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Calculated properties of a prototypical ionic monolayer
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First-principles predictions are made of the ground-state behavior of the simplest realistic ionically
bound ultrathin film, a LiF monolayer, in particular, the structure, energetic properties, charge distribu-
tion, charge transfer, and proton stopping. All-electron, full-potential, local-density functional metho-
dology was used. Fifteen basis sets plus variants were tested in order to insure meaningful results. The
internuclear distance, total energy, and band structure (Kohn-Sham eigenvalues) all stabilize with
respect to basis-set size at moderate levels (Li: 9s4p; I': 10s7p + 1p„both contracted). The equilibrium
internuclear distance of the LiF-1L is predicted to be 3.50 a.u. , smaller than the calculated (experimen-
tal) bond distance for the crystal, 3.86 a.u. (3.80 a.u. ). The charge distribution is quite flattened into the
nuclear plane relative to the crystal. This combination (shortened bond and flattened charge distribu-
tion) may be significant for epitaxial growth. Also in contrast with the crystal, the monolayer has an in-

direct gap. As would be expected, most of the binding is in the molecular bond, a fact which makes pro-
ton stopping for the monolayer only slightly different from that for the molecule. This behavior
confirms the Bragg rule relative to the diatomic molecule, and hence violates that rule relative to the
separated atoms.

I. INTRQDUCTIQN

Alkali halides such as LiF long have been considered
the prototypes of ionically bound systems, with the
strength of the ionic binding mechanism having made
their structure and properties a topic of interest since at
least the first decade of this century. ' However, no
comprehensive treatment of the extreme limiting case of
an alkali halide ultrathin film, a monolayer ("1L"hereaf-
ter), has ever appeared, to our knowledge. That limiting
case is important for at least two reasons. Systematic
knowledge of the 1I. provides, first of all, an interpreta-
tion of existing information about the bulk crystal for the
cases of decreasing thickness with which real samples can
be made by modern techniques. Equally important, it is
reasonable to suspect that large effects on bond lengths,
charge densities, and one-electron excitation energies
would result from the combination of extremely strong
ionic binding and the peculiar planar coordination of the
1I. This study shows such speculation to be well found-
ed.

Some background is appropriate given the venerability
of study of alkali halides. Quantum mechanical calcula-
tions of one-electron energies in LiF crystals apparently
were attempted first by Ewing and Seitz. They conclud-
ed that, contrary to canonical notions, the binding was a
combination of predominantly metallic and covalent
mechanisms. However, Yamashita's tight-binding calcu-
lation produced a cohesive energy, compressibility, and
lattice constant all in good agreement with experiment.
Such tight-binding behavior certainly is consistent with
bonding dominated by ionicity. Twenty years after Ew-
ing and Seitz, Lowdin treated several alkali halides, in-

eluding LiF, via a formulation of linear combination of
atomic orbitals (LCAO) methodology for the Hartree-
Fock (HF) problem which included techniques still in use
but with a focus on elastic constants. Again the results
were consistent with conventional ionic binding concepts.

Ten years later, Mansikka and Bystrand also seemed
to confirm the ionic nature of the binding in their
Heitler-London calculation based on free-ion spin orbit-
als scaled variationally so as to retain satisfaction of the
virial theorem. Unsurprisingly, the late 1960s and most
of the 1970s produced a considerable number of treat-
ments of LiF, ' in both the local-density approxima-
tion (LDA) to density-functional theory (DFT) and in the
HF approximation. Most were focused on energy bands
but the most recent, Zunger and Freeman (Ref. 12, ZF
hereafter), provides a full LDA calculation of ground-
state crystalline properties. References 14—16 provide a
similar comparison with crystalline HF calculations.

On the molecular side there are several calculations on
the LiF monomer (citations to much of the earlier work
are in Ref. 17), but only three seem to have treated the
planar oligomers [(LiF)„, n =2, 3,4j with full quantum-
mechanical optimization (within the HF approximation)
of the geometry. ' We are not aware of any other
first-principles calculations of planar LiF clusters.

It appears that only one detailed treatment of any or-
dered, nominally ionic 1L, has been published, namely,
the small-basis HF calculation of the LiH 1I —5L se-
quence by Causa, Dovesi, and Ricci. ' The same authors
did a similar small-basis HF calculation of the LiF 3I. in
the HF approximation. No LDA treatment of an alkali
halide 1L, has appeared.

Various of us have calculated the properties of ordered
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covalently, molecularly, and metallically bonded
films. In addition to addressing the issues listed at
the outset, this study also completes the coverage of
bonding mechanisms in ordered 1L s. Of particular in-
terest is the extent to which the 1L configuration modifies
the system behavior (relative to the counterpart crystal)
in the context of the strong binding provided by the ionic
mechanism.

In order, the following sections consider basis-set selec-
tion (including possible basis-set effects on calculated
charge transfer) and other technical issues, ground-state
properties, one-electron band structure (Kohn-Sham ei-
genvalues) and charge transfer, and proton stopping at
equilibrium. A brief summary of the most important
findings and comments on their potential implications
concludes the text.

II. TECHNICAL MATTERS

With the exception of CsC1, CsBr, and CsI, the alkali
halides assume the rocksalt (NaC1) structure under nor-
mal conditions, hence display an octahedral distribution
of either ion type with respect to the other. The symme-
try of the (100) planes is therefore the obvious one to
study for a LiF 1L. Figure 1 shows the lattice and primi-
tive unit cell: the Li-F internuclear distance R is the key
structural parameter.

As in our previous work, self-consistent, all-electron,
full-potential calculations were performed in the local
density approximation to density functional theory. The
primary LDA model utilized was that of Hedin and
Lundqvist, but for comparison with other work some Xa
calculations were performed also.

FILMS, the code package developed by two of us for
treating ordered ultrathin films of arbitrary symmetry,
composition, and thickness, solves the Kohn-Sham equa-
tion via linear combinations of Gaussian-type orbitals
and fitting functions. The Kohn-Sham orbitals are ex-
panded in a basis of gaussian-type functions (the "KS
basis" ), while both the charge density n(r) and the LDA

-Li

FIG. 1. LiF 11.lattice and unit cell.

exchange correlation kernels which depend nonlinearly
upon n are expanded in auxiliary Gaussian-type bases
(the "Q basis" for fitting n and the "XC basis" for fitting
the exchange-correlation kernels). The Q basis
coefficients are obtained by minimization of the residual
Coulomb repulsion caused by the difference between the
exact and fitted densities, while the XC fitting is by least
squares on a numerical grid (in essence, a numerical in-
tegral in two stages). Although formulated with distinct
Q and XC basis sets, experience has shown it usually to
be better to use a single, common fitting basis (elsewhere
the common fitting basis is labeled as the "I"' basis, but
to avoid confusion with the chemical symbol F, "QXC"
is used here).

Textbook-pure ionic binding (unit charge transfer for
LiF) would correspond to closed shells and localized elec-
tronic distributions with approximately spherical symme-
try at each nuclear site. A calculation such as this one is
challenged from the outset, therefore, to avoid basis-set
choices which are biased with respect to that elementary
chemical picture.

Qualitatively, both nominally ionic or nominally atom-
ic KS basis sets would seem to be acceptable. To con-
struct an ioniclike KS basis from a standard tabulation
for F (e.g. van Duijneveldt, "), we typically added one
or more diffuse functions to the p-type basis [cf., e.g. , Ref.
27(c)]. For Li, it was more appropriate to begin with the
Li 1L basis used in Ref. 24, then delete one or more of the
most diffuse s-type functions (because of the shift away
from the metallic character of the Li 1L). These altera-
tions correspond quite literally to accounting for the
diffuseness of anions and compactness of cations relative
to their neutral antecedents. The atomiclike KS basis
sets were obtained from tabulated sets by removing
(and/or tightening) only those more diffuse s-type func-
tions which caused approximate linear dependencies in
the film. Usually this procedure resulted in a Li basis
with substantial overlap at the F sites in the 1L, whereas
the F basis was somewhat less diffuse. Nominally atomic,
this choice is also equivalent to charge transfer, con-
sistent with the observation by Chancy et aI. that the Li
2s function overlaps the F atoms, while the F 2s and 2p
orbitals are less diffuse and overlap the Li sites much less
strongly. Of course a few Li p-type functions are neces-
sary for bonding in either kind of KS basis set.
Contractions were restricted to the very localized s-type
functions and to F p-type functions with coefficients from
van Duijneveldt ' in all cases.

Fifteen KS basis sets, both atomiclike and ioniclike,
were explored. Perhaps counter intuitively, all the ionic-
like sets could be discarded on grounds of high total ener-
gies, instability of the calculated magnitude of the KS
band gap with respect to small changes in the basis set,
and peculiar ordering of the occupied KS states. Testing
of the atomic basis sets showed that at least Ss2p f'or Li
and lls6p for F (before contraction) was required to
achieve stability of the calculated equilibrium R (denoted
as R, hereafter) to about +0.02 a.u. and of the calculated

E„, per ion pair to about +0.005 hartree. However, a
basis set of this size was not rich enough to achieve a
stable calculation of the KS band gap. This outcome is
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unsurprising, since the KS band gap is not a variationally
stabilized quantity. Stability of the calculated band gap
required a primitive 12s4p Li basis contracted to 9s4p
and a primitive F 13s8@1p, basis contracted to 10s7p 1p, .
Note that the single additional diffuse p, function is a
small but important contributor to a stable representa-
tion. The resulting basis is shown in Table I.

Testing also showed that a QXC basis with exponents
found by doubling the exponents of the KS basis is a reli-
able, convenient choice for this system. Obvious excep-
tions (signaled by very small relative contributions to the
Q expansion) were the two tightest d-type functions on
the F sites and the two tightest s-type functions on the Li
sites. In both cases these were replaced with a gingle
compromise value which had no discernible effect on the
outcome; see Table I.

This return to the "Dunlap rule" for forming the
QXC basis is of some technical interest, since other sys-
tems (see Ref. 24) have been described best by a QXC
basis essentially identical with the KS basis. Almost all
those other systems were metallic, however, hence re-
quired a relatively difFusive QXC basis to represent the
substantial interstitial and exterior electron densities sat-
isfactorily. The high degree of charge localization associ-
ated with Lip ionic binding (e.g., less than lo%%uo of the
electrons per cell are in the interstitial and exterior re-
gions at the calculated R„ for any reasonable definition
of interstitial and vacuum) manifestly corresponds to the
appropriateness of a much more localized QXC basis
than would occur if the KS basis were to be used.

Although the eventual test of basis-set adequacy must
be (and was) the stability of calculated results against
basis-set changes, there are other useful metrics. In par-
ticular, for Q fitting the parameter

Fluorine

s-type
103 109.46 (0.000 064)
15 281.0070 (0.005 03)
3 441.5392 (0.002 668)
967.094 83 (0.011 200)

314.035 34
113.442 30
44.644 727
18.942 874
8.532 7430
3.9194010
1.568 1570
0.623 2900
0.2408 610

p-type
245.330 290 (0.000 985)
56.919005 0 (0.008 257)

17.604 568 0
6.274 995 00
2.447 030 0
0.995 060 0
0.403 973 00
0.154 8100

p -type
0.050 00

s-type
206 218.920

30 562.0140
6 883.078 40
1 934.189 70

628.070 680
226.884 600

89.289 454 0
37.885 748 0
17.065 486 0
7.838 802 00
3.13631400
1.246 580 00
0.481 722 00

d-type
153.838 010
35.209 1360
12.549 9900
4.894 060 0
1.990 120 0
0.807 946 0
0.309 620 0

TABLE I. KS and QXC basis exponents. The first four s-

type functions for both Li and F and the first two p-type for F
are contracted, each into a single function. The contraction
coefticients are in parentheses. These bases are constructed
from the 13s8p atomic F and 13s atomic Li sets tabulated by
van Duijneveldt (Ref. 27).

[where n„(r), n(r), and n(r) are the nuclear number den-
sity, neutralized electron number density, i.e., electron
density neutralized cell-by-cell by the nuclear array, and
fitted neutralized electron number density, respectively] is
a nuclear-density-weighted average of the quality of fit.
Typically A. ( 5 X 10 hartree near the calculated R, . As
usual, one must check that the magnitude of any sp'urious
negative charge (from the Q fitting) is quite small in abso-
lute value throughout the unit cell; in fact it was zero to
available numerical precision in a substantial neighbor-
hood of the calculated R, . By testing for the onset of
significant approximate linear dependencies and/or nega-
tive electron densities, the range of R over which the
QXC basis is valid also can be determined. The efFective
range in R of this QXC basis is from 3.25 to 4.3 a.u. , as
determined by the onset of negative density with absolute
value ) 10

Finally, to sample the irreducible wedge of the two-
dimensional Brillouin zone, we used a 10 k point grid in
the two-dimensional analog of the linear analytic
tetrahedral scheme familiar in crystalline calculations for
BZ integral evaluation.

s-type
9497.934 40 (0.000 075)
1416.811200 (0.000584)
321.459 940 (0.003 062)
91.124 1630 (0.012 605)

29.999 891
11.017 631 0
4.372 801 0
1.831 256 00
0.802 261 00
0.362 648 00
0.113995 00
0.051 237 00

p-type
2.56000
1.880 00
0.360 0
0.1360

Lithium

s-type
3233.622 40

642.919880
182.248 330
59.999 782 0
22.035 262 0

8.745 602 0
3.662 512 0
1.604 522 0
0.725 296 0
0.227 9900
0.102 474 0

d-type
5.12000
3.760 00
0.720 0
0.272 0



51 CALCULATED PROPERTIES OF A PROTOTYPICAL IONIC. . . 14 579

III. GROUND-STATE STRUCTURE AND ENERGETICS

Calculated equilibrium quantities are summarized in
Table II while Fig. 2 shows E„,(R ). Note that the
infinite R limit of this curve corresponds to separated F
and Li+ ions with the unphysical common Fermi energy
enforced upon heteronuclear systems by the LDA.

Monolayer equilibrium corresponds to R =R, =3.50
a.u. Table III shows that this value is roughly midway
between the molecular and crystalline values, consistent
with the "coordination model" discussed in Refs. 24 and
30—32. There is one exception to the steady increase of
bond length with increasing aggregation, namely the
finding in Ref. 17 (without comment) that R, for the cy-
clic dimer [(LiF)2] is slightly larger than for the eyclie tri-
mer. Reference 17 also shows that there is significant
inhuence of the molecular conformation upon R, .
Specifically the linear trimer exhibits a range of values
from 3.04 to 3.21 a.u. depending on which Li—F bond
was examined. Presumably the anomalous contraction in
going from the cyclic dimer to cyclic trimer is another
example of such small system behavior, hence is not par-
ticularly relevant to the 1L.

The two crystalline calculations of R, which are ap-
parently the most reliable (the "basis set II" LDA results
from ZF and the Hartree-Fock calculation of Ref. 14)
bracket the measured value, 3.80 a.u. , almost symmetri-
cally by about 0.05 a.u. The HF and LDA treatments of
the isolated monomer also give very similar values of R, .
Given the major differences between the two theoretical
models, this near agreement is striking. It suggests,
strongly, that the present 1L results can be compared
with those from the crystal without the caution usually
needed to avoid spurious predictions caused by LDA lat-
tice contraction (for details, see Ref. 31). Compared with
experiment, therefore, the LiF 1L is bond-contracted by
7.9%%uo. This is just what would be expected qualitatively
from the coordination number model, though the predict-
ed percentage decrease is among the largest of which we
are aware.

For an ionically bound molecular system there are
three obvious possible definitions of the cohesive energy.
One is the energy per pair relative to individual, isolated
free atoms. The only experimental value for crystalline
LiF seems to be that quoted long ago by Seitz for
T=300 K, namely, —0.345 hartree/pair ( = —9.39
eV/pair). In the HL LSDA, the total energies of the free
Li and F atoms from 13s and 13ssp basis sets, respective-
ly, are —7.354 51 hartree (Li) and —99. 11871 hartree (F,
spin polarized). The 1L cohesive energy with respect to
this reference is —0.3419 hartree/pair ( = —9.30
eV/pair).

A somewhat more usual definition for diatomic ionic
crystals (but less accessible for a LDA calculation; see
below) is the energy per pair relative to the isolated con-
stituent ions. The experimental cohesive energy for crys-
talline LiF in this case is —0.395 hartree/pair
( = —10.75 eV/pair) at T=0 K. ZF quote the observed
Ez for crystalline LiF, corrected for zero point energy by
use of the Debye formula, as —10.6 eV/pair and calcu-
late a value of —9.8+0.5 eV/pair at the calculated R, .
Two issues arise in interpreting this result. ZF used the
Singwi et al. LDA, not the HL form used here.
Secondly, because of improper self-interaction cancella-
tion, no LDA (to our knowledge) can yield a properly
bound negative ion without introduction of some arbi-
trary confining potential. * ZF did not specify their
choice of confinement potential but it is clear from the
paper that they cite (regarding calculation of free ion en-
ergies "by standard methods" ) that such a potential was
used. Unfortunately ZF published neither the free ion
nor crystalline total energies which they obtained.

The fundamental difhculty with anions in the LDA
when combined with ZF's omission of total energies
makes it difficult to calculate a proper 1L binding energy
relative to separated ions. An attempt to circumvent the
problem by appeal to experimental values for the ioniza-
tion energy of Li (5.390 eV =0.19808 hartree, Ref. 38)
and the electron affinity of F (

—3.40 eV= —0. 1249 har-
tree) (Ref. 39) unfortunately fails. That is, if one adds
these quantities to the LDA total energies for the neutral
atoms, the result is a total energy for the free F plus the
free Li+ of —106.4000 hartree. This in turn yields a 1L
Es with respect to free ions of 0.4150 hartree/pair =
11.29 eV/pair, or a prediction that the 1L is more bound
than the crystal, a clearly unrealistic result which invali-
dates the attempted estimation of the ionic energies. This
is yet another example of the general problem of cohesive
energies as small differences between large numbers, the
computation of which must be done on an equal footing.
The attempted estimate, a mixture of experimental and
computed values, clearly does not meet that requirement.

The third choice of binding energy definition is to
recognize that most of the binding in an extended LiF
system (be it crystalline or film) is already present in the
isolated molecule, hence the 1L binding should be refer-
enced to the molecule. %'e prefer this choice on two
grounds. Chemically the LiF molecule is the interesting
constituent. Technically the problem of LDA mistreat-
ment of a free negative ion is eliminated.

Neyman and Rosch have found the molecular R, as
2.974 a.u. and E„,= —105.87305 hartree from the Xe
LDA (with a =—', ). The corresponding spin-polarized

TABLE II. Optimized ground-state quantities: R, is the equilibrium Li—F bond length, E«, the total energy per unit cell, Eg the
band gap (indirect), 8 the valence bandwidth, and TVB the top of the valence band relative to the vacuum.

F Li

Reference atomic
bases

F
Monolayer bases

Li
R,

(a.u. )

E«, /(ion pair}
(hartree) (eV) (eV)

TVB
(eV)

13$8p 13$ 13$8p 1p, /10$7p 1p, ( 12s4p ) /[9s4p ] 3.50 —106.815 08 6.83 2.74
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Distance between Li A F (a.u. )

FIG. 2. Total energy per ion pair vs internuclear distance for
the LiF 1L.

atomic energies are —7. 193 38 hartree (Li) and
—98.473 33 hartree (F), so that LDA finds the isolated
LiF molecule to be bound by 0.206 hartree =5.61 eV.
We find the LiF 1L Xn minimum E„, to be 105.969 36
hartree/pair, or a 1L bound by 0.096 hartree/pair (=2.61
eV/pair) with respect to the free molecule.

Note that Neyman and Rosch could use a somewhat
richer basis than ours, ' ' " for example, d-type KS
functions. Careful calibration of the two calculations was
desirable therefore. The test chosen was to optimize R
using the Xa LDA (a=2/3) for a very expanded square
LiF 1L, with edge length 15.0 a.u. and the LiF molecule
aligned along the x-axis edge. In this case p, -type QXC
functions are essential. Beginning with the exponents
proposed by Jorg et al. "(3.90625, 1.5625, 0.625, 0.25,
0.1), the most diffuse two for F and the most diffuse three
for Li were removed in order to get a QXC basis stable
over a reasonable range of R values. The expanded 1L
yields an estimate of the molecular Xa
E„,= —105.875 06 hartree/pair compared with
—105.87305 hartree/pair from Neyman and Rosch.
The R, comparison is 2.94 a.u. for the expanded 1L com-
pared to 2.974 a.u. calculated for the isolated molecule. '

Clearly there is a small amount of residual lattice binding
(0.05 eV/pair) still present in the expanded 1L. Since the
two calculations use completely separate codes and treat
systems that are not literally equivalent, the near agree-
ment of both E„, and R, validates the use of the
Neyman-Rosch molecular results.

IV. ONE-KI. KCTRON PROPERTIES
AND CHARGE TRANSFER

To treat charge transfer it is helpful to start with the
conventional energy bands (bare Kohn-Sham one-
electron energies); see Fig. 3. The lowest bands, the F
and Li 1s-like ones, are omitted since they are sensibly
Aat. At I they lie at —24.010 and —1.754 hartree, re-
spectively. The next higher occupied band (the lowest
shown in Fig. 3) is dominated by F 2s but with Li hybrid-
ization.

The highest occupied bands are predominantly F 2p-
like though again with significant Li admixture. The
two-dimensional symmetry of the 1L is manifest in the
doubly degenerate even-symmetry (with respect to the 1L
plane) p state at I which lies slightly above a singly de-
generate odd symmetry p, state. In contrast, these merge
in the LiF crystal to form the triply degenerate I,5 level
(compare, for example, Fig. 2 of ZF). The dominance of
ionic bonding over system geometry is indicated by the
width of this 1L band, about 2.74 eV as compared with
calculated crystalline values of 2.31 eV from ZF (for Xa
LDA with a= 1), 3.12 eV by Lobatch et al. (who used
the HL LDA), and 3.1 eV from HF. ' That is, substan-
tial charge transfer broadens this band to essentially its
full calculated crystalline width at only one layer even
though the symmetry-induced splitting is quite different
in the two systems. This result is consistent with the
shortened 1L bond length relative to the crystal.

The 1L calculation sheds relatively little light on the
long-noted smallness of the calculated valence bandwidth
relative to experiment, as might be expected. Discussion
and citations of experimental literature are in Ref. 16.
Perhaps the problem is simply one of inappropriate use of
bare KS bands, but this seems unlikely since the HF
value is in the same neighborhood. It is interesting and
perhaps suggestive that the experimental valence band-
width for LiF(100) deposited epitaxially on Ge(100) is 3.5
eV, much smaller than the 4.5 —6-eV values reported
experimentally for the LiF crystal and much closer to the
range of calculated results.

For the 1L the lowest conduction band is the s-like hy-
brid just as in the crystal. ' The 1L differs significantly
from the crystal in having an indirect gap, from J to I, of
6.83 eV. The 1L direct gap at I is more than 0.4 eV
larger, 7.26 eV. As usual in insulators, the KS eigenval-

TABLE III. Comparison of various LiF equilibrium bond lengths.

System R, (a.u. ) Method; Source

isolated monomer

isolated monomer

isolated cyclic dimer
isolated cyclic trimer, quadramer
monolayer
crystal
crystal
crystal

2.94, 2.97

2.974
3 27 3 23

3.23
3.50
3.87
3.75
3.80

Hartree-Fock, CI(SD); Ref.
17
LDA (Xa, u= —); Ref. 40
Hartree-Fock; Refs. 19, 20
Hartree-Fock; Ref. 20
This calculation
LDA (Singwi et al. ); Ref. 12
Hartree-Fock; Ref. 14
Experiment; see Ref. 12
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ment is given by Smith et al. as 0.84 and by Pauling '

as 0.91 (read from his Fig. 3-8). From Pauling's elec-
tronegativity scale one gets 0.895, while the universal
bonding model of Smith et al. yields 0.84 and the
simplified atomic LDA model of Kitamura et al. gives
0.91. Apparently the only value extracted from crystal-
line data is from Phillips and Van Vechten, who find
0.915.

ZF raised a serious cautionary note about the whole
charge-transfer concept by performing a LCAO charge
analysis with a Bloch basis orthogonalized at each sample
point in the zone. They found the apparent ionicity to be
quite different at I and X, 0.38 and 0.45, respectively,
and very different from the charge-transfer values just
quoted (which are reasonably close to the classical free-
ion value).

Earlier Brener" had obtained rather similar results by
a simpler procedure. He assumed spherical symmetry for
the charge moved to F, then did a simple spherical-
volume integral from the F ion out to the point where the
change in the charge density (with respect to superposed
atoms) went to zero. He found approximately 0.46 elec-
tron transferred.

Neyman and Rosch found the dipole moment of the
molecule to be —2.28910, —2. 80808, and —3.09214
a.u. at the internuclear distances of 2.853, 3.458, and
3.798 a.u. , respectively (Xa LDA, a= —', ). The corre-
sponding charge-transfer values are 0.802, 0.812, and
0.814. The j.ncrease of charge transferred as the internu-
clear distance increases is similar to that found in the LiF
1L and may be related quite closely to the LDA separat-
ed atom problems first analyzed by Perdew and Smith.
They showed that, because the LDA imposes a common
Fermi energy even when the F and Li+ sites are
separated greatly, there is a spurious nonvanishing
asymptotic charge transfer which yields a spurious dipole
moment of arbitrarily large magnitude.

In the face of all these ambiguities of defining and cal-
culating charge-transfer values, we decided to use a sim-
ple, albeit arbitrary procedure (rather than expend efFort
on a more sophisticated but still arbitrary one). In the
fitting function technique, the XC fitting step inevitably
involves numerical integrals. The numerical mesh we use
includes muon-tin regions around each nuclear site. For
the LiF-1L, we chose the muon-tin radii to be deter-
mined by the location of the charge minimum along the
Li-F axis [recall Fig. 4(b)j, hence the radius at the F site
was 61.07% of the internuclear distance, whereas for the
Li site it was 38.93%. At the calculated R„ the charges
in the F and Li spheres are 9.25945 and 2.00066, respec-
tively. On the assumption that the charge in the intersti-
tial and vacuum regions defined by the numerical integra-
tion scheme is apportioned the same, the total charge
transfer is 0.867 electrons. This value, which is close to
the result from Feyman and Rosch, is consistent with the
Aattening, relative to the crystal, of the 1L charge distri-
bution into the plane of the nuclei discussed above.

V. PROTON STOPPING

The stopping cross section per scatterer (here the elec-
tron distribution for an LiF ion pair) S(v) for a charged

particle of nonvanishing mass traversing a material sys-
tem is

1 dE =S(v),X dx

where X is the number density of scatterers, v is the ve-
locity of the incident particle (normal incidence), E is its
energy, and x is its path length. For a proton incident on
a material, the electronic S(v) is a measure of aggregate
energy deposition into the electron population by the
proton, and hence probes the one-electron energies and
generalized oscillator strengths.

While many stopping calculations have been per-
formed in the last half century, none appears to have
treated an ionically bound crystal or molecule, except by
using Bragg's rule, i.e., the assumption that S(v) for the
compound is the linear superposition of the stopping for
its components. Bonding in LiF is so strong that super-
position is of dubious validity on the face of it, however.
Mean excitation energies have been calculated for crys-
talline LiF from the local plasma approximation (LPA;
see below), but the requisite electron densities n(r) were
estimated roughly from those of corresponding neutral
atoms and from ionic bond parameters.

Only a few experimental results are available for ener-

gy deposition in condensed LiF. These include proton
stopping data by Bader et al. (now rather old), Kubo's
proton depth profile results, and stopping data for 1 —2
MeV alphas by Biersack et al.

We considered the electronic stopping power for a pro-
ton in both the LiF-1L and in the dilute molecular gas
limit. Electron capture by the proton (charge-state
changes), and ionic dissociation of LiF were neglected.
To incorporate the material properties of the target in the
calculation realistically, it is essential to evaluate the
mean electronic excitation energies on which the stop-
ping cross sections depends in a state-dependent
fashion. '

Direct calculation of generalized oscillator strength
distributions for arbitrary momentum transfers is, at
present, a prohibitive task even for light atoms. ' Fol-
lowing Sabin and Oddershede therefore, we employed
Sigmund's kinetic theory of stopping in the form

4~Z )Z2
S(v) = J-(v),2

where the stopping number is an orbital superposition
L(v)=Q~L~(v) with each contribution given by the
kinetic theory transformation

v (v —v~)
L((v) —Jdv2p((v2)L( ( ~v

—
v2~ )

v vp

Here Z, is the projectile charge, Z2 is the number of
electrons per molecule, and p&(v2) is the momentum den-
sity of the lth energy subband (see below).

The stopping number integrand L& is of Bethe form
with a low-energy cutoff

L& (u)= ln 0 U
2 Il

XZ2 J, 2



CALCULATED PROPERTIES OF A PROTOTYPICAL IONIC. . .

where X, is the number of molecules per unit cell and ql
is the norm of p&(v2). The orbital mean excitation ener-
gies II were calculated via the orbital local plasma ap-
proximation (OLPA)

lnII = f dz f der n&(r)lnI [4nn(r)]'~ I'g (
—oo

with 2 the planar unit cell area and n&(r) the partial den-
sity for the lth energy subband (see below).

The momentum density in the kinetic theory expres-
sion was obtained by direct Fourier transform of the KS
eigenfunctions. The Lam-Platzman correction, which
is small, was omitted. The atomic calculations used the
same OLPA and LDA but were spin polarized in the cen-
tral field approximation. Details are in the Appendix of
Ref. 66.

The OLPA grouping of levels is not as obvious for the
periodic system as it is in the atomic case. In particular,
the OLPA could be done by band (i.e., irreducible repre-
sentation label and compatibility relations) or by energy
interval (so-called "windows"). Windows turn out to be
quite e8'ective because of the ionic character of the sys-
tem. The 1s-like and 2s-like bands can be treated as pure-
ly atomic. (The discrepancy between atomic and 11.
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FIG. 5. Calculated stopping cross sections for the LiF-11.,
LiF quasimolecule, and Bragg rule (Li atom+F atom). The
units are 10

—ls eV cm /molecule.

values for the contribution from these bands is less than
one percent in the stopping cross section at its max-
imum). The three energy bands of 2p-like character all
lie in a similar energy range, hence were treated as one
energy window. This grouping was tested by partitioning
the same energy range into three equal windows

Li atom +F atom
F atom Li atom

13s8plpz for F
12s4p for Li
13s7d for F
11s4d for Li

3.50
—106.815 08

from —24.009 58
to —24.009 58

483.651
0.160

from —1.75448 to
—1.750 41

72.580
2.778 (film)

from —0.99472 to
—0.971 30

62.465
4.108

from —0.386 50 to
—0.285 74

50.688
10.923
81.134
17.936

13$

Q and Xc bases

arbitrarily large
—106.473 22

—24. 198 04
—24. 167 38*

483.498
0.160

F-like 1S band Energy
range {H)
I (eV)

S at u=2. 25 a.u.
Energy

range (H)
I (eV)

S at u=2. 25 a.u.
Energy

range (H)
I (eV)

S at u =2.25 a.u.
Energy

range (H)
I (ev)

S at u =2.25 a.u.
Itotal

( V)
S"' at

v=2. 25 a.u.
Smax
u at

S,„(a.u. )

483.682
0.160

—1.81928Li-like ls
band

—l. 875 35
—1.867 29*

71.424
2.745

—0. 124 63
—0.048 07*

3.420
8.072

72.493
2.745

—0.898 222S band —1.115 86
—1 ~ 055 27*

62.550
3.991

—0.444 10
—0.385 25*

54.363
8.034
91.148

62.943
4.054

from —0.25208 to
—0.226 04

48.184
11.314
79.308
18.273

2p band

25.935
23.002

17.962
2.33

18.290
2.32

40.489
0.61

TABLE IV. Comparison of the phase difference in proton stopping by LiF-1L, LiF molecular, and Bragg rule (superposed Li and
F atoms) targets. The units for Sare 10 ' eVcm /molecule. Asterisks denote two energy levels are for two spins.

LiF LiF monolayer
quasimolecule;
molecule along

x direction
KS bases 13s8p 13s8plpz for F

13s4p for Li
13s7d3p for F
12s4d2p for Li

distance between Li and F (a.u. ) 2.80
E„,(H) —106.713 20

—23.922 76
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S(v) at one velocity (near the position of its maximum as
found in the single-window calculation) was calculated
with this three-window partitioning. Again the
discrepancy between the two treatments was only in the
second decimal place in the stopping cross section at that
velocity.

As with other molecular properties, the stopping for
the isolated molecule was treated via FILMS calculation
for the LiF "quasimolecule" system discussed above [but
with the Hedin-Lundqvist (HL) LDA for consistency].

Figure 5 shows the stopping cross sections as a func-
tion of proton velocity for the 1L, the molecule, and for
superposed atoms. (The energy windows, mean excita-
tion energies, and maximum stopping cross sections for
the LiF-1L, the LiF quasimolecule, and the Li and F
atoms are found in Table IV.) The predominant qualita-
tive feature is the closeness of the stopping cross section
for the LiF-1L, and the molecule; the latter is about 3%
larger at most. Though this behavior difFers from that of
both metallic and covalent 1L s, it is unsurprising since
the total energy of the molecule is close to the total ener-
gy per formula unit of the 1L and the valence band for
the 11. is rather Aat. These features all refIect the fact
that most of the binding is intramolecular.

Dominance of stopping by molecular binding is shown
quite dramatically in Fig. 5. It shows that the Bragg rule,
namely, the assumption of superposition,

S„~(u ) =S„(u)+S~(u)

with S„,S~ from atomic Li and F, respectively, overesti-
mates both the 11.and isolated molecule stopping greatly.
Since the molecular and 11. stopping difFer little, it is
clearly the molecular binding efFects omitted from the
Bragg rule which cause the large difFerences. Experimen-
tal results for stopping in thin evaporated layers of
boron-doped LiF agree with Andersen and Ziegler's
predictions within a few percent if the Bragg rule is used
with ionic input. Because of the LDA problem with free
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Lip-11 .

~
~ sj q

~ E~(l = 1,2, 3 and EJ& is the band energy) ac-
cording to

EI=E ~„+l[(E ~,„E—~„)/3], 1=0,1,2, 3 .

negative ions discussed above, we could not perform the
analogous test. The localized charge distribution of the
LiF-1L and its overall dominance by molecular behavior
are consistent though with the expectation that the Bragg
rule with ionic input would give a reasonable description
of these systems.

Finally, the shift in 2s and 2p stopping from the isolat-
ed Li and F atoms to that of the LiF-1L makes evident
the extent to which the 2s and 2p orbitals of LiF are dom-
inated by F contributions. In Fig. 6 one sees that the 2s-
like stopping for the LiF-1L is almost the same as that of
the F atom. The 2p-like stopping in the 1L, has the same
behavior but is bigger than that for the F atom, a conse-
quence of charge transfer.

VI. SUMMARY AND CONCLUSIONS

Ionic binding in the context of the planar coordination
intrinsic to the LiF-1L results in a lattice constant con-
tracted relative to the crystal (3.50 a.u. versus 3.86 a.u. ).
The large lattice contraction is traceable to a qualitative
difFerence between the crystal and the 1I.. In rocksalt,
each ion has six nearest neighbors of opposite sign and
twelve second neighbors of the same sign, while the (100)
11. from rocksalt has equal numbers of nearest neighbors
of opposite sign and second neighbors of the same sign.
In the point charge approximation, therefore, the 1L, is
attractive through two shells of neighbors while the crys-
tal is not. Thus, this contraction may be an indication of
real difficulty in epitaxial growth of LiF, since adsorbed
layers inevitably will be at high stress. There is another
consideration, however. Relative to the crystal there is
also substantial constriction of the bonding charge distri-
bution into the nuclear plane (0.033 e/a. u. at the density
minimum along the Li-F axis versus 0.023 e/a. u. for the
crystal) but the density minimum occurs at essentially the
same fraction (61.1% from F) of the Li-F axis as in the
crystal (61.6%). The much reduced out-of-plane extent
of the charge density suggests at least the possibility of
epitaxial growth of LiF at much constricted lattice con-
stants, because of the possibility of reduced interaction
with the substrate.

The II. band gap is indirect (9.8 eV scaled from bare
KS value) whereas the crystalline gap is direct (13.6—14.2
eV, measured). Perhaps fortuitously, Roy, Singh, and
Gallon found an electron energy loss peak in both
cleaved single crystals and vacuum deposited films of LiF
at 10.4 eV. They made a tentative identification with
the surface exciton and deduced therefore a surface band
gap some 3.1 eV smaller than the bulk value. The values
calculated here at least are consistent with that reduc-
tion. Interestingly, the 1L charge transfer is estimated to
be 0.87 electrons, that is, very little difFerent from report-
ed molecular values.

All of these features are consistent with bonding dom-
inated by formation of the diatom constituent, a perspec-
tive which is validated from calculation of proton stop-
ping by the electron population. Bragg rule superposi-
tion works well when molecular LiF stopping is com-
pared with the 11. but not at all when atomic Li and F
stopping powers are superposed. The Bragg rule there-
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fore is useful only if the bonding in a system is under-
stood a priori.
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