting this data with an exponential,
C(t) = Ce /7, (11)

we obtained a rough lower bound for the autocorrela-
tion time of 7 =~ 50 Monte Carlo sweeps. We then set
the measurement frequency to one measurement per 20
Monte Carlo sweeps as a reasonable lower bound because
measurements are relatively inexpensive compared to the
particle moves. We note that the autocorrelation time is
expected to increase dramatically as we move closer to
the transition. The entire study required several months
of CPU time on an IBM RS/6000 model 320 workstation.

IV. RESULTS AND DISCUSSION
A. Analysis of the susceptibility data

We now turn to the analysis of the measured raw data.
Figure 1 shows the first moment of the order parame-
ter 1, measured on several length scales, as a function
of the density p. Clearly, no accurate determination of
the transition densities or of the order of the transition
is possible due to pronounced finite-size rounding, espe-
cially at lower densities. Furthermore, one can clearly
see that the order parameters obtained in larger subsys-
tems show a much sharper increase as the 2D solid phase
is approached. Much more insight can be gained from
the behavior of the bond-orientational susceptibility xr,,
which according to (4) is calculated from the measured
first and second moments of the order parameter. Fig-
ure 2 shows xr for various density values in the fluid
phase, plotted against the inverse linear subsystem size
L~1. As expected, we observe an increase of xr with in-
creasing subsystem size. This means that xr, does indeed
underestimate X oo, the extent of which increases with de-
creasing subsystem size, see the discussion following (5).
As predicted by (5), the increase of xp is linear in Lt
for sufficiently large L. By extrapolating from the range
of linear behavior to the ordinate axis, we can obtain an
estimate of the susceptibility xo in the thermodynamic
limit. For small values of L, we observe systematic devi-
ations from the linear behavior. This is to be expected
because the condition L > £ ceases to be satisfied at
small values of L. The data from the total system and
from the largest subsystems are subject to considerable
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FIG. 1. First moment of the bond-orientational order pa-
rameter ()1 of the hard-disk fluid as a function of density
p for selected subbox sizes L, see inset. The subbox size pa-
rameter M, = S/L is equal to the number of subboxes along
the edge of the total system. Lines are guides to the eye.

0.95

scatter because the statistics deteriorate as the subsys-
tems become larger. Therefore, the very largest systems
will be disregarded during the extrapolation procedure
in the fluid range.

As the density increases and the transition region is ap-
proached from below, the minimum subsystem size that
bounds the range of the linear behavior from below in-
creases and thus the linear region becomes narrower. The
closer we move to the transition, the larger the bond-
orientational correlation length £ becomes, and thus the
fewer subsystem sizes fulfill the criterion L > £ necessary
for the linear behavior of (5). The extrapolation is well
controlled under this scheme because for each density
it is obvious during data analysis whether the asymp-
totic regime has been reached with the given number of
particles N. As we pointed out in Sec. II, an estimate
of € is given (apart from an unknown positive factor c,
which is of order unity) by the abscissa intercept of the
extrapolation line. We find empirically that all subsys-
tems satisfying L > 2 (cf) are well within the asymptotic
regime.

We now turn to the finite-size behavior of the suscep-
tibility in the solid phase. For small L, this behavior is
similar to that observed in the fluid phase, see Fig. 3.
However, there is one important difference: whereas. in
the fluid phase xz, increases monotonically with L within
statistical errors, it quite systematically assumes a maxi-
mum value at M} =~ 4 in the solid phase. This behavior is
in line with the expectation in Sec. II that x, = X, in the
fluid phase, whereas x, < X, in the solid phase. We have
carried out additional simulations in order to verify the
picture of correlated fluctuations given in Sec. II. Fig-
ure 4 depicts a projection onto the -p plane of the joint
probability distribution P (%, p) in the fluid and the solid
phases, respectively. We observe that in the fluid phase
the fluctuations of 1y and of p are uncorrelated because
the position of the maximum of the distribution P(%, p)
with p fixed is independent of the value of p. In the solid
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phase, on the other hand, the fluctuations are correlated
because the position of the maximum of P(%, p), p fixed,
now depends on the choice of p: a density fluctuation to
higher densities leads, on average, to an increase of ori-
entational order, and vice versa. Thus, Fig. 4 confirms
in a qualitative manner the picture of Sec. II concerning
correlated and uncorrelated fluctuations of ¢ and p in
the solid and fluid phases, respectively.

A quantitative verification can be given by checking
(7) for a range of density values in the fluid and the solid
phases. The value of x, in the thermodynamic limit is
accessible by the finite-size extrapolation from the sub-
systems described above. We use the value of the sus-
ceptibility measured in the total system as an estimate
of x,, which is a reasonable approximation further away
from the transition region. No estimate of this quantity
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FIG. 2. Susceptibility xz as a function of the inverse linear
subsystem size L™ ' in the fluid phase (a) for various densities
away from the transition, and (b) for densities close to the
transition. Note the change of scale from (a) to (b).
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in the thermodynamic limit is available here because in
the spirit of the subsystem method the total system size
was kept constant throughout our simulations.

By definition, the density fluctuations L#{(Ap)2?) on
the right-hand side of (7) are, up to a trivial factor of
p~2, equal to the compressibility

K =L4p72 (Ap)?) - (12)

Again, k is understood to be measured at constant chem-
ical potential p, and the subscript p is omitted. Rovere
et al.3¥73% have shown that the compressibility of gases
and liquids away from freezing can efficiently be mea-
sured by application of the subsystem method. We have
found that the method can readily be applied to dense
liquids near freezing. However, the method cannot be
transferred directly to the measurement of the compress-
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FIG. 3. Susceptibility xr as a function of the inverse linear
subsystem size L™ in the solid phase (a) for densities close to
the transition, and (b) for densities away from the transition.
Note the change of scale from (a) to (b).
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ibility in the solid phase. When we measure the subbox
compressibility xz in the solid phase and plot it against
the inverse linear system size L™, we observe seemingly
irregular jumps, rather than the smooth, linear behavior
that would allow a finite-size extrapolation. Variation of
the starting configuration and of the total system size as
well as extensive statistics have shown that his behav-
ior is systematic and cannot be attributed to frozen-in
disorder. The behavior can be explained by observing
that within our scheme, contributions to the compress-
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FIG. 4. Contour plot of the joint probability distri-
bution P(v,p) of the bond-orientational order param-
eter 1 and the subsystem density p, both measur-
ed in subsystems with M= 6. (a) fluid phase, den-
sity of the total system p= 0.78; from the outermost
to the innermost contour, the curves correspond to
P(3, p) = 0.000 965, 0.001 93,0.002 89, 0.003 86, and 0.004 82;
(b) solid phase, density of the total system p = 0.95; from
the outermost to the innermost contour, the curves corre-
spond to P(1,p) = 0.000 216,0.000 432, 0.000 647, 0.000 863,
and 0.00108. Number of particles in the total system is
N = 2916. Averages were taken over 600000 Monte Carlo
sweeps. Note that in the disordered phase the peak of P(y,p)
occurs at a positive value of 1 rather than at ¢ = 0 because
1 is the absolute value of a two-component order parameter
(see, e.g., Ref. 41 for a more detailed discussion of this effect).
Also, the difference of resolution of abscissa scales in the or-
dered and the disordered phases should be taken into account
when considering the size of the statistical fluctuations.
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ibility in the solid arise only from fluctuations through
a subbox boundary of particles located in the immediate
neighborhood of such a boundary. Inspection of configu-
rations shows that the average number of particles near a
subbox wall varies significantly with the subbox param-
eter My, which leads to the observed jumps in k7. The
jumps are thus a consequence of the incommensurability
between the subbox structure and the crystal structure
of the solid.

It may still be possible to obtain an estimate of the
compressibility in the solid in the thermodynamic limit
if we can identify some regularity in the behavior of k.
We have therefore modified the subsystem method by
replacing the rectangular subsystems with circular ones
because circular subsystems should exhibit less interfer-
ence with the crystal structure. In circular subsystems
the average number of particles in the immediate neigh-
borhood of a subsystem boundary still varies systemat-
ically with the subsystem parameter, which is now the
radius of the subsystem. However, the resulting varia-
tions in k7, vs L™! are now regular oscillations. They are
shown in Fig. 5 for a density of p = 0.95; L is now de-
fined by L? = nr? where r is the radius of the subsystem.
Plotting L2((Ap)?2) vs r and comparing this to the radial
distribution function g(r), see Fig. 6, we find that <, is
large wherever g(r) has a point of inflection, i.e., where
g(r) assumes an intermediate value. The compressibility
will thus be large if there is a sufficiently large number
of particles near the subsystem boundary and if at the
same time there is sufficient room for fluctuations. From
Fig. 5 we determine ko, by fitting a straight line through
the maxima and one through the minima, and then ex-
trapolating to the ordinate axis along the bisector of the
angle between these two lines. The results are shown in
Fig. 7 together with those obtained in the fluid phase by
application of the conventional subbox method.

Finally, Fig. 8(a) shows a plot of the directly mea-
sured cross correlations L2{A$Ap);, against the inverse
subsystem size L~! in the solid phase. In this plot the
finite-size extrapolation can easily be carried out to yield
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FIG. 5. Density fluctuations measured in circular subsys-

tems of radius r as a function of L™ where L = /mr. Total
number of particles is N = 576, total density is p = 0.95.
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FIG. 6. Density fluctuations measured in circular subsys-
tems as a function of the subsystem radius r (upper curve),
and radial distribution function g(r) measured in the total
system (lower curve). Lines are guides to the eye. Minima of
the density fluctuations coincide with extrema of g(r). Total
number of particles is N = 576, total density is p = 0.95.

an estimate of L2{A%Ap)o, in the thermodynamic limit.
Note that because the density is a nonordering field at
the melting transition, i.e., the density correlation length
does not diverge, rather small sizes of the total system
are sufficient to reach the asymptotic regime for the ex-
trapolation of both LZ{(Ap)?) and L2(Av Ap). The ex-
trapolated values for L2(A®¥Ap), in the solid phase are
plotted against the density in Fig. 8(b), whereas we find
that the cross correlations essentially vanish in the fluid
phase. Inserting the measured values into (7) we find
that within the statistical errors of our data the equation
is trivially satisfied in the fluid phase, and also satisfied
in the solid phase. This demonstrates that in off-lattice
systems the subsystem analysis of a single simulation run
gives easy access to fluctuations and to the corresponding
response quantities in various ensembles.

We have thus given a quantitative verification of the
picture of coupled fluctuations. This completes the in-
terpretation of the qualitatively different behavior of the
subsystem susceptibilities x 1, as a function of L=! shown

0.06

0.05 +

0.04 I

i
0.03 | ® . ﬂ
0.02 | lel

0.01 | e

—e |

Koo

0.00 ' . : : J
075 080 085 090 095 1.00

p

FIG. 7. Compressibility kK. as a function of the density
p, obtained by extrapolation from circular and rectangular
subsystems in the solid and fluid phases, respectively. Total
number of particles is N = 576.
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in Figs. 2 and 3. We are now in a position to carry
out the actual finite-size extrapolation for the suscepti-
bility. In the fluid phase the crossover between ensembles
does not manifest itself in the susceptibility, as we have
shown, and does therefore not limit the range of sub-
system sizes that can be included in the extrapolation.
However, as pointed out above, the total system and the
very largest subsystems will be excluded from the extrap-
olation because of their comparatively poor statistics. In
addition, the influence of the boundary conditions can be
assumed to be negligible in all systems apart from those
with M, = 1,2,3. For these reason, data points with
My > 4 will be included in the extrapolation in the fluid
phase.

In the solid phase, on the other hand, only those sub-
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FIG. 8. Correlations between order parameter ¥ and sub-
system density p in the solid phase as a function of (a) L™1,
where L = /mr for various total densities, and (b) the density
of the total system obtained by extrapolation of the data in
(a). Total number of particles is N = 576. Lines are guides
to the eye.
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systems may be included that are clearly grand canonical,
i.e., subsystems that are well outside the crossover region.
We find empirically that this usually requires M, > 6.
For our standard total system size of N = 16 384 parti-
cles, we find that the asymptotic regime is wide enough
to allow a finite-size extrapolation for densities p < 0.880
in the fluid phase, and for p > 0.905 in the solid phase.

In principle, another way of analyzing the suscepti-
bility data would be a direct extraction of the critical
exponent 7(p) using the relation

xr ~L*", (13)

which is expected to be obeyed in the hexatic phase; see
Ref. 47 for such attempts in the six-state clock model.
Applying this type of analysis to our data, we find that
7 decreases from roughly 0.4 near p = 0.88 to 0.05 at
p ~ 0.895 and increases again at higher densities. How-
ever, one should not attach too much importance to the
success of such double-logarithmic plots in a case where
the data extend only over approximately one decade in L
or less: there are examples of weak first-order transitions,
e.g., the three-dimensional three-state Potts model,4! for
which such plots yield very misleading results.

We conclude this section by discussing secondary
finite-size effects. Figure 9(a) shows data for the sus-
ceptibility xz obtained in a series of additional simula-
tions at a solid density of p = 0.95 for which we var-
ied the size of the total system. For each size S of the
total system we have performed the subsystem extrapo-
lation L — oo. The resulting estimates of x, are plot-
ted against the inverse linear dimension S~! in Fig. 9(b),
which allows a second extrapolation S — oo in oder to es-
timate the secondary finite-size effects. We observe that
the L-extrapolated values for fixed S indeed possess a
residual linear dependence on the inverse total system
size, and that the S extrapolation leads to an increase of
the susceptibility by a few percent. However, it is clear
from Fig. 9(a) that the leading size corrections are satis-
factorily captured by the subsystem extrapolation alone.

B. Applications to hard-disk melting

As noted above, the finite-size extrapolation procedure
according to (5) yields estimates of the correlation length
¢ as well as of the susceptibility x associated with bond-
orientational order. Our results for ¢ and x as functions
of the density p are shown in Figs. 10 and 11, respec-
tively. Both quantities show the same qualitative behav-
ior. However, the susceptibility data, being our primary
data, are of higher quality. No high-precision estimates
of £ can be obtained with the computing effort available
in the present study. Note, however, that the determina-
tion of £ from the decay of the pair correlation function
is also fraught with difficulties, see Ref. 51 for examples
and discussions. In addition, our procedure (5) only gives
direct access to the quantity c£ and ¢ remains unknown.
Thus, in the following discussion we concentrate on our
data for susceptibility. The obtained values are listed in
Table I together with their estimated errors.

As expected, the susceptibility increases dramatically
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51
as the transition region is approached from either side; 1
qualitatively this increase is steeper on the solid side of 14 J
the peak. In Fig. 11 we observe no saturation in the be- l
havior of xo(p) as the densities p = 0.880 and p = 0.905 ° o
are approached from the fluid and solid sides, respec- 127 N |
tively. Thus, these values serve as conservative estimates ° 1
for the maximum density at which the fluid and the min- 10 | °
imum density at which the 2D solid phase can exist, and
we arrive at the bounds 8
up
ps > 0.880 and p, < 0.905 (14)
. . oy . 6 [ 1Y ®
for the freezing and melting densities, respectively. These
bounds are compatible with the tie line bounds obtained ®
by Zollweg and Chester” in systems of N = 16 384 parti- 4 o’
cles, i.e., py = 0.887 and p, = 0.904. Thus, our finite-size e°®
analysis supports their conclusion that the transition re- 5| o,
| 0,
0.10 , 0 ; os
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o—e N=16384 p
t 3(1)32 FIG. 10. Correlation length as a function of the total den-
0.09 1 M N: 2116 sity p. The correlation length shown here is the quantity c¢
— obtained from relation (5). Error bars are difficult to assess
and are not shown.
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cal arrow. The vertical solid line marks the estimate of the
transition density of pcross &~ 0.8985 + 0.0005 obtained from

FIG. 9. Susceptibility at the total density p = 0.95 (a) as
the cumulant intersection in Fig. 12. The widths of the arrow

a function of the inverse linear subsystem size L™! for four

total numbers of particles IV; lines are guides to the eye, and and of the solid line indicate the estimated errors of these

(b) as a function of the inverse linear total system size s 1 quantities. The classic (Ref. 11) and best previous (Ref. 7)
estimates for the tie line densities are indicated by horizon-

obtained from extrapolating the curves in (a); the dashed line
shows the second finite-size extrapolation with respect to S,
and the final value is indicated by the arrow.

tal arrows. Estimated error bars are only shown when they
exceed the size of the symbols.
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TABLE I. Estimates of the subsystem-extrapolated
bond-orientational susceptibility xo and the estimated errors
as a function of the density p, see Fig. 11.

P Xoo AXoo
0.78 0.748 0.001
0.80 0.919 0.003
0.81 1.025 0.012
0.82 1.200 0.006
0.83 1.459 0.009
0.84 1.832 0.013
0.85 2.424 0.022
0.855 3.070 0.039
0.86 3.63 0.070
0.865 5.55 0.14
0.87 7.51 0.28
0.88 16.5 0.3
0.905 15.0 2.0
0.91 6.3 0.7
0.915 0.743 0.027
0.92 0.1800 0.009
0.93 0.1343 0.0011
0.94 0.1343 0.0021
0.95 0.099 24 0.000 30
0.96 0.07451 0.000 16
0.97 0.056 57 0.000 19
0.98 0.04126 0.00011

gion is not as wide, and that the transition not as strongly
first order, as was originally believed on the basis of the
early results of Alder and Wainwright!! and Hoover and
Ree,!'? see Sec. I.

Further conclusions can be derived from a fit of our
susceptibility data to the functional form (3) predicted
by the HNY theory.'371% The result of the fit is shown as
a dashed line in Fig. 11. Apparently, our susceptibility
data can be well described by the functional form of (3).
Clearly, however, the fact that our data can successfully
be fitted to this highly flexible nonlinear three-parameter
function does not in itself constitute evidence of continu-
ous melting. Of much greater interest is the value of the
fit parameter j¢, the freezing density that is obtained as
a result of the fit procedure. If we include all the data
points in the fluid phase in the fit, we obtain a value of
psr = 0.913 + 0.001. This value is indicated in Fig. 11
by a vertical arrow. Omitting some of the data points
furthest away from the transition shifts the value result-
ing for o5 to even higher densities (e.g., py ~ 0.926 for
0.84 < p < 0.88). However, it is obvious from (14) that
the densities above p > 0.905 belong to the solid phase.
This interpretation is supported by the upper tie line
bound of p;, = 0.904 reported by Zollweg and Chester”
for 16384 hard disks. Thus, if we assume continuous
melting!37!® to be correct, our data predict an upper
density limit of the fluid phase 55 that is located deeply
in the solid phase, gy > ps. Hence, the assumption of
the continuous two-step melting scenario!® % leads to
an unphysical inconsistency in the phase diagram.

Further evidence against the HNY scenario is provided
by the behavior of the fourth-order cumulant U;. The
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measured values of the cumulant are plotted in Fig. 12
as a function of density for a wide range of length scales.
Note that this plot shows a very narrow density range at
a very high resolution of §p/p =~ 0.1%. We observe that
away from the transition the value of the cumulant is, as
expected, a function of the subsystem size. The larger
the subsystem, the faster the cumulant approaches the
upper trivial fixed value of the perfect crystal above the
transition and the lower fixed value of the isotropic fluid
below the transition; note that the values of these lim-
its depend only on the chosen normalization of Ur. At
the transition, however, we observe that independently
of the subsystem size L the cumulants intersect, within
the resolution of our data, at a single crossing point at
Peross = 0.8985 + 0.0005. We thus observe the behav-
ior of the cumulant that is to be expected in the case
of a first-order melting transition, as outlined in Sec.
II. The abscissa of the intersection point constitutes a
high-precision estimate of the value pcoss of the density
at which the coexisting phases have equal weight.2® Al-
though the observed behavior of the cumulant is, in prin-
ciple, also compatible with a single second-order transi-
tion, this possibility will not be taken into consideration
here because no such melting scenario has yet been pro-
posed. On the other hand, our cumulant data are in
blatant conflict with the prediction of the HNY melting
scenario'®71® involving two continuous transitions: we do
not observe a collapse of the cumulants of all subsystem
sizes onto a single line over an extended range of densities.
On the basis of our data, we can rule out the existence
of an extended critical phase as predicted by the HNY
theory down to the scale of 0.001 hard-disk density units.

0.60 |
-
o}
0.55 |
E ' <'_‘L<“ 19 i
i V—v 20 | 1
0.50 ‘ | . bl =) |
0.893 0.895 0.897 0.899 0.901 0.903 0.905

p

FIG. 12. Order parameter cumulants U as a function of
the total density p for various subsystem sizes L = S/M,.
The lines connecting the data points are guides to the eye.
The vertical dashed lines mark the range within which the
cumulant intersection occurs, i.e., they indicate the error in
the estimated transition density of pcross = 0.8985 + 0.0005.
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V. SUMMARY AND OUTLOOK

In this paper we have devised a package of techniques
that allows the determination of (i) precise bounds for the
liquid to solid phase boundaries containing corrections for
the finite size of the simulated system, and (ii) the order
of the phase transition. The method yields estimates of
the compressibility, of the bond-orientational susceptibil-
ities (in both the canonical and the grand canonical en-
sembles), and of the correlation length from a single type
of simulation. Our method can be applied to a broad
class of model fluids in two and three dimensions, and
can be combined with various computer simulation tech-
niques.

We have studied in detail the features of the subsys-
tem analysis method applied to off-lattice systems and
have devised a way to finite-size extrapolate from the
subsystem averages. We have shown that this efficient
method can be applied to dense fluids, as well as to solid
systems in the vicinity of the melting transition. In par-
ticular we have demonstrated how to obtain estimates
of the compressibility in the solid phase extrapolated to
the thermodynamic limit. This allowed us to show that
the fluctuations of density and bond-orientational order
parameter are correlated in the 2D solid phase, but es-
sentially uncoupled in the fluid phase.

Specifically, we have used the above finite-size scal-
ing techniques in order to investigate the melting transi-
tion of hard disks. We have obtained thermal averages
of the bond-orientational order parameter, its suscepti-
bility, and its fourth-order cumulant in large systems of
hard disks over a wide range of length scales in a narrow
density window near melting. We have then extrapo-
lated the susceptibilities obtained in the subsystems to
the thermodynamic limit. An important virtue of our
method is that it is clearly visible during data analysis for
each set of parameters to what extent the measured data
warrant any statements about the behavior in the ther-
modynamic limit. In the present series of simulations, it
has been possible to obtain high-quality finite-size-scaled
data for densities as high as p = 0.880 in the fluid phase,
and as low as p = 0.905 in the solid phase. These are also
our lower and upper bounds for the freezing and melting
densities, respectively. Investing additional computing
time it would be no problem in principle to obtain even
tighter bounds. With respect to the order of the melting
transition we find the following: a fit of our susceptibility
data to the relevant prediction of the Halperin-Nelson-
Young theory of two-step continuous melting leads to an
unphysical inconsistency, and our cumulant data show
that, down to a resolution in density of 0.001 hard-disk
units, no extended critical phase exists between the fluid
and the solid phases. Thus, under the assumptions that
the equilibrium net number of vacancies is approximately
equal to zero, and that size of the simulated systems of
N = 16 384 particles is sufficient to capture the relevant
physical effects, our finite-size analysis yields two inde-
pendent pieces of evidence that the melting transition of
hard disks is of first order. Together with previous pieces
of evidence from large-scale computer simulations®7:24 it
now seems, more than thirty years after the discovery of
the hard-disk transition by Alder and Wainwright,!! to
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be well established that the 2D hard-disk solid melts via
a conventional first-order transition.

This conclusion is particularly remarkable in view of
recent findings by Andersen et al.,?® who are currently
undertaking large-scale molecular dynamics simulations
of 2D soft repulsive isotropic particles that interact, e.g.,
via a 7712 potential. In this system they have observed
equilibrium states that possess the structural properties
of the hexatic phase postulated by the HNY theory. This
difference to the hard-disk fluid is interesting in view of
a trend established for the 3D soft-disk case by Hoover
et al.,? see also Ref. 53. They performed a compara-
tive study of various r~™ potential systems in 3D with
n = 4,6,9,12,00, and found that the fractional den-
sity change and free-energy difference upon melting in-
crease significantly with increasing “hardness parameter”
n. Thus, in 3D, the softer the purely repulsive poten-
tial, the less strongly first order the melting transition.
Moreover, note that the HNY theory involves a number
of parameters such as elastic constants that are system
dependent. The theory predicts that the proposed two-
stage melting scenario will materialize only in those sys-
tems in which these constants lie within certain ranges.
Other systems may melt according to different scenarios.
In particular, they may undergo a first-order transition,
see also the very instructive Figs. 20 and 21 of Nelson’s
review article.! To our knowledge, it has not been pos-
sible to date to calculate these constants analytically for
a single model fluid, and thus to determine within the
HNY theory the type(s) of transition the systems of in-
terest should undergo. However, based on the results of
the present study in conjunction with the findings of An-
dersen et al., one is tempted to speculate that there might
indeed exist a qualitative difference between the melting
scenarios of the hard—disk limit and of some continuous
potentials. A lattice model of defect melting that ex-
hibits such a crossover from a single first-order transition
to two-step melting as a function of a certain parameter
has been devised and investigated by Janke and Klein-
ert, see Ref. 54 and references therein. The translation
of such ideas to the concepts that are commonly used to
describe off-lattice fluids, such as type and range of the
interaction potential, would certainly be a challenge for
future research.

Finally, we feel that the limitations of the present
study, i.e., the maximum total system size of N = 16 384,
the equal numbers of vacancies and interstitials, the sys-
tematic errors caused by the secondary size effects, and
the fact that the range of subsystem sizes L was some-
what too small to allow for high-precision extrapola-
tions to L — oo, are no limitations of principle of the
method proposed in this paper, but can be alleviated
as one gains greater access to significantly more power-
ful computers, such as high-speed parallel supercomput-
ers. A large-scale computational investigation of two-
dimensional melting for continuous potentials on such an
advanced machine along the lines of the present study
should be illuminating.

Note added in proof. Recently, Ryzhov and Tareyeva®®
have carried out density functional calculations to obtain
first-principles estimates for the stability limits of the
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hard-disk solid and hexatic. Their results rule out the
existence of a hand-disk hexatic.
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