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Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation
mechanism in nonideal quantum-dot heterostructures
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The presence of a deep-level trap coupled to a quantum-dot heterostructure is shown to provide
a rapid energy-relaxation pathway through which electrons may thermalize. A capture process
is considered whereby a free conduction-band electron is captured into the ground conduction-
band state of a quantum dot by multiphonon-assisted tunneling through the trap. As an example
calculation, transition rates for a 5 nm radius Ino. s Gao.sAs/GaAs quantum dot coupled to the defect
M1 are calculated as a function of separation between the quantum dot and the deep level. For
separations less than 10 nm these rates are found to be in excess of 10 s at 4.2 K. The
result suggests that the presence of point defects may serve to enhance the luminescence eKciency
of quantum-dot material. The physical situation described in this paper could only arise if the
spatial distribution of defects were strongly correlated with that of the quantum-dot structures,
e.g. , through formation of interface states or point defects as a consequence of the growth process.
With this caveat, the proposed mechanism may possibly explain the failure to observe a significant
phonon bottleneck effect in recent work on In& Ga As quantum-dot structures [e.g. , Appl. Phys.
Lett. 64, 2815 (1994)].

I. INTRODUCTION

Among the most interesting features of the behavior of
zero-dimensional electronic systems, such as quantum-
dot heterostructures, is the decoupling of the electrons
from the phonon bath, which is predicted to occur when
the level splittings exceed the optical phonon energy.
In this circumstance, energy relaxation by single phonon
emission is suppressed, due to energy and momentum
conservation requirements. This eKect has come to be
known as the phonon bottleneck.

In addition to the obvious fundamental interest in this
problem, it is an important one from the standpoint
of applications, since many proposed uses of quantum-
dot structures, for example, as gain media in semicon-
ductor lasers, naturally require rapid thermalization of
electrons relative to the optical transition rate. In the
case of conventional double heterostructure or quan-
tum well lasers, internal equilibrium within a band
is ensured by the rapidity of intraband carrier-carrier
and carrier-phonon scattering, which occur with sub-
picosecond relaxation times. However, as has been re-
cently pointed out by several authors, in an ideal
quantum-dot system the assumption of quasiequilibrium
in the conduction band breaks down. Energy relaxation
by emission of longitudinal-acoustic (LA) phonons was
shown to be increasingly quenched with increasing en-
ergy level separation. ~ Single longitudinal-optical (LO)
phonon emission, on the other hand, is forbidden except
in the unlikely case that energy level separation equals
LuLQ. ' Calculations extended to second order in the
electron-phonon interaction indicate that a "window" of
rapid relaxation may occur between quantum-dot states
separated by energy ~I,Q +~L~, where ~pQ and Ruz, ~

are longitudinal-optical and -acoustic phonon energies,
respectively. While this result may provide a solution to
the relaxation bottleneck problem for appropriately de-
signed quantum dots, the requirement is a rather strin-
gent one in that a ladder of states separated by roughly
Log Q is still required to span the gap between the bar-
rier continuum and the ground state of the quantum dot.
Other relaxation mechanisms which have been studied
include intraband radiative transitions and Coulombic
collisional deexitation processes. ' The former process
was shown to be slower than interband radiative recom-
bination when the intraband level spacings are less than
the bulk energy gap owing to the cubic dependence of
the spontaneous emission rate on the transition energy.
Collisional deexitation was found to be the dominant
relaxation process at free carrier densities greater than
10 cm in a GaAs -Al Gaz As quantum-dot system,
but is insufBciently rapid to establish local thermal equi-
librium below carrier densities of 10 cm

These calculations all share the feature that they con-
sider ideal quantum-dot systems, and do not consider
the influence of extrinsic deep level or interface states
on the energy-relaxation process. Here, I describe a the-
oretical investigation of the efFect of coupling between a
deep-level state and a quantum dot. Owing to the strong
lattice coupling in deep centers, deep-level traps may pro-
vide a rapid relaxation channel for carrier capture into
deeply bound quantum-dot states. The situation may
be described as a form of intraband nonradiative decay
through multiphonon emission. To illustrate the efFect, I
present an illustrative calculation pertinent to recent ex-
perimental realizations of quantum-dot heterostructures.
The physical situation described in this paper could only
arise if the spatial distribution of defects is strongly cor-
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related with that of the quantum-dot structures, e.g. ,
through formation of interface states or point defects as
a consequence of the growth process. With this caveat,
the proposed mechanism may possibly explain the fail-
ure to observe a significant phonon bottleneck eÃect in
recent work on In Ga1 As quantum-dot structures.
The main conclusion of the present analysis is that the
presence of point defects may serve to enhance the lumi-
nescence efFiciency of the quantum-dot material.

II. QUANTUM DOT COUPLED TO A DEEP
LEVEL
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We consider the model system depicted in Fig. 1 con-
sisting of a spherical In Gaj As quantum dot of radius
R embedded in a GaAs matrix, coupled to a deep-level
trap located a distance A from the center of the quantum
dot. In the calculation described below, we will choose as
a representative deep center the electron trap Ml, which
is commonly observed in n-type GaAs grown by molecu-
lar beam epitaxy under arsenic stabilized conditions. '

To simplify the discussion, we have chosen to study
a quantum-dot possessing only two bound conduction-
band states —DO, the ground state, and Dl, a higher
lying state. LO-phonon scattering between the ground
conduction-band state of the quantum dot and the ex-
cited state or continuum states above the barrier is as-
sumed to be suppressed, due to the bottleneck e8'ect. On
the other hand, the excited state D 1 is considered to be
sufBciently close to the top of the barrier that it is coupled
to the continuum via LO phonon scattering processes—this state is assumed to be in thermal equilibrium
with the conduction-band states above the barrier. Since
the relatively large heavy-hole mass causes the spacing
of bound valence-band states to be significantly smaller
than in the conduction band, we assume the valence-band
states to be thermalized and focus our discussion on the
conduction band. The occupied deep level is assumed to
lie in energy between the ground and excited states of
the quantum dot. This situation is shown schematically
in Fig. 2.

In what follows, we analyze processes whereby an
electron is captured into the trap and subsequently
makes a transition into the quantum-dot ground state by
multiphonon-assisted tunneling. In Sec. II, we present a
discussion of the relevant physics of deep levels, utiliz-
ing a semiclassical description based upon the use of the
configuration coordinate diagram. We then develop ex-
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FIG. 2. Energy diagrams for the quantum dot and the deep
level. (a) Electronic energy versus configuration coordinate, q.

(b) Total energy (electronic plus elastic) versus configuration
coordinate, q. Crossing points q0 and q1 are indicated in the
figure.

pressions for the multiphonon-assisted tunneling rates as
a function of temperature and the interaction, J, between
the deep level and the bound. conduction-band states of
the quantum dot. This calculation is performed in a
static regime in which the deep level is assumed to be
fully relaxed prior to each transition. The implicit neglect
of dynamic eAects, which can occur in sequential transi-
tions, causes an underestimate of transition rates. Our
results, therefore, represent a lower estimate of the intra-
band relaxation rates. Numerical results for In Gai As
quantum dots coupled to the deep level Ml, a represen-
tative electron trap found in GaAs grown by molecular
beam epitaxy (MBE), are presented in Sec. III. We find
there that coupling to a deep level can result in relax-
ation times as short as 100 ps in quantum dots at liquid
helium temperatures. We conclude with a discussion of
mechanisms by which the situation described here might
arise in experiments.

FIG. 1. Quantum dot in proximity to a deep-level trap.
The separation between the quantum dot and the deep level
is A.

A. Capture from the barrier into the trap

In the system shown in Fig. 1, initial capture of an
electron into the trap can occur in two ways. The first
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is by direct capture of electrons from the GaAs barrier.
The other possibility is a two-step process involving LO-
phonon mediated capture from the barrier into the ex-
cited state, Dl, followed by multiphonon-assisted tun-
neling from Dl into the trap. The latter process will be
discussed in Sec. II B. We now discuss the direct capture
process.

The rate of capture, c, from the barrier directly into
the trap may be readily calculated. using the phenomeno-
logical capture cross section:

C= A Vgh 0.

Here n is the electron concentration in the GaAs barrier,
v&h is the thermal velocity of electrons at temperature T,
and o is the capture cross section, which has the func-
tional dependence on temperature given by

0 =o exp B+.
where EB is the capture barrier for the deep level in
question.

minimize the sum of electronic and elastic energy,

M~2Q2
Vr(Q) = Eo —6Q+

2

where M is a reduced mass associated with the center.
The equilibrium position of the occupied trap, Q~, is
therefore given by

The total energy —electronic plus elastic energy of
the occupied trap in its equilibrium position is conven-
tionally written Ez- ——Eo —SLu, where S is the Huang-
Rhys factor. Thus, the lattice relaxation energy written
in terms of the configuration coordinate parameter is

Mu) 2Q~~

2

Defining a renormalized configuration coordinate q = bQ,
we can reexpress the electronic energy of the trap as

E, (q) = Eo —q,

and using 8, the total energy of the trap as a function of
q assumes the form

B. Model of the deep level (q —2SRu)
Vg(q) =Ez+

4SRu (10)

The process of multiphonon-assisted tunneling be-
tween states in the quantum dot and the trap is some-
what more complicated, requiring a microscopic model of
the trap in order to calculate overlap integrals, as well as
a model for the electron-phonon coupling. For analytical
simplicity, we model the trap potential well with a radial
b function, and calculate the electronic wave functions in
the eR'ective mass approximation. In this model the trap
has a single electronic state, T, whose envelope function
has the coordinate representation,

The latter two relations are plotted in Figs. 2(a) and 2(b),
respectively, using parameters associated with the defect
Ml, discussed below in Sec. III. Also shown in Fig. 2(a)
are the energies of the two bound conduction-band states
in the quantum dot, EDO and E~i, as well as the en-
ergies of extended states with energy greater than E,
the conduction-band edge in GaAs. In Fig. 2(b), total
energy curves corresponding to these states are shown,
representing states of the system when the trap is un-
noccupied. These curves are described by the relations

V(q) =E;+

h2n2t=
2m* (4)

The electronic energy associated with this state, mea-
sured with respect to the GaAs conduction-band edge,
ls

Here, E; represents the electronic energy with i = DO, Dl
denoting the two bound states in the quantum dot. The
parameters in Fig. 2 are calculated for a 5 nm radius
Ino 5Gao 5As quantum dot surrounded by GaAs, as de-
scribed in Sec. III. We turn now to a discussion of the
interaction between the quantum dot and the deep level.

This energy is strongly dependent on the local atomic
configuration of the center. To model this coupling, we
follow Henry and Lang and take the energy to be a
linear function of a configuration coordinate, Q, which
describes the atomic displacement of the center:

Here, Eo is the energy of the state when Q=O. When the
trap state is unnoccupied, coordinate Q oscillates about
zero with frequency w. We assume that coupling be-
tween the electronic state and the lattice occurs through
transverse-acoustic phonons, and model this process with
a single frequency cu. When the trap is occupied, the con-
figuration of the center distorts Q shifts —so as to

C. Transitions between states of the quantum dot
and the deep level

Referring to the configuration coordinate diagram of
Fig. 2, it is clear that hopping between a state in the
quantum dot and. the deep level can occur only at points
where the corresponding total energy curves cross. This
is simply an expression of the Franck-Condon principle.
We envision an initial condition in which an electron ini-
tially occupies one of these states. Coordinate q Auctu-
ates so that at any time there is a finite probability for
the system to pass through a crossing point. At that
point, the interaction between the electronic wave func-
tions of the deep level and the quantum dot may induce
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a tunneling transition.
Henry and Lang have developed a theory of cap-

ture from extended band states into deep levels by multi-
phonon emission, which has been successful in explaining
the properties of many deep centers in III-V semicon-
ductors. The capture process in such a case is nonadia-
batic since the coupling between an extended state and
the deep level is in6nitesmal. In the present situation,
however, we must consider coupling between two bound
states where the coupling may be strong.

This situation has been analyzed by Sumi who stud-
ied energy transfer between localized electronic states
strongly coupled to the lattice, and developed expressions
for the transition rate as a function of coupling strength,
bridging the adiabatic and nonadiabatic limits. We
follow Sumi in the analysis that follows.

Note that the crossing behavior at points q1 and q0 in
Fig. 2(b) are distinct. This point is illustrated in Fig. 3,
which shows the anticrossing behavior of the total energy
curves for the two cases in the adiabatic (strong coupling)
limit. In the ensuing discussion, we follow the terminol-
ogy introduced by Sumi and we refer to the situation
obtaining at crossing point q1 as case I, while that at

200—
O

point q0 will be referred to as case II.
In both cases, during a single crossing the probability

of electron transfer from one localized state i to the other,
j, is given by the Landau-Zener crossing probability,

1 —B= 1 —exp
—2ÃJ

hive

In this expression, J is the interaction between the two
localized states i, j, and v = « is the velocity of the
configuration coordinate at the crossing point. We will
develop an expression for J in the next subsection. First,
however, we derive expressions for the transition rates
appropriate to case I and case II accounting for multiple
crossing phenomena and the possibility of reemission.

Wansition sate thxough q j.: Case I

P = 2R(l —R).

We now consider the total probability of crossing from
the quantum-dot state Dl to the trap state T in a twofold
passage through the crossing point ql, shown in Fig. 2(b),
taking into account the possibility of reemission. In such
a twofold passage, there are two ways that the electron
might begin in D1 and end up in state T. The first is
that the electron crosses during the first passage with
probability 1 —R and remains in state T on the return
trip through the crossing point with probability B. The
second possibility is that the electron does not cross dur-
ing the erst passage (probability R), but does so in the
second (with probability 1 —R). Thus, the total prob-
ability of a transition during a twofold passage through
the crossing point is

100—
2 S h co

Using this, we can write an instantaneous transition rate
given by

W' = 2 R[l —R] ve( v)b(q —ql—).
300-

E
250—

bO

200—0

150—
2Sh ft)

I"IG. 3. Detail of the crossing points on the configuration
coordinate diagram, Fig. 2(b). (a) Crossing point q1, corre-
sponding to case I. (b) Crossing point q0, corresponding to
case II. The solid lines depict the total energy curves in the
adiabatic limit, p )) 1, where anticrossing behavior is ex-
pected. The dotted lines correspond to the weak coupling
limit, p « 1.

1
p(q) =

7l q

(q —q)'
2(2

p(v) = 1 v

Here, q denotes the thermal average of the configuration

In this expression, the first factor is simply the Landau-
Zener crossing probability, while the factor of v represents
the flux through the crossing point. The factor h(q-
ql) enforces the Franck-Condon principle, namely, that
transitions can occur only at the crossing point ql, while
the step function 0(—v) reflects the fact that the crossing
from Dl to T is approached from the right in Fig. 2(b).

The transition rate at a given temperature is found by
averaging R' over the appropriate probability distribu-
tion functions for q and v. These distribution functions,
for an oscillator in thermal equilibrium, are given by
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coordinate, which in the present case is zero, since we
are considering transitions from the quantum dot. The
parameters (~ and (,'„denote the mean square thermal
fIuctuation of q and v, given by the expressions

form,

OO
x 2 .2

qi(p) = 2 dx x e * (1 —e )e
0

(28)

and

Using Eqs. (7) and (8), it is simple to reexpress (~ in
terms of the experimentally accessible lattice relaxation
energy, eliminating the unknown reduced mass M:

(,2k~T)
(19)

= 2SRukgyT. (20)

Using Eqs. (14) and (15—19), we can now write an ex-
pression for the average transition rate, TV&

~~ from Dl
o

For later reference, we note here that in the high tem-
perature limit ksT )) hen Eq. (19) takes the formis

Note that the parameter p serves as a measure of the
adiabaticity of the transition at the crossing point. In
Fig. 4, the efEciency factor is plotted as a function of p.
In the small coupling regime, p &( 1, gy and hence the
transition rate increases linearly with the square of the
coupling matrix element J as one expects &om simple
perturbation theory. This corresponds to the nonadia-
batic regime investigated by Henry and Lang. How-
ever, in the strongly adiabatic regime, p )& 1, the factor
gi approaches zero. Inspection of Fig. 3(a) provides an
explanation: as the coupling strength increases, the anti-
crossing behavior becomes more pronounced, which leads
to the reduction in the transition rate.

It is instructive to examine the exponential term con-
tained in Eq. (24) in the high temperature limit. Using
Eqs. (20) and (11), we find that this term tends to a
thermal activation factor,

(—q,'l ( q2 ) (
expI ~ I

+expl
I

=expI
q 2,' y (4SRukIiT) ( k~T

~I ' = ((~(~ —vi)))Q((»&[1 —&]~(—~)))- (») (k~T )) Aced). (29)

where

+OO

((&(~))).= d~&(~)~(~) (22)

and

((&(v))). = j &v f (v) p(v)

After some algebra, the transition rate can be written

(24)

It is straightforward to show that the reverse rate, from
T to Dl, is given by

The activation energy barrier E& is shown graphi-
cally in Fig. 2(b).

Comparison of Eqs. (24) and (25) in the high tem-
perature limit demonstrates that the forward and re-
verse transition rates satisfy the detailed balance re-
quirement, W&

D
/W& ——exp[ —

& z ], whereb, Ea1—r
+ED1—T —ED i ET ~

It is also instructive to examine explicitly the limit-
ing behavior of the transition rates W& in the limit
of zero temperature. Classically, we expect that these
rates should tend to zero in this limit, since the cross-
ing point at which the electronic tunneling occurs be-
comes inaccessible. However, at low temperatures, nu-
clear tunneling occurs which gives rise to a finite transi-
tion rate for TV& . In this limit, the exponential factor

(ql —2SRu) ~

W&
———gyjpj exp

2m. 2(', 2 (25) 1.0—

2'
((2 &[1—&]~(—)))-.

CtJ (q
(26)

Introduction of a dimensionless adiabaticity parameter

where (~ is defined by Eq. (19).
In these expressions, u/2m' may be interpreted as an

attempt frequency, while gI is an eKciency factor, which
has the explicit form

0.8—

0.6—

0.4—

R
0.2—

2' J2
Lu q

(27)
0.0 —,

0
I I

4 6
Adiabaticity

I

10

allows us to rewrite the efFiciency factor in the simplified FIG. 4. Dependence of q on the adiabaticity parameter p.
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~D1 —+T
in Eq. (24) becomes exp ( s "v. , with hnT* given hy

"2 coth 2& & . At zero temperature then, k~T' = "2,
the zero-point energy, leading to a finite transition rate,
consistent with our quantum mechanical intuition. The
expression represents the effect of zero-point Buctuations
of the center effectively carrying the system to the cross-
ing point. This interpretation pervades the literature on
nonradiative transitions, see for example Englman and
Jortner, Ref. 17. However, our expression for the transi-
tion rate W& is also finite in the limit of zero temper-
ature, and thus violates the law of energy conservation.
This problem, which is due to a breakdown of the semi-
classical approximation inherent in the use of the config-
uration coordinate decription, has been widely ignored in
the literature. Unfortunately, a correct treatment incor-
porating a fully quantum mechanical description of the
nuclear tunneling has not been worked out in the strong
electronic coupling regime. Until this problem is solved,
the expressions derived here must be regarded as unreli-
able in the low temperature limit.

2. Tranaition tate through qo: Case II

Having developed expressions for the transition rates
between the excited state D1 and the trap, T, we now
turn to the second type of transition, case II, which char-
acterizes the crossing point qO shown in Fig. 2. We as-
sume in the following that, prior to any crossing phenom-
ena at qO, the deep center is fully relaxed and in ther-
mal equilibrium with the surrounding lattice. Thus we
neglect processes, e.g. , in which an electron is captured
at q1 by the trap and subsequently transitions at cross-
ing point qO before the deep level has cooled —within a
timescale of a few vibrational periods.

Reference to Fig. 3 shows that the situation at qO is
quite distinct from that of case I. Here, we expect that
as the coupling strength increases and the adiabatic limit
is reached, the transition rate prefactor should approach
~/2vr. The reason is that, as the coupling between the
quantum dot and the trap is increased, the configura-
tion coordinate diagrams anticross in such a way that
the crossing probability approaches unity. The transi-
tion rate should, therefore, contain a prefactor which is
simply equal to the attempt frequency —the vibrational
&equency of the defect. This turns out in fact to be the
case. Reasoning analogous to that presented in the last
section leads to the expressions

the adiabaticity factor p defined above as

rIii(p) = 2 dx x ~ e
0 2 —c

(32)

This relation is plotted in Fig. 4. To derive this expres-
sion, note that the total crossing probability in case II is
not P = 2R(1 —R), as in Eq. (14) corresponding to case
I, but rather

P=2 1 —R
2 —R

P = (1 —R) + R[(1—R)R+ (1 —R) R+ (1 —R) R+. ],

which sums to Eq. (33).
As in case I, the transition rate increases as the square

of the electronic matrix element, J, in the limit of weak
interaction. As we expect on physical grounds, the ef-
ficiency factor approaches unity in the adiabatic regime.

As before, these expressions in the high temperature
limit take the thermally activated forms,

EDO —+T

2~ k~T (kg) T » Ru),

(34)

ETmDO

2~ kgT
(It:gT » bc').

(35)

To see this, note that in case II, the electron crosses &om
the first state (e.g. , state T) to the second (e.g. , state
DO), during the first passage through qo with probabil-
ity 1 —R, with no probability of reemission: once in the
second state the system is assumed to thermalize. The
second possibility is that the electron does not cross over
during the first passage (probability R), but does so in
the second (with probability 1 —R), and remains in the
second state during the third passage (probability R).
However, if the electron crosses back again during the
third passage, it remains hung up in a local minimum
in the vicinity of the crossing point qO, so that we must
continue to add up the contributions of higher order pro-
cesses. Continuing in this way, the total probability of a
transition is

2

Wii = —qii(p) exp (3O)

and

cu, (qo —2SRu) 2

Wii ———qii p) exp (31)

for the forward and reverse transition rates between DO
and T, respectively (for details see Refs. 12 and 14). The
eKciency factor for these transitions is given in terms of

E& + and E& are activation energies for emission
&om the quantum dot to the trap, shown graphically
in Fig. 2(b). Again the high temperature rates satisfy
the detailed balance requirement, WP&e~+/W&+&~Do

exp[ & z ], where AEg7p ~ = EDO —Ez'.
To this point in the discussion, we have applied. Sumi's

formalism ' to the description of transitions between
a quantum dot and a deep level, lumping all of the de-
tails of the interaction. into one parameter, the electronic
matrix element, J. We turn, in the next subsection, to a
discussion of this quantity.
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D. Hopping integral

The interaction between the quantum dot and the deep
level is treated here in the tight-binding approximation,
which is appropriate if the density of quantum dots and
deep levels is sufFiciently low. We take the wave function
of the isolated trap to be ~T), given previously in Eq. (3).
Bound levels of the isolated quantum dot are denoted
~D/). Each of the 2l + 1 degenerate states in level l have
coordinate representations, «(p), where the angular
momentum subscript l = 0, 1 identifies the ground and
first excited levels of the quantum dot, respectively. We
take the quantization axis to lie along the line joining the
quantum dot to the deep level (Fig. 1). Note that only
states with m = 0 couple to the trap. The envelope wave
functions may be readily calculated in the effective mass
approximation, see for example Ref. 18. The result for a
spherical quantum dot of radius B is

(PlD~) = «,-(p) = &~;i~(&p) &i (~) (p& &)

(PA) = «,~(p) = &i,~ «(~~p) &P(&) (p) B),

(36)

where wave number k is related to the energy of the
h kstate through E~ ——
2 . and the wave number v out-

side the quantum dot is determined by the usual condi-
tion of continuity of the particle current, namely, that
[1/m*] [dg/dp] be continuous.

It can be readily shown that at crossing points on the
configuration coordinate diagram, the electronic energy
of the trap and the corresponding quantum-dot state are
degenerate. Thus, in the vicinity of the crossing point,
we can write the electronic wave function of the coupled
system as a superposition of the two nearly degenerate
states,

I&) = MIDI) + ~IT). (37)

In this case, the hopping matrix element can be written

~ = (DPI~IT) = (DIIHz IT) + (D~l&wDIT), (»)

J = E~~(DI~z') + (DII&qD(T).

This form is particularly appealing since the trap po-
tential does not appear. The hopping matrix element
only depends on the structure of the quantum dot and
the overlap between the electronic wave functions of the
dot and trap. The latter is determined predominantly

where HT represents the Hamiltonian of the isolated deep
level and Vqo is the potential well comprising the quan-
tum dot. Note that we have assumed orthogonality be-
tween the states corresponding to the isolated quantum
dot and deep level. This assumption is justified for suf-
ficiently large separation. Since at a crossing point the
electronic energy of the deep state and the quantum dot
are degenerate, the last expression further simplifies to

by the decay of the wave functions in the barrier region
separating the quantum dot and the deep level, lending
confidence to our use of the effective mass approxima-
tion in this problem. In the following section, we present
results of an illustrative numerical calculation of the tran-
sition rates between a quantum dot and a deep-level trap
made using the results presented in this section and in
Sec. II C.

III. NUMERICAL CALCULATIONS

We consider the system depicted in Fig. 1 consisting
of a spherical In Gai As quantum dot of radius A em-
bedded in a GaAs matrix, coupled to a deep-level trap
located a distance A from the center of the quantum
dot. Spherical symmetry is assumed for numerical sim-
plicity. In order to maximize the pertinence of the cal-
culation to experiments reported in the literature, ' we
have used In Gai As band structure parameters and
band offsets found for In Gai As quantum wells coher-
ently strained to GaAs, which were reported in Ref. 19.
These parameters, derived for In Gaq As/GaAs quan-
tum wells, therefore, are appropriate to a condition of
uniaxial rather than hydrostatic strain. Strictly speak-
ing, a spherical InGaAs quantum dot would be expected
to be isotropically strained to the surrounding GaAs
material. We have chosen, however, to use the pa-
rameters appropriate for uniaxial strain since in actual
experiments, ' In Gaq As quantum dots formed by the
coherent islanding technique have been found to possess
a plateletlike morphology more adequately described by
a condition of uniaxial strain. To reproduce the energy
of the observed quantum-dot photoluminescence band
[Ru 1.15 eV, (Ref. 6)], we take the dot radius to be
5 nm and assume an indium mole fraction 2; = 0.5.

For this choice of parameters, there are two bound
conduction-band states in the quantum dot —~DO), the
ground state with a calculated binding energy of 192
meV, and ~D1), an excited state with a binding energy of
25 meV. These parameters are reBected in Fig. 2. Since
the binding energy of D1 is less than the longitudinal-
optical phonon energy (36 meV), this state is assumed
to be thermalized. 2 However, LO-phonon scattering be-
tween the ground state of the quantum dot and either
the excited state or continuum states above the barrier
is assumed to be suppressed due to the bottleneck effect.

A. Parameters associated with the deep level

In our model calculation, we chose as a representative
deep center the electron trap M1, which is commonly
observed in n-type GaAs grown by molecular beam epi-
taxy under arsenic stabilized conditions. ' This trap has
thermal activation energy of emission of 0.19 eV and an
emission cross section o 10 cm . Since the cap-
ture barrier associated with this defect has not been mea-
sured, the lattice relaxation energy S~ is not known.
We therefore assume a value S~ = 100 meV, which is
typical for electron traps in GaAs, such as M3 and E3.
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This gives a capture barrier of 20 meV, consistent with
the upper limit of 24 meV estimated in Ref. 10. The
vibrational frequency, ~, associated with the defect is
chosen so that ~ = 10 meV. This choice corresponds
to the transverse-acoustic peak in the phonon density of
states. The electronic energy and the configuration co-
ordinate diagram calculated with these parameters are
depicted in Fig. 2.

B. Transition rates

The results of the tight-binding calculation of the hop-
ping integral J, made using Eq. (39), are plotted in Fig. 5
as a function of the spatial separation between the quan-
tum dot and the deep level. The two curves shown in
Fig. 5 correspond to transitions occurring at crossing
points q1 and q0, which, respectively, describe coupling
between the excited state of the quantum dot and the
trap, D1 —T, and between the trap and the quantum-dot
ground state, DO —T. As expected, the hopping integrals
decrease exponentially with separation at large distances.
However, the figure clearly shows that the tight-binding
approximation breaks down at small distances, particu-
larly for the coupling D1 —T. For separations less than
approximately 10 nm, the hopping integral for D1—T cal-
culated with Eq. (39) becomes comparable to the binding
energy of T and D1, providing a clear indication that the
tight-binding approximation is breaking down. An indi-
cation of the cause is provided by examination of the inset
of Fig. 5, which shows that the overlap integrals (Di~T)
for i = 0, 1 are sizable at small separations, violating
our assumption of orthogonality. However, correction for
the lack of orthogonality would further increase the hop-
ping term. In actuality the most significant error made
here in the calculation of J is the neglect of coupling to
the continuum states lying in energy above the barrier.
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The effect of such coupling is to reduce the magnitude of
the effective hopping term. To account for this quanti-
tatively is rather difFicult. Fortunately, it is unnecessary
to do this to establish qualitative trends, which is the
primary aim in this paper.

The transition rates calculated using Eqs. (24), (25),
(30), and (31) are shown in Fig. 6, at room tempera-
ture, part (a), and at liquid helium temperature, part
(b). The transition rates are plotted as a function of the
separation between the quantum dot and the deep level.
Figure 6(a) shows that at room temperature, the rate
of multiphonon-assisted tunneling of electrons out of the
relaxed trap into the ground state of the quantum dot,
T m DO, exceeds 10 s for separations as large as 15
nm. The reverse rate is not distinguishable from the for-
ward rate in the figure owing to the closeness in energy
of the trap energy ET with E~o. As the separation is
reduced, the tunneling rate approaches 10 s . This
is easily understood by reference to Figs. 3 and 4 and
Eq. (25). As the coupling between the quantum dot and
the trap is increased, the transition becomes increasingly
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FIG. 5. Hopping integral for the transitions DO ++ T and
D1 ++ T plotted versus separation between trap M1 and
quantum dot. The inset shows the overlap integrals (DO~T)
and (Dl ~T) versus separation.

FIG. 6. Scattering rates versus separation between quan-
tum dot and deep level. The calculation is performed for
a 5 nm radius Ino sGas sAs/GaAs quantum dot and the
deep-level trap Ml. (a) Temperature 298 K. Rates shown
are for the transitions D1 ++ T and T ~ DO. Also shown is
the direct capture rate for unbound electrons into the trap.
(b) Temperature = 4.2 K. The direct capture rate and the
rates corresponding to the transition T + D1 do not appear
on the scale of the figure.
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adiabatic. In the adiabatic limit, the configuration co-
ordinate diagrams anticross, Fig. 3, so that the crossing
probability and the efFiciency factor gyp approach unity.
The transition rate thus tends to w/2m, the vibrational
frequency of the deep center, which serves as an attempt
frequency. The transition rate for the process D1 —+ T
is appreciably higher at large separation than that of
T —+ DO. This is expected since in the limit of weak cou-
pling the transition rate depends linearly on the coupling
parameter p, which is larger for the transition Dl ~ T.
However, at small separations, the transition rates for
the processes Dl ~ T behave qualitatively differently
from DO ++ T: the rates for D1 ~ T reach a maximum
as the separation is reduced (coupling is increased) and
subsequently fall off with decreasing separation. This
somewhat counter-intuitive feature is explained by refer-
ence to Figs. 3 and 4. As the coupling is increased, the
anticrossing behavior at q1 is accentuated, causing the re-
duction in the calculated tunneling rate. However, while
the reduction in the transition rate with decreasing sep-
aration in Fig. 6 is qualitotively correct, the quantitative
behavior is not. As discussed in the preceeding para-
graph, the simple tight-binding model used here breaks
down at small separations and causes an overestimate of
the hopping integral. Thus, the curves corresponding to
the transtion D1 —+ and the reverse process quantita-
tively underestimate the transition rates for separations
less than 10 nm. Finally, note that the transition rate
for the process, T ~ D1 is substantially lower than that
of Dl m T, owing to the different activation barriers for
the two processes [see Fig. 2(b)j.

Also shown in Fig. 6(a) is the direct capture rate from
the barrier into the trap, given by Eq. (1), assuming an
electron concentration of 10 cm in the GaAs bar-
rier. The sum of this rate and that of Dl —+ T exceeds
10 s for all separations up to 20 nm. Meanwhile, the
transition rate from the trap to DO exceeds 10 s for
separations less than 12 nm. %le therefore conclude that,
if the situation depicted in Fig. 1 were to be physically re
alized with a defect Ml within 12 nm of an In Gaq As
quantum dot, the relaxation rate into the quantum-dot
ground state from the barrier would exceed 10 s at
room temperature. Thus, no bottleneck effect would be
observed, and the luminescence efticiency of the quantum
dot would not be degraded by slow relaxation. These con-
clusions are qualitatively true even at liquid helium tem-
perature, Fig. 6(b). There, we see that the rate of transi-
tion from the trap into the ground state of the quantum
dot exceeds 10 s for separations out to 10 nm, more
than suKcient to overcome the bottleneck effect. The
rate of capture into the trap drops below 10 s below
8 nm, but this rate is underestimated here due to the
tight-binding approximation used, as described above.

IV. CONCLUS!ONS

Given the interesting result that coupling between a
deep level and a quantum dot can reduce intraband re-

laxation times in the dot to less than 100 ps, an obvious
question emerges concerning the likelihood of this situ-
ation arising in an experiment. The defect M1, which
we chose for the purpose of illustration, is known to oc-
cur in MBE-grown GaAs and is thought to consist of
a defect-impurity complex involving arsenic vacancies.
However, in modern MBE reactors the concentration of
this trap is typically very low, 10 cm . According
to the preceeding discussion, for the defect to provide a
rapid relaxation pathway, it must lie roughly within a
spherical volume of 10 nm radius centered on a quan-
tum dot. The resulting probability of interaction of an
In Gaq As quantum dot embedded in well-grown MBE
GaAs is only of the order 10, which is not encour-
aging. However, this estimate assumes that the con-
centation of traps is as low as in the best MBE-grown
quantum wells, and that the distribution is uniform and
in particular, uncorreLated with the position of the quan-
tum dots. This is unlikely to be the case. It is possible
that quantum-dot fabrication steps lead to the produc-
tion of point defects and migration to the vicinity of the
quantum dot. One such mechanism is migration of na-
tive defects in a strain field. For example, it has been
observed that vacancies and interstitials migrate, respec-
tively, to regions of maximum and minimum compression
in GaAs/Al Gaq As laser diode structures. 2 This phe-
nomenon, together with the fact that strain gradients
certainly exist in In Gaq As/GaAs quantum dots pro-
duced by the coherent islanding technique is highly
suggestive. Indeed, recent time-resolved measurements of
photoluminescence in these samples failed to reveal a sig-
nificant bottleneck effect, " in contradiction with theoret-
ical expectations for an ideal quantum dot. The lack
of a significant bottleneck effect is consistent with the
phenomena described here pertaining to quantum dots
coupled to deep levels. Experiments to characterize the
distribution of electron traps would thus be highly inter-
esting. Finally, the physical process described here is not
specific to the defect Ml —it is conceivable that trap-
forming impurities could be used to intentionally dope a
quantum-dot sample, so as to provide energy-relaxation
channels.

ACKNOW'LEDG MENTS

I thank Howard Carmichael, Roger Haydock, and
Michael Raymer for stimulating discussions regarding
various aspects of this project. I am grateful to Michael
Raymer for alerting me to the energy conservation prob-
lem discussed in Sec. IIC. I thank David GriKths and
Darrell Schroeter for critical reading of the mansuscript.
This material is based upon work supported by the
National Science Foundation under Grant No. DMR
9304537. Support by the Oregon Joint Centers for Grad-
uate Schools in Engineering is gratefully acknowledged.



51 MULTIPHONON-ASSISTED TUNNELING THROUGH DEEP. . . 14 541

U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947
(1990).
H. Benisty, C.M. Sotomayor- Torres, and C. Weisbuch,
Phys. Rev. B 44, 10 945 (1991).
T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).
Janet L. Pan, Phys. Rev. B 49, 2536 (1994).
Janet L. Pan and Peter L. Hagelstein, Phys. Rev. B 49,
2554 (1994).
D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Den-
baars, and P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).
G. Wang, S. Fafard, D. Leonard, J.E. Bowers, J.L. Merz,
and P.M. Petroff, Appl. Phys. Lett. 64, 2815 (1994).
J.-Y. Marzin, J.-M. Gerard, A. Izrael, D. Barrier, and G.
Bastard, Phys. Rev. Lett. 73, 716 (1994).
D.V. Lang, A.Y. Cho, A.C. Gossard, M. Ilegems, and W.
Weigman, J. Appl. Phys. 47, 2558 (1976).
P. Blood and J.J. Harris, J. Appl. Phys. 56, 993 (1984).
C.H. Henry and D.V. Lang, Phys. Rev. B 15, 989 (1977).
Hitoshi Sumi, J. Phys. Soc. Jpn. 49, 1701 (1980).

Hitoshi Sumi, Phys. Rev. Lett. 47, 1333 (1981).
Hitoshi Sumi, J. Phys. Soc. Jpn. 51, 1745 (1982).
L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Per-
magon Press, Oxford, 1977).
C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Me-
chanics (Wiley, Neer York, 1977).
Robert Englxnan and Joshua Jortner, Mol. Phys. 18, 145
(1970).
Peter C. Sercel and Kerry J. Vahala, Phys. Rev. B 42, 3690
(1990).
X. Marie, J. Barrau, B. Brousseau, Th. Amand, M.
Brousseau, E.V.K. Rao, and F. Alexandre, J. Appl. Phys. ,
69, 812 (1991).
J.S. Blakemore, J. Appl. Phys. 53, R123 (1982).
B. Wakefield and M.J. Robertson, in Microscopy of Semi-
conducting Materials, 1981, edited by A.G. Cullis and D.C.
Joy, IOP Conf. Proc. No. 60 (Institute of Physics, London,
1981), p. 447.


