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We present the results of a systematic study of the reconstruction of the Si(100) surface based
upon total energies calculated within the framework of the local density approximation. We focus on
the extent to which total energy differences may be calculated reliably by examining these differences
for the ideal surface and four proposed reconstructions: p(2 x 1) symmetric, p(2 x 1) asymmetric,
p(2 x 2), and c(4 x 2). The calculations were performed using norm-conserving pseudopotentials
and a plane-wave basis. The convergence of the total energy differences was assessed by varying
the energy cutoff used to truncate the plane-wave basis and the number of sampling points used to
perform Brillouin zone (BZ) integrals over a large range. The effect of optimizing atomic geometries
as a function of the energy cutoff and density of BZ sampling points was determined. With the
exception of the p(2 x 2) and c(4 x 2) reconstructions, whose energies only difFer by 3 meV per
dimer, we are able to unambiguously determine the energy ordering of the 6ve systems studied.
Disagreements between previous calculations can be largely understood in terms of the different
energy cutoffs and BZ samplings used. The electronic structures of the different reconstructions are
calculated and compared.

I. INTRODUCTION

In recent work we have addressed the adsorption and
subsequent migration of single adatoms on the clean
Si(100) surface as well as the energetics of pairs of
adatoms on the same surface. These studies were
based on first-principles calculations of total energies
where norm-conserving pseudopotentials were used to
represent the interaction of the valence electrons with
the ion cores and the wave functions were expanded in
plane waves. In such calculations it is rarely possible to
obtain absolute values of the energy accurately and the
usefulness of the total energy approach depends on there
being a systematic cancellation of errors for energies cal-
culated for similar systems so that total energy dier
ence8 can be determined reliably. The starting point for
our adsorption studies was the reconstruction of the ideal
surface, which had been investigated extensively both
experimentally and theoretically. In spite of all this
attention, there was no consensus in the literature as to
the nature of the lowest energy reconstruction. A num-
ber of difFerent proposed reconstructions for the Si(100)
(shown schematically in Fig. 1) lead to relatively small
surface unit cells and. have atomic con6gurations which
are closely related; this should have made the theoreti-
cal determination of the corresponding energy difFerences
straightforward. The lack of agreement between difFerent
calculations, however, led us to conclude that the system-
atic cancellation of errors was not as systematic as had
been widely assumed. In order to determine to what
extent total energy difFerences could be calculated using
the standard machinery of the local-density approxima-
tion (LDA), norm-conserving pseudopotentials, repeated
slabs, and plane-wave bases, we performed a systematic
study of a number of these reconstructions [ideal, p(2 x 1)
symmetric, p(2 x 1) asymmetric, and p(2 x 2)]. The

p(2 x 2) symmetry reconstruction was found to have the
lowest energy and formed the basis for our studies of ad-
sorption. Since then, we have extended this unpublished
work to include reconstructions with c(4 x 2) symmetry
and in the following we will present the results of this
extensive study of the inHuence of a number of difFerent
factors on the energy

differences

between the four differ-
ent reconstructions shown in Fig. 1. Particular attention
will be devoted to the inHuence of the number of plane
waves used in the expansion of the wave functions and to
the number of sampling points used in integrals over the
Brillouin zone (BZ). Frequently, geometries are optimized
using a limited basis set and BZ sampling. Improved en-
ergies are then calculated by increasing the size of the ba-
sis set and/or the number of sampling points but without
reoptimizing the geometry. The assumption is made that
total energy difFerences would not change much if the ge-
ometries were relaxed. Sometimes a f'rozen-potential or
"force-theorem" approach is used so as to avoid reopti-
mizing the charge density. We examine the validity of a
number of such approximations.

Silicon surfaces have been studied in great detail over
the past three decades with a large variety of experimen-
tal techniques. The (100) surface has received particular
attention, partly because most silicon devices are formed
on this surface and partly because its reconstructions are
simple compared to those of other surfaces. Much of the
interest has focused on understanding such basic prop-
erties of the clean surface as how growth occurs, how
foreign atoms are adsorbed, etc. Our own interest in
the Si(100) stems from growth studies performed using
scanning tunneling microscopy both in our own and in
other laboratories.

In a low energy electron diffraction (LEED) experi-
ment in 1959, Schlier and Farnsworth observed a (2 x 1)
periodicity on the Si(100) surface. They argued that
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FIG. 2. A schematic illustration of the order of magnitude
of energy differences between different reconstructions of the
Si(100). On the right-hand side we summarize the results of
a number of calculations of the corresponding total energy
difFerences.

FIG. 1. Top view of the unreconstructed (ideal) surface
and the four reconstructions to be considered in this study.
Smaller and darker circles represent deeper atoms. Thus the
small black circles are second layer atoms and the larger grey
and white circles are surface atoms. In the buckled dimer
reconstructions the large white circles protrude further out of
the surface than the grey circles. The dashed lines and shaded
areas show the surface unit cells used in our calculations.

this was caused by surface atoms moving together in
pairs to form dimers. The formation of surface dimers
would remove one of the two dangling bonds per sur-
face atom without necessarily changing any bond lengths
by more than a few percent. Dimerization as the ba-
sic reconstruction has been used in interpreting LEED,
photoemission, ion channeling, optical absorption,
electron energy loss, and core-level spectroscopy ex-
periments. Dimers have been observed directly by scan-
ning tunneling microscopy (STM). s2 This basic recon-
struction lowers ' ' ' ' the energy of the surface by
approximately 2 eV per dimer; see Fig. 2.

One of the erst calculations for the dimerized surface
was that of Appelbaum et al. In their model, the dimer
bond length was slightly shorter than the bulk bond
length. They also showed that the dimerization is ac-
companied by significant subsurface distortion extending
4—5 layers into the bulk. Their model predicts a metal-
lic surface, whereas experimentally the surface is semi-
conducting. Chadi then proposed an asymmetric dimer
model, where the dimers buckle out of the plane of the
surface. On the basis of an empirical tight-binding cal-
culation, he predicted that such a surface reconstruction
should be semiconducting. Support for dimer buckling
came &om ion scattering measurements, ' graz-

ing incidence x-ray difFraction, transmission electron
diffraction, and from STM experiments. ' After a
period of uncertainty where different theoretical calcu-
lations supported both symmetric ' and asymmetric
dimers, all recent total energy calculations ' in-
dicate that buckled dimers are more favorable than sym-
metric ones by typically 0.1 eV per dimer.

Further complications in the understanding of the
surface structure came with the discovery of p(2 x 2)
(observed by STM s2) and c(4 x 2) [evidenced by
LEED and angle-resolved ultraviolet photoemission
spectroscopy (ARUPS) at low temperaturesj surface
periodicities. Since the dimer buckling can have two
orientations, these reconstructions can be explained in
terms of different arrangements of alternately buckled
dimers. Distinguishing between p(2 x 1) asymmetric
buckled dimers and alternately buckled dimers requires
going down yet another order of magnitude on the en-
ergy scale (Fig. 2). Roberts and Needs~4 calculated the
energy difference between the p(2 x 2) and the p(2 x 1)a
(asymmetric) reconstruction to be 0.03 eV per dimer, fa-
voring the p(2 x 2). Inoue et al.2o found this difference
to be 0.09 eV per dimer.

The smallest energy difference of all is that between
the p(2 x 2) and the c(4 x 2) reconstructions. This was
also calculated by Inoue et a/. , who reported an energy
difference of about 1 meV favoring the c(4 x 2).

The spread in results shown in Fig. 2 is very consider-
able. One of the main issues that we want to address is
the origin of the discrepancies between different calcula-
tions and to indicate globally what needs to be done in
order to calculate various energy differences with some
degree of reliability. %'e will conclude that the present
state of the art is not capable of resolving energy differ-
ences of the order of 1 meV/surface atom and that it is
not possible to resolve the energy difFerence between the
p(2 x 2) and the c(4 x 2) without improving the accuracy
of the best calculations carried out so far by about an
order of magnitude. We identify a number of aspects of
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the calculations which will have to be improved before
it can be decided what the local-density approximation
yields for the ground state of the Si(100) surface.

The paper is organized as follows. In Sec. II we de-
scribe briefly the methods used in our calculation. A
detailed investigation of the accuracy of the calculations
is performed in Sec. III. Our results are presented and
discussed in Sec. IV. In Sec. V we discuss a number of
ways in which the calculations could be extended and
some conclusions are drawn in Sec. VI.
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II. DESCRIPTION OF THE METHOD

The framework for our calculations is the density-
functional theory with the local-density approxima-
tion ' for the exchange and correlation. In all of the
calculations which will be discussed below, the results
of Ceperley and Alder, as parametrized by Perdew
and Zunger, are used. The interaction of the va-
lence electrons with the nucleus and the core electrons
is treated by using norm-conserving pseudopotentials
with Kleinman-Bylander nonlocality including 8 and p
terms. In order to assess the behavior of this pseudopo-
tential we have calculated a number of bulk properties,
the results of which are discussed in the Appendix. To
relax the electronic degrees of freedom, a conjugate gradi-
ent minimization of the energy functional is used. The
ionic degrees of &eedom are relaxed with a similar al-
gorithm and, as in the Car-Parrinello scheme, ions and
electrons are treated simultaneously. A supercell contain-
ing a slab of silicon 12 layers thick and the equivalent of
six atomic layers of vacuum (= 9.5 A. ) is used to represent
the surface region. The five outermost layers on each side
of the slab are allowed to relax, while the atoms of the
two central layers are kept in their bulk positions. We
make use of inversion symmetry about the center of the
slab, keeping the two surfaces identical and thus avoid-
ing instabilities such as charge transfer from one surface
to the other. The experimental bulk lattice constant of
5.43 A is used throughout. Our calculated bulk lattice
constant of 5.37 A is only very slightly smaller. In cases
where the discrepancy between theory and experiment is
larger, there is no consensus as to whether it is better to
use the theoretical or the experimental lattice constant
and both choices are found in the literature. Wave func-
tions are expanded in a basis set comprising plane waves
with kinetic energy up to a certain cutofF. Eventually
we will choose a cutofF of 16 Ry to carry out all geome-
try optimizations but the results of tests using cuto8's as
large as 24 Ry will be presented. An important result of
our calculations is that all the dimer reconstructions are
found to have a mirror plane containing the dimer bonds
(the zz plane in Fig. 1). With time reversal symmetry,
the irreducible part of the Brillouin zone then becomes
1/4 of the full BZ. In order to study how calculated en-
ergies converge as the number of points used to evaluate
BZ integrals is increased, we will use a wide range of BZ
sampling densities. It is advantageous if the sampling
grid can be made finer by adding new k points while
keeping the old ones from the coarser grid. This is possi-

0

FIG. 3. A quarter part of the p(2 x 2) Brillouin zone show-
ing the k points used in the various grids. The coarsest grid
contains only the point marked with a circle. To double the
density, the point marked with an open square is added. An-
other doubling is achieved by also including the points marked
by x's, and so on. The numbers of k points refer to the full
p(2 x 2) zone.

ble if we use the sets of points shown in Fig. 3 rather than
following the more common procedure of Monkhorst and
Pack."

III. CONVERGENCE TESTS

As mentioned in the Introduction, numerous calcu-
lations have been carried out for the Si(100) surface.
The spread in the reported results is very large; see
Fig. 2. All of the calculations referred to in the figure
are first-principles calculations that contain no parame-
ters. Furthermore, they are all density-functional calcu-
lations based on norm-conserving pseudopotentials and
plane-wave basis sets. The discrepancies must then be
accounted for either by a difFerence such as in the choice
of exchange-correlation potential or by one or more of the
restrictions which must be imposed in order to limit the
size of the calculations. Factors that will afFect the results
include the basis set cutofF energy, the number of k points
used in the Brillouin zone summation, the slab thickness,
the number of layers in the slab that are allowed to relax,
the vacuum spacing, and the pseudopotentials. In princi-
ple, one could simply use a very high kinetic energy cutofF
together with a large number of k points in the Brillouin
zone, a very thick slab, and a large separation between
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neighboring slabs, etc. In practice, this is of course not
possible and the usual procedure is to optimize the geom-
etry with some plane-wave cutoff, BZ sampling, number
of layers in the slab, etc. , and to check these parameters
in a manner which is more often than not dictated by the
amount of computer time and storage available. The cut-
offs and k point samplings used for the optimization of
the ionic and electronic degrees of freedom are &equently
different. The choice of norm-conserving pseudopotential
and the form of the exchange and correlation potential
will also influence the results. None of the commonly
used exchange-correlation potentials gives systematically
better agreement with experiment.

The two factors which vary most in earlier plane-wave
pseudopotential calculations and which are most likely to
be responsible for the discrepancies between them are the
cutoff energy and the number of k points used in the BZ
sampling. In the present section we will pay particular
attention to finding out how energy differences depend
on these two factors. In Sec. IIIA we will perform cal-
culations where only the cutoff energy is varied and the
k point sampling is kept fixed. This will show how the
energy difFerences converge with increasing cutoff. The
same procedure will be applied to the k point sampling
in Sec. IIIB. In Sec. IIIC we address the question of
whether the convergence with respect to k point sam-
pling and cutofF energy can be treated independently. In
Sec. III D we will briefly mention the effect on total en-
ergy differences of varying a number of other parameters
such as the slab thickness, vacuum spacing, etc.

The surfaces which we will study are the ideal p(l x 1)
surface and the p(2 x 1)s, p(2 x l)a, p(2 x 2), and c(4 x 2)
reconstructions (see Fig. 1). The starting point for the
convergence tests to be described are atomic configura-
tions which were obtained by optimizing a geometry for
each reconstruction with a kinetic energy cutoff of 16 Ry
and a sampling density of four k points in the full p(2 x 2)
Brillouin zone. In all energy minimizations, we iterated
the conjugate gradient algorithms until the total energy
had converged to within 0.1 meV per dimer and the forces
were as small as 2 meV/A. .

A. Plane-wave basis cutofF energy

The convergence of total energy difFerences is expected
to be better than the convergence of the individual en-
ergies. Owing to the variational principle, any kind of
optimization of the wave functions will lower the elec-
tronic energies and any geometry optimization will also,
by definition, lower the total energy. Thus in calculat-
ing relative energies there will be a cancellation which is
expected. to be more complete if the two systems being
compared are more similar. The cancellation will be par-
ticularly large when the optimization is an increase in the
cutoff energy used to select the plane waves in the basis.
This is because increasing the cutofF means adding plane
waves with higher kinetic energies and shorter wave-
lengths. Thus increasing the cutoff leads to an increased
sampling density in real space and thus to an improved
description of the short length-scale features of the wave

functions which are most important in the core regions.
Since bonding characteristics are independent of the wave
functions close to the core, improving these will lower the
total energy by the same amount for all geometries.

In this section we will examine the effect that the choice
of basis set cutoff energy has on total energies and energy
differences. This cutoff is a factor which varies a great
deal from one publication to the next, and there is an
obvious trend towards higher cutoffs as more computer
power and storage becomes available. Our final results
will be calculated with a cutofF of 16 Ry, which is, to
the best of our knowledge, the highest cutofF used for the
Si(100) surface so far. We will show that this is still not
high enough to resolve energy differences of a few meV;
for this an energy cutoff in excess of 24 Ry would be
required. (The precise choice depends on the pseudopo-
tential used. ) Geometries are frequently optimized with
a relatively low cutoff energy, under the assumption that
further changes in geometry resulting from an increased
cutoff will translate into much smaller energy differences
when two similar configurations are compared. 'We will
examine the validity of this assumption explicitly by first
looking at the convergence as a function of cutofF energy
keeping the ionic positions fixed in Sec. III A 1. Then, in
Sec. III A 2, the geometry will be optimized as a function
of the cutoff energy and the resulting energy differences
compared.

Er asen yeovnetri ea

We calculate the total energy for the reconstructions
sketched in Fig. 1 using values of the cutofF energy rang-
ing from 8 to 24 Ry. These calculations are carried out
with the geometries which were obtained by energy min-
imization using a 16 Ry cutoff and four k points. It
should be noted that some of the energies will change
substantially when the number of k points is increased
and the results to be presented here only represent an
intermediate step.

The total energy is shown as a function of the cut-
off energy in Fig. 4 for the p(2 x 1) symmetric and the
p(2 x 1) asymmetric reconstructions. We see that using a
24 Ry cutofF is only good enough to achieve an accuracy
of about 0.5 eV. The energy difference shown in Fig. 5
is seen to converge much better and is within 70 meV of
the converged value when a cutoff of 8 Ry is used. This is
more than two orders of magnitude better than the con-
vergence of the absolute energies. The same is true for a
cutoff of 24 Ry where the convergence of the energy dif-
ference is 1 meV. The cutoff dependence of the other
energy differences shown in Fig. 2 are shown in Figs.
6—8. Because the p(2 x 1) symmetric dimer reconstruction
is frequently used as a reference, we also show explicitly
the energy difFerence between it and the p(2 x 2) recon-
struction in Fig. 9. The squares joined by solid lines in
Figs. 5—9 show the convergence of the energy differences
calculated using frozen geometries.

A number of observations can be made about the fig-
ures. First, Fig. 4 and Figs. 5—9 make explicit the sys-
tematic cancellation of errors. Between 8 and 24 Ry, the
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terested in seeing how the energy difFerence converges as a
function of the cutofF energy. We therefore omit an absolute
energy scale on the y axis. The separation between two large
tick marks corresponds to 10 mev.

total energies change by almost 10 eV; the energy differ-
ences on the other hand, change by at most 100 meV.
Thus the systematic cancellation of errors amounts to an
improvement in the calculation of energy differences by
roughly a factor of 100. Second, to obtain convergence
of an energy difference to within 1 meV, a cutoff of 24
Ry or higher is needed. This would require a very sub-
stantial computational effort if the number of k points
which is needed for 1 meV accuracy were also used. We
will return to this point later. While a cutoff of 12 Ry is
suKcient to converge the energy difference between the
p(2 x 1)s and the p(2 x 1)a to better than 10 meV (see
Fig. 5) this is clearly seen not to be true in general (see
Figs. 6, 7, and 9). To achieve a convergence of 10 meV
per dimer for energy differences, a cutoff of at least 16
Ry seems to be required. Third, we see that whereas the
total energy must decrease monotonically as the cutoff is
increased because of the variational principle, this does
not apply to total energy differences which can display
an oscillatory behavior. The results show that because
of the oscillatory behavior, calculations with a substan-
tially lower cutoff can result in energy differences very
close to the converged values. Unfortunately this must
be regarded as being purely accidental and there is no
way of knowing beforehand whether or not it will occur.

O'. Relaxed geometries

All the above results were calculated using Axed ge-
ometries, obtained Rom a 16 Ry calculation. Optimizing
the geometries at each cutoff will lower the energies and
when energy differences are calculated, there will again
be a partial cancellation. To investigate this effect, we
optimized geometries for cutoffs of 8, 12, 16, and 20 Ry
for the p(2 x 1)s, p(2 x l)a, and p(2 x 2) reconstruc-
tions. The results of these calculations are shown as
x s in Figs. 5—9. By construction the crosses coincide
with the solid curve at 16 Ry. We see that qualitatively,
the convergence shows the same characteristics with or
without geometry optimization. Compared to the cal-
culations with frozen geometries, there is no systematic
variation; the crosses lie above the solid line for one cutoff
and below it for another. There is also no indication that
the correction to the energy differences on relaxing the
geometries decreases rapidly with increasing cutoff. The
deviations of the crosses from the solid curve at 12 Ry
and 20 Ry have opposite signs but the same magnitude.
The magnitude of the change is about 5 meV and this is
the measure we will use of the error incurred by keeping
the geometries fixed.

-0 18 I I i I I I I I

8 10 12 14 16 18 20 22 24
Cutoff Energy (Ry)

FIG. 9. Convergence of E„~qX2~
—E„~z„z~,. Squares joined

by the solid line are the results of calculations performed with
fixed (16 Ry) geometries; the x's represent calculations with
optimized geometries. All calculations were carried out with a
sampling density of four k points in the full p(2 x 2) Brillouin
zone.

B. Brillouin zone sampling

The sampling densities used in previous ab initio cal-
culations for the Si(100) surface vary from a few to 64
k points in the (2 x 2) BZ. We now present the results
of calculations with samplings in this range. This will
give us an idea of how large a part of the discrepancies
between earlier published calculations is due to the dif-
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ferences in the k point samplings. For every given k
point sampling, the energy should be reoptimized by re-
laxing the charge density and the geometry. This proce-
dure has the disadvantage of masking the difFerent effects
of geometry optimization and charge density optimiza-
tion. To separate out the difFerent efFects, we will begin
by performing calculations using a variety of difFerent
k point samplings, keeping the charge density and the
ionic positions fixed. This will show how energy difFer-
ences converge with increasing sampling densities. After
this we will study the efFect of optimizing the charge den-
sity when the k point sampling is increased and exam-
ine the extent to which frozen-potential or force-theorem

type approximations can be used. Lastly, we will ex-
amine the importance of reoptimizing the geometry for
diferent BZ samplings.
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FIG. 10. Convergence of the energy of the p(2 x 1)a,
p(2 x 2), and the c(4 x 2) relative to the p(2 x 1)s as a func-
tion of the number of k points. A cutoK of 16 Ry is used.
The same k points are used for the c(4 x 2) as for the other
reconstructions so that the energy differences involving this
reconstruction are signi6cant.

where c,.g is the Kohn-Sham eigenvalue in the ith band
at the point k in reciprocal space, E~ is the Hartree en-
ergy, E, is the exchange-correlation energy, V, is the
exchange-correlation potential, and EII is the ion-ion in-
teraction energy. The total energy is thus a functional of
the charge density p(r ) and the set of ionic coordinates
(Rl}. In general, the p and (R,l} which minimize the
energy functional will depend on the k point sampling.
In this section we are interested in the efFect of the k
point sampling on the total energy when the charge den-
sity and the ionic coordinates are kept axed. In this case
the expression for the total energy reduces to

Z[p', (R', }] = ) s,„+const, (2)

where p and (Rl}might have been obtained from some
self-consistent calculation employing a coarser k point
sampling. Thus, for the moment we neglect all self-
consistency cycling and simply use the potential defined
by some po and (Rl} to generate eigenvalues at new k
points. The efFect of letting the charge density relax will
be studied in the next section.

We now take the p and (Rl} from our 16 Ry, 4 k-
point self-consistent calculations and using the expression
(2) to calculate the energy, double the k point sampling
three times, reaching a final sampling of 32 k points in
the full (2 x 2) Briilouin zone. Figure 1G shows the con-
vergence of the energies of the p(2 x l)a, p(2 x 2), and
c(4 x 2) relative to the energy of the p(2 x 1)s as a function
of the number of k points. We see that with 32 k points
the energy difference between the p(2 x l)a and p(2 x 1)s
reconstructions seems to be converged to within 2—3 meV

per dimer, whereas for the p(2 x 2) and the c(4 x 2) the
convergence is no better than about 5—10 meV per dimer.
It seems, however, that the energy of the p(2 x 2) rela-
tive to that of the c(4 x 2) has converged to a higher
level of accuracy. Since this energy difference is of par-
ticular interest and is so small, we perform yet another
doubling of the sampling for these two reconstructions.
The resulting energy difference is shown in Fig. 11 for
samplings ranging from 4 to 64 k points in the (2 x 2)
BZ. We see that meV convergence is Anally reached af-
ter the last doubling of the sampling. If anything, the
energy difFerence is increasing, which indicates that in-
creasing the sampling further will only make the c(4 x 2)
more favorable.

The difFerences of sums of single-particle eigenvalues
shown in Figs. 10 and 11 will not converge to the fully
self-consistent energies, but difFer from those by the er-
ror introduced by keeping the potential frozen. Nonethe-
less, we expect the rate of convergence to be essentially
the same as that of a fully self-consistent calculation. In
other words, the error made in a self-consistent calcula-
tion using a given sampling will be of approximately the
same size as that found in Figs. 10 and 11.

2. Charge density optimization

To examine the convergence of energy differences as the
k-point sampling was increased, we used the expression
in Eq. (1), but with a fixed charge density obtained using
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FIG. 11. Convergence of E„~2xq~—E~(4x2) as a function of
the number of k points. The same k points are used for both
reconstructions. The energy cutofF used is 16 Ry.

four k points. In this section we examine the effects of
optimizing the charge density as the k point sampling is
increased.

If a charge density obtained from a coarse sampling
of reciprocal space is used to calculate the energy corre-
sponding to a finer sampling (by sampling only the P s,k
term on a finer mesh), an error hp = p —po is intro-
duced in the charge density, where p and p are the self-
consistent charge densities corresponding to the coarse
and fine samplings, respectively. Harris has shown that
the energy expression (1) only contains errors of order
(4)'.

To And the actual size of the errors, we compare energy
changes estimated using Eq. (2) to self-consistent results.
When the sampling grid is made Gner the total energy
changes and, in the frozen-potential approximation, this
change is given according to Eq. (2) by

where primed and unprimed sums run over the k points
of the fine and coarse grids, respectively. Both sums are
generated using the self-consistent charge density of the
coarse grid (p ). AE caii be added to the self-consistent
total energy of the coarse grid to approximate the total
energy upon increasing the density of sampling points.
Table I shows LE along with the errors made &om using
the approximation (3) to the total energy, as compared
with the fully self-consistent energy. We see that, apart
&om the results based on the 1 k-point Hamiltonian, the
self-consistency effect is less than 15 meV/dimer. Fur-
thermore, it is always negative; thus when calculating
relative energies we will again And a cancellation. This
was also noted by Robertson and Payne, and proven by
Zaremba under certain mild conditions. Such a cancel-
lation will, of course, be most useful if the errors not only
have the same sign, but are also close in absolute value.
If we look at the bottom row of Table I, which contains
the most relevant information, we see that if we neglect
self-consistency on going from 4 to 8 point sampling, we
make an error of at most a few meV per dimer in the
absolute energy and of the order of 1 meV per dimer in
energy differences.

Table I also shows that the changes in the energy come
in "steps"; increasing the sampling from one to two k
points results in a large change of energy, while increas-
ing from two to four k points results in a small change.
The next doubling in sampling Rom four to eight k points
results in a somewhat larger energy change. This steplike
convergence can be seen more clearly in Fig. 12, which
shows the convergence of the sum of single particle eigen-
values as the k-point sampling is increased from 1 to 64
sampling points for the p(2 x 2) reconstruction. This
behavior can be understood in terms of the dispersion
of the surface bands (see Sec. IVD). The dispersion is
large in directions parallel to the dimer rows (the l J'
direction in Fig. 3) and small in directions perpendicular
to that. The projection of the sampling grid onto the I'J'
direction is only changed when the number of k points is

TABLE I. The efFect of self-consistency on total energies when the BZ sampling is changed.
Results for three different reconstructions are given in columns 2—7. The 6rst column shows the
change in k-point sampling. The change in total energy, AE, resulting from this change in sampling,
as estimated using the frozen-potential approximation of Eq. (3), is given in columns 2, 4, and 6.
The error in this estimate, "Error, " is given in columns 3, 5, and 7 and is the difFerence between the
total energies calculated self-consistently for two difFerent samplings and using the frozen-potential
approximation. All energies are given in eVidimer. The calculations are performed with an 8 Ry
cutofF.

Change in sampling
1 ~ 2 k points
1 —+ 4 k points
2 ~ 4 k points
2 —+ 8 k points
4 —+ 8 k points

p(2 x l)s
AE Error
-3.4230 -0.0795
-3.4126 -0.0538
-0.0249 -0.0096
-0.2915 -0.0132
-0.2669 -0.0038

Reconstruction
p(2 x 1)a

AE Error
-3.4739 -0.0523
-3.5054 -0.0558
-0.0291 -0.0011
-0.2521 -0.0049
-0.2174 -0.0033

p(2 x 2)
AE'
-3.4665
-3.5079
-0.0365
-0.3430
-0.3051

Error
-0.0387
-0.0449
-0.0014
-0.0054
-0.0027
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AE Error
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it was shown that a much denser sampling is needed in
order to reduce the error bar arising from the finite sam-
pling of the BZ to an acceptable level. We therefore need
to check whether our conclusions concerning the cutoff
(Sec. III A) also hold for other samplings.

To 6nd out how the convergence as a function of cutoff
depends on the k-point sampling, we took the geometries
corresponding to the crosses in Figs. 5 and 9 and, with-
out allowing for any further relaxation, recalculated the
energies (self-consistently) using only two k points in the
(2 x 2) BZ. The results are shown in Figs. 14 and 15
as squares. The values shown as crosses correspond to
the crosses in Figs. 5 and 9. We see that the qualitative
behavior of the convergence does not change when the
number of k points is doubled. The deviation from a
rigid shift becomes sxnaller as the cutoff is increased and
for cutoffs of 16 and 20 Ry it is approximately 3 meV
or less. It thus appears that, for suKciently high cutoffs,
the quantitative convergence behavior is unchanged by
an increase in sampling. This allows us to take the re-
sults from Sec. III 8 1, which were obtained with a dense
sampling and a cutoff of 16 Ry, and apply a correction
for a higher cutoff to them. Performing such a correc-
tion will introduce an error no greater than 3 meV in the
relative energies.

D. Other factors

In order to calculate energy differences on a meV per
dimer scale the inQuence of the thickness of the repeated
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slab and of the vacuum spacing should be checked. In our
studies of adsorption we looked at the effect of changing
the thickness of the vacuum region from 9.5 A (equiva-
lent to six atomic layers) to 13 A. This led to changes
in energy differences of only a few meV. The binding of
the adatom to the surface should be more sensitive to the
separation between the slabs than the surface reconstruc-
tions since the adatom sticks out from the surface and is
closer to the opposite slab. We thus expect 1 meV per
dimer to be an upper limit on the sensitivity of energy
differences between different reconstructions to increas-
ing the vacuum thickness.

We have not made a detailed estimate of the effect of
increasing the number of atomic layers in the slab. Our
slab thickness of 12 layers is already larger than in most
of the recent calculations and we do not expect this to
play an important role. Nevertheless, this is clearly a
test which should be carried out if one is primarily inter-
ested in the energy difference between the p(2 x 2) and
the c(4 x 2). We will see in the next section that the error
bars imposed by our maximum BZ sampling and plane-
wave cutoff are so large that we will be unable to make
a definitive statement as to which of these reconstruc-
tions is lowest in energy. All the other energy differences
are sufBciently large that the uncertainty arising from
the slab thickness is unlikely to change the results to be
presented below.

The choice of exchange-correlation potential may well
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be important on a meV energy scale. For iron, the en-
ergy difference between the bcc and fcc structures varies
by as much as 25 meV per Fe atom if different poten-
tials are used. The effect may be much smaller for non-
transition-metal elements such as Si but we have not car-
ried out any systematic investigation. However, if the re-
sults should depend on the choice of exchange-correlation
potential, there is no strong preference for one potential
over another since no one potential consistently outper-
forms the others when tested for a range of materials and
properties.

p(lx1) ideal

p(2xl) sym

p(2xl) asym

1.8 + .1 eV/dimer

0.12+ .01 eV/dimer

IV. RESUXTS
(2x2)

0.048+ .018 eV/dimer

We can now collect the results presented above to ob-
tain our best estimates of the energy differences between
the different reconstructions. We also combine the dif-
ferent error bars we have discussed to determine whether
or not the calculated energy differences are significant.
These results are given in Sec. IV A and compared to the
results of other calculations in Sec. IV B. Structural data
is given in Sec. IV C and band structures are presented
and discussed in Sec. IV D.

0.003 + .013 eV/dimer

c(4x2)

FIG. 16. Schematic illustration of the relative energies and
error bars found in our calculations. The error bars are worst
case values.

A. Energy difFerences

To obtain our final estimate of the energy differences
shown in Fig. 2, we start with the 16 Ry, 32 k-point re-
sults obtained using the &ozen-potential approximation
which are shown in Fig. 10. For the p(2 x 2) —c(4 x 2) en-
ergy difference we use the 16 Ry, 64 k-point results shown
in Fig. 11. We then estimate the change in these energy
differences when the cutoff is increased from 16 Ry to
24 Ry using the results given in Figs. 5—9. The resulting
values form our best estimate of the energy difFerences.
They contain errors resulting &om using:

a finite sampling (evaluated in Sec. IIIB 1);
a finite cutofF of 20 or 24 Ry (Sec. III A);
a geometry optimized with a lower, 16 Ry cutoff;
the frozen potential approximation;
and the "cutoff correction" (Sec. III C).
Following the discussion in Secs. III A 2 and III B 3, we

will take the error bar resulting from not optimizing the
geometry with the largest possible cutoff and number of
k points to be 5 meV. The error bar resulting &om us-

ing the frozen potential is taken to be 2 meV following
the discussion in Sec. III B2. The cutoff correction con-
tribution to the error bar will be taken to be 3 meV as
discussed in Sec. III C. In addition, there are errors com-
ing &om the factors mentioned in Sec. III D which we will
neglect, assuming them to be of order 1 meV. Our final
results are summarized in Fig. 16. It should be noted
that the error bars indicated are worst case errors, where
we have taken the arithmetic sum of the contributions to
the error listed above.

The largest energy is the dimerization energy, the en-
ergy difFerence between the ideal surface and the p(2 x 1)s,
1.8 + O. l eV. Because it is so large, we have not taken
the trouble to reduce the error bar below G.l eV, which
is an order of magnitude larger than the other error bars
in the figure. The energy difference of 1.8 eV was cal-

culated using only four k points and a cutoff of 20 Ry
(see Fig. 6). The error bar of 0.1 eV is determined by
the small number of k points used and we expect it to be
an upper limit if we look at how energy differences vary
when the sampling is increased from 4 to 32 k points in
Fig. 10.

We estimate the energy difFerence between the p(2 x 1)s
and p(2 x 1)a reconstructions, the buckling energy, to be
0.12+ 0.01 eV. This value was obtained &om the energy
of 0.114 eV in Fig. 10 and corrected for the cutoff by
0.007 eV from Fig. 5. The error bar is 13 = 2+1+5+2+3
meV. The first contribution to the error, 2 meV, is esti-
mated &om the behavior of the last two points in Fig. 10
as the number of k points is increased &om 16 to 32. We
assume that the change in going &om 32 sampling points
to convergence will be less than the change in going &om
16 to 32 points. The second contribution, 1 meV, is de-
termined &om Fig. 5. The third contribution of 5 meV
is the correction we allow for the effect of additional ge-
ometry optimization. Although the contribution to this
term &om Fig. 5 is clearly much smaller, there is in ad-
dition a contribution of 2.5 meV discussed in Sec. III B 3.
The last two values of 2 rneV and 3 meV are the cor-
rection for the frozen potential approximation and the
cutoff correction, respectively.

The energy difference between the p(2 x 1)a and p(2 x 2)
reconstructions is estimated to be 48+18 meV. This value
was obtained from the energy of 54 meV in Fig. 10 and
corrected for the cutoff by —6 meV &om Fig. 7. The error
bar is 18 = 5+ 3+ 5+ 2+ 3 meV, where the last three
contributions are the same values as taken above. The
first contribution to the error, 5 meV, is estimated &om
the behavior of the last two points in Fig. 10. The second
contribution, 3 meV, is determined from Fig. 7. The
error bar for this energy difference is relatively large as a
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result of slower convergence both as a function of cutoff
and k-point sampling than the other energy differences.
If the effect of geometry optimization for a 20 Ry cutoff
(see Fig. 7) were included in the energy difference rather
than in the error, then 48 6 18 meV would become
54+ 15 meV .

The smallest energy difference is that between the
p(2 x 2) and c(4 x 2) reconstructions. We estimate it to be
3 + 13 meV. This value was obtained from the energy of
6 meV in Fig. 11 and corrected for the cutoff by —3 meV
from Fig. 8. The error bar is 13 = 1+2+ 5+ 2+ 3 meV
where we use the same values for the last three terms as
above. The first contribution to the error, 1 meV, is esti-
mated from Fig. 11, and the second contribution, 2 meV,
from Fig. 8. Because we have not carried out an explicit
estimation of the correction for the geometry optimiza-
tion to the error, we have had to assume the "standard"
value of 5 meV. This may well be an overestimate but to
reduce it significantly would be a costly exercise.

With the exception of the last energy difference, we are
able to arrange the different reconstructions on an energy
scale in the order sketched in Fig. 16. A less conservative
estimate of the error bars, e.g. , a reduction by a factor
of 2 would not change the ordering we find and would
still not allow the sign of the p(2 x 2) —c(4 x 2) energy
difference to be d.etermined unambiguously. The small
size of this energy difference not only makes it difIicult to
make a definitive statement about the ground state from
a theoretical (local-density approximation) point of view,
but is probably also responsible for the corresponding
experimental difFiculties.

B. Comparison with other calculations

The energy differences from the various calculations
cited in Fig. 2 are presented in the four panels of Fig. 17,
where they are compared with our own results. As we re-
marked in the Introduction, there is a considerable spread
in the values obtained by different authors. In order to
assess the (lack of) agreement between the various calcu-
lations, including our own, we have to estimate the un-
certainty associated with the points in Fig. 17. We can
assign rigorous error bars to our own results as discussed.
in the preceding section, but the information needed to
make a similar analysis for the other points is incom-
plete. In Sec. III we studied the depend. ence of various
energy differences on the energy cutoff. These curves
contain information about the errors made when using a
given cutoff, provided the same pseudopotential has been
used. Since most authors used a pseudopotential identi-
cal or very similar to the one we have used, these curves
can serve to assign uncertainties to the results cited in
Fig. 2 resulting &om the cutoff only. Each of the vertical
dashed lines in Fig. 17 is constructed by taking the value
of the cutoff energy cited by an author and projecting the
part of the energy convergence curves (Figs. 6—9) to the
right of that value onto the energy axis. This shows the
interval in which the energy differences will vary when
the cutoff energy is increased. The lines constructed in
this fashion are merely intended to give a rough estimate
of the uncertainties which arise by using the energy cut-
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FIG. 17. The energy differences from the various calcula-
tions cited in Fig. 2 are presented in the four panels. "This"
denotes the present work; the error bar has been discussed
in Sec. IVA. The letters labeling the other data points are
the same abbreviations as used in Fig. 2. The dashed lines
denote the systematic trends observed when increasing the
cutoff used by the various authors, as discussed in Sec. IV B.
Along the x axes the references are ordered according to the
publication year of the calculations.

offs quoted in the references of Fig. 2. There are other
possible reasons for discrepancies between different cal-
culations such as the use of different BZ sampling points
or exchange-correlation parametrizations, which will add
to the uncertainties shown in Fig. 17. In most cases, the
uncertainties resulting &om using the cited cutoff energy
are larger than those attributable to different BZ sam-
pling.

The dimerization energies are shown in the upper left-
hand panel of Fig. 17. Most of the results are in agree-
ment once account is taken of the different cutoff energies
used. but there is a large discrepancy with the results
of Dqbrowski and Scheffleri~ (DS). This cannot be ex-
plained in terms of cutoff energy only since the 12 Ry
cutoff these authors use should not lead to an uncer-
tainty larger than 0.1 eV. The discrepancy is not likely
to be the result of a difference in BZ sampling either since
their sampling (which corresponds to the solid squares in
Fig. 3) is the same as the sampling used, for instance,
by Roberts and Needs (RN). i4

As far as the results of Yin and Cohen (YC) are con-
cerned, it seems that the discrepancy is also unresolved.
However, we have probably underestimated the uncer-
tainty in this calculation as a cutoff of only 4.3 Ry was
used and we have not performed any tests for cutoffs
lower than 6 Ry. There is an indication that the geom-
etry might deteriorate rapidly for such low cutoffs: Yin
and Cohen find a buckling angle for the p(2 x l)a of only
about 8, while we find that it increases &om about 16
to 19 as the cutoff is increased from 8 to 20 Ry. Other
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sources of error which we have not taken into account are
their incomplete geometry optimization and their use of
an eight layer slab and a different exchange-correlation
potential.

The next energy we consider is the p(2 x 1)s —p(2 x 1)a
energy difference. The results quoted in Fig. 2 are shown
in the lower left-hand panel of Fig. 17. Again there is a
significant discrepancy with YC, presumably for the same
reasons as given above. Note that for this energy differ-
ence, our result is in quite reasonable agreement with
that of DS. DS optimized their geometry with a cutoff of
8 Ry and from Fig. 5 it can be seen that this can intro-
duce an uncertainty of order 0.01 eV, which is sufFicient
to account for the small remaining discrepancy. Both
Pandey i (P) and RN used a 6 Ry cutoff; because the
lowest cutoff used in Fig. 5 was 8 Ry, we estimate the 6 Ry
cutoff value using the results of Dqbrowski and SchefIIer.
The remaining discrepancy with the result of Batra s (B)
can, in our opinion, be explained by the fact that his
geometry optimization is far &om complete. The only
discrepancy which we cannot explain is with the result
of Inoue, Morikawa, Terakura, and Nakayama (IMTN).
These authors used a 12.25 Ry cutoff and a k-point sam-
pling which corresponds to the solid squares in Fig. 3.
This should lead to an uncertainty of no more than 0.01
eV. If one were to attempt an explanation for it anyway, it
might be mentioned that IMTN use the (less commonly
used) Wigner interpolation formula for the exchange
and correlation energy. For completeness we should men-
tion the results of Kriiger and Pollmann, who found
the energy of the asymmetric dimer to be 0.14 eV per
dimer lower than that of the symmetric dimer. Although
these calculations were based on norm-conserving pseu-
dopotentials and the local-density approximation, they
are not included in Fig. 17 because we have no means
of estimating an uncertainty for their Gaussian orbital
basis.

For the p(2 x l)a —p(2 x 2) energy difFerences shown
in the upper right-hand panel of Fig. 17, discrepancies
can (just about) be accounted for by the choice of cutoff.
This time, there seems to be no gap between our error
bar and the work by IMTN. The uncertainty associ-
ated with the calculation by Zhu, Shima, and Tsukada
(ZST) goes off the energy scale of the figure because they
have used a cutoff of only 2.4 Ry. We have not attempted
to estimate the uncertainty due to lack of cutoff conver-
gence more precisely but merely indicate that it must be
considerably larger than the scale of the figure.

Finally, we come to the energy difference between the
p(2 x 2) and c(4 x 2) reconstructions. This is the only
energy whose sign remains uncertain (see the lower right-
hand panel of Fig. 17). Although our calculation comes
fairly close to resolving this energy difference, a very sub-
stantial effort would be needed to reduce the error bar to
1 meV or less.

C. Ceoxnetries

A complete list of atomic displacements from the ideal
(unreconstructed) positions is given in Cartesian coordi-

TABLE III. Displacements (in A.) from ideal positions for
the p(2 x l)s and p(2 x 1)a. Ideal positions are given by
H. q~ = (A: x ~2, I x ~2, m ) —,where the bulk lattice constant
a = 5.431 A. The axes are defined in Fig. 1. Displacements
in the y direction are all zero.

Layer Ideal pos.
(k, I, m)

1 (0, 0, 0)
1 (2, 0, 0)
2 (0, 1, —1)
2 (2, I) —1)
3 (1, 1, —2)
3 (3, 1, —2)
4 (1,0, —3)
4 (3, 0, —3)
5 (0, 0, —4)
5 (2, 0, —4)

p(2 x
Ax
0.805

—0.805
0.075

—0.075
0.000
0.000
0.000
0.000

—0.022
0.022

1)s
Az

—0.524
—0.524
—0.141
—0.141
—0.216

0.005
—0.139

0.002
—0.040
—0.040

p(2 x
Ax
1.162

—0.534
0.066

—0.099
0.031

—0.025
—0.013
—0.005
—0.042

0.022

l)a
Az

—0.921
—0.213
—0.141
—0.112
—0.240
—0.003
—0.155

0.002
—0.044
—0.040

nates in Tables III and IV and the corresponding bond
lengths are summarized in Fig. 18. The geometries are
those which were obtained using a 16 Ry cutoff and four
k points. For the two p(2 x 1) reconstructions, displace-
ments in the y direction (perpendicular to the dimer
bonds) were only of order 10 A and are therefore not
given. The calculated bond lengths are estimated to be
converged to within 0.01 A, the bond angles to within 1'.

For the p(2 x 1)s we find a large relaxation of the out-
ermost layers into the bulk material; see Table III. The
displacement of the topmost dimerized atoms in the z
direction is 0.524 A, which may be compared with the
value of 0.33 A reported in Ref. 14. We find that the size
of this relaxation depends directly on the energy cutoff
used; a low energy cutoff such as the one used by Roberts
and Needs leads to a smaller relaxation in the z direc-
tion. In spite of this, our calculated bond lengths are
very similar to theirs. We find a dimer bond length of
2.23 A. as they do, and back bonds (bonds between dimer
atoms and second layer atoms) of 2.27 A. compared to
their value of 2.29 A. For comparison, the bond length in
bulk Si is 2.35 A. . The bond lengths between the second
and third layer atoms are 2.33—2.34 A. where Roberts and
Needs find values between 2.36 and 2.37 A. The vertical
relaxation of 0.524 A is distributed over the five layers
which are allowed to relax.

For the p(2 x 1)a we find a very large buckling angle of
18.3' compared to values of 6.9' reported by Roberts and
Needs and 15 reported by Dqbrowski and SchefIIer.
We attribute the larger buckling angle to general im-
provements in the calculation: more efFicient geometry
optimization, better basis set, etc. A similar increase in
surface buckling has been found for the Si(111)p(2x 1) re-
construction as the calculations were improved. ' The
p(2 x 1)a dimer bond length of 2.26 A is slightly longer
than that found for the symmetric case and also some-
what larger than the 2.21 A found in Ref. 14. The bond
lengths corresponding to the back bonds from the "up"
and "down" atoms of the buckled dimer to the second
layer atoms are 2.34 A. and 2.29 A, respectively (Roberts
and Needs: 2.30 and 2.28 A). Kriiger and Pollmann ob-
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TABLE IV. Displacements (in A) from ideal positions for the p(2 x 2) and c(4 x 2). Coordinate
frame as defined in Table III.
Layer Ideal pos.

(k, I, m)
(o, o, o)
(2, 0, 0)
(0, 2, 0)
(2, 2, o)

(0, 1, —1)
(2, 1, —1)
(0, 3, —1)
(2, 3, —1)
(1, 1, —2)
(3, 1, —2)
(1,3, —2)
(3, 3, —2)
(1,0, —3)
(3, 0, —3)
(1,2, —3)
(3, 2, —3)
(o, o, —4)
(2, 0, —4)
(o, 2, —4)
(2, 2, —4)

Ax
0.992

—0.688
0.675

—1.010
0.105

—0.118
0.105

—0.118
—0.011
—0.003
—0.011
—0.003

0.024
0.037

—0.031
—0.048
—0.012

0.066
—0.074

0.007

p(2 x 2)
Ay
0.000
0.000
0.000
0.000
0.119

—0.112
—0.118

0.113
0.001
0.002
0.000

—0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Az
—0.832
—0.094
—0.076
—0.829
—0.101
—0.109
—0.101
—0.109
—0.237

0.050
—0.237

0.050
—0.160

0.037
—0.164

0.034
—0.039
—0.030
—0.031
—0.041

Ax
0.989

—0.685
0.675

—1.001
0.108

—0.120
0.108

—0.120
—0.009
—0.003
—0.009
—0.003

0.006
—0.005
—0.011
—0.006
—0.041

0.039
—0.045

0.037

c(4 x 2)
Ay
0.000
0.000
0.000
0.000,
0.120

—0.117
—0.119

0.117
0.001
0.020
0.000

—0.020
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Az
—0.789
—0.055
—0.045
—0.788
—0.079
—0.086
—0.079
—0.086
—0.223

0.066
—0.223

0.066
—0.153

0.069
—0.155

0.028
—0.023
—0.040
—0.038
—0.023

p(2x1)s 2.23

227, ' ', 227

p(2xl)a
2.29 ~ ~ 2.34

p(2x2)
2.31 ~

'. 2.34

c(4x2)
2.31 ~ 2.35

FIG. 18. Side view of surface dimers (larger circles) aud
the second aud third layer atoms (smaller filled circles) for
the four reconstructions discussed in the text. The bonds in-
dicated as dashed lines are not in a plane parallel to the plane
of the drawing. The buckling angles given for the p(2 x 2) and
c(4 x 2) recoustructions are the averages of two slightly dif-
ferent angles for the two dimers. All bond lengths are given
ln

tain an asymmetric dimer bond length of 2.25 A and a
buckling angle of 19 with their Gaussian orbital basis
Green's function calculations.

The calculations were carried out without imposing
any symmetry (apart from the inversion symmetry about
the center of the slab) so that the two surface dimers in
the p(2 x 2) and c(4 x 2) reconstructions need not and,
indeed, are not found to be exactly equivalent (see Ta-
ble IV). However, the energy lowering associated with
the symmetry breaking is so small that it is doubtful
whether it is significant. For the p(2 x 2) reconstruction,
surface dimer buckling angles of 18.9 and 19.3 were
found; for the c(4 x 2) the buckling angles were 18.7
and 18.9 . A similar inequivalence was found for the
p(2 x 2) reconstruction by Roberts and Needs, who, how-
ever, found smaller values of 11.6 and 12.25 . A buckling
angle of 17.5 was found by Northrup in a recent study
of the c(4 x 2).is In both reconstructions we find that the
various bond lengths corresponding to the two dimers are
the same within 0.002 A. or better so that only one dimer
is shown in each case in Fig. 18. As might be expected
from the very small energy diKerence between the p(2 x 2)
and c(4 x 2) reconstructions, the bond lengths are virtu-
ally identical. We also note that the asymmetry in the
bonds between second and third layer atoms found for
the p(2 x l)a is not present for the alternating asymmet-
ric dimer reconstructions. Table IV shows that, with the
exception of the second layer atoms, the displacements
in the y direction are very small. The y displacements
of the second layer atoms are quite substantial and are
such that these atoms are always displaced towards the
up atom of the surface dimer. This was found originally
for Ge by Needels and since then has also been found
for the Si c(4 x 2) is is and Si p(2 x 2).i4 To an excellent
approximation the xz planes which contain the surface
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dimers are mirror planes; the zero entries in Table IV do
not result &om imposing any symmetry.

The calculations which we have discussed until now
were performed assuming that the temperature is zero.
In view of the small energies separating difFerent recon-
structions (Fig.16) the calculated geometries should only
be compared with geometries determined experimentally
at low temperature. The proposal by Hamers et ol. ,
that the symmetric dimers seen by STM at room temper-
ature may actually be asymmetric dimers which are os-
cillating rapidly to and fro between two degenerate states
so that they appear to be symmetric on the time scale of
an STM experiment, has been supported by a number of
subsequent experiments. On studying the geometry
as a function of the temperature, the number of alternat-
ing buckled dimers was seen to increase as the temper-
ature was reduced. We have found further support for
this suggestion of dynamic buckling in a recent ab initio
molecular dynamics simulation. We re&ain &om mak-
ing a detailed comparison of our geometries with those
determined recently in transmission electron diffraction
(TED) measurementss and by grazing incidence x-ray
difFraction since these experiments were carried out at
room temperature. The results of both the TED exper-
iment and the x-ray difFraction experiment were fitted
assumirlg a uniform structure with p(2 x 1) periodicity.
The buckling angles extracted &om this analysis of the
TED and x-ray difFraction experiments are about 5 and
7', respectively. These values are substantially smaller
than the 19 which we calculate for zero temperature.

Both room-temperature and low-temperature32
STM experiments observed that intrinsic surface de-
fects (presumably missing dimers) could pin an alter-
nating asymmetric dimer structure. It is not obvious
that the detailed structure of such pinned asymmetric
dimers should be the same as the intrinsic buckling which
would be observed on a defect-&ee surface at low temper-
ature. Since the number of intrinsic defects appears to
be very large even in the best of cases, care will have to
be taken in future low-temperature experiments in iden-
tifying buckling angles with pinned or unpinned dimers.

D. Band structures

o

FIG. 19. Band structures for the four reconstructions, plot-
ted along the directions in reciprocal space corresponding to
the edges and diagonal in Fig. 3. The p(2 x 1)s and p(2 x l)a
bands were calculated in a p(2 x 2) unit cell so that the sur-
face unit cell contains four dangling bonds in all cases. The
shaded areas are the corresponding projections of the bulk
bands in the p(2 x 2) surface unit cell, except in the figure at
the bottom, where the bulk bands are projected in the c(4 x 2)
unit cell. The reference energy, marked by E~, is chosen to
be in the middle of the surface band gap if such a gap exists.
For the p(2 x 1)s, E~ is chosen "by hand" and is not a calcu-
lated Fermi energy. vr labels the occupied surface states and
m'" labels the unoccupied surface states; the lower and upper
branches are labeled with subscripts 1 and 2, respectively.

The original motivation for introducing asymmetric
dimers was because band structure calculations which
assumed a symmetric dimer model invariably resulted in
a metallic surface which was in disagreement with the
results of photoemission experiments. In the meantime,
we know that the local-density approximation systemat-
ically underestimates band gaps so that the failure to
find a gap in a LDA calculation would no longer be a
strong argument against a symmetric dimer model. Nev-
ertheless, it is still interesting to examine and compare
the band structures around the Fermi energy for the dif-
ferent reconstructions. The reason for doing this is be-
cause of the relationship between structural stability and
the existence of band gaps or regions of low densities of
states in the single-particle eigenvalue spectrum.

The band structures calculated for the four reconstruc-

tions using an 8 Ry cutoK and a 4 k-point charge density
are shown in Fig. 19 along a number of lines in reciprocal
space. These lines correspond to the edges and diagonal
in Fig. 3. The shaded areas are the corresponding projec-
tions of the bulk bands. To facilitate comparison of the
band structures, the p(2 x l)s and p(2 x 1)a bands were
calculated in a p(2 x 2) unit cell so that there are four
surface atoms in all cases. The first thing to notice is that
all bands come in pairs. This is a result of using a slab ge-
ometry whereby there are actually two surfaces. Because
we impose inversion symmetry, all pairs of states form
an even and an odd linear combination with respect to
the inversion symmetry. If the slab were infinitely thick,
these pairs would be degenerate, but because of the finite
thickness, a small energy splitting remains. In what fol-
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lows, we will refer to each such pair of bands as a single
band.

Corresponding to the four surface atoms per unit cell,
there are four surface states in the bulk gap for all four
reconstructions. These correspond to the four dangling
bonds which remain after dimerization has occcured.
These dangling bonds form two a bonding (vri, vr2) and.
two sr* antibonding (vri, 7r2) states. For the p(2 x 1)s re-
construction, these bands overlap, resulting in a metallic
surface.

For the p(2 x l)a reconstruction a gap is formed be-
tween the vr and the vr' states. By transferring charge
from the down to the up atom a partly ionic vr bond is
formed between the two atoms, which results in a down-
ward shift of the vr and an upward shift of the m* band.
The stabilization of the asymmetric dimers is associated
with the corresponding energy gain. While the dispersion
of the vr states is essentially the saine for the p(2 x l)s
and p(2 x 1)a reconstructions, there are large changes in
the dispersion of the m* states (mainly in the vrz band) in
the direction parallel to the rows of dimers. The overall
dispersion of both reconstructions is in good qualitative
agreement with the results of other first-principles calcu-
lations, e.g. , Ref. 18.

The lower energy of the p(2 x 2) and c(4 x 2) recon-
structions may be associated with a further increase of
the gap. The separation of up (or down) atoms is in-
creased in the alternating dimer reconstructions and this
leads to a d.ecrease in the bandwidths of the m' bands &om
about 0.9 eV to 0.7 eV. Again, the biggest changes are
seen in the vr2 band, which has become almost disper-
sionless. The vrz band displays the greatest dispersion
for directions parallel to the dimer chains.

The p(2 x 2) and c(4 x 2) reconstructions difFer in the
way asymmetric surface dimers are arranged on neighbor-
ing dimer rows. Changes in the environments of surface
dimer atoms first occur at a distance of 5.5 A. , which cor-
responds to a fourth nearest neighbor separation in the
perfect crystal. Within a tight-binding or linear com-
bination of atomic orbitals framework, only very minor
differences in the band structures are to be expected, and
indeed this is so. The bandwidths are determined by hop-
ping along the dimer chains and this is the same for the
p(2 x 2) and c(4 x 2) reconstructions. The most obvious
change in the corresponding band structures in Fig. 19 is
the absence of dispersion of both vr and m* bands in di-
rections perpendicular to the dimer chains in the c(4 x 2)
case.

The decreasing change in the band gaps in the series
p(2 x 1)s m p(2 x 1)a -+ p(2 x 2) m c(4 x 2) is consis-
tent with the decreasing energy separation of the same
reconstructions shown in Fig. 16. No significance should
be attached to the absolute value of the gap, which de-
creases as the cutoff energy is increased and all the re-
constructions become metallic at suKciently high cutoff
with the exception of the e(4 x 2). Its indirect gap per-
sists up to at least a cutoff of 16 Ry, where it is of the
order of a few hundredths of an eV. At this cutoff the gap
of the p(2 x 2) has disappeared and there is an overlap
of the valence and conduction bands of a few hundredths
of an eV. Calculations of the quasiparticle states using

the GR' approximation, which result in very good agree-
ment with experiment for the band gaps of inorganic
semiconductors, show that the occupied and unoccu-
pied LDA states of silicon are almost rigidly shifted with
respect to one another by 0.5 eV. This has been verified
by explicit calculation for the c(4 x 2) by Northrup.

V. DISCUSSION

The main purpose of this paper has been to identify
the factors which must be addressed in order to deter-
mine total energy differences with a given accuracy. We
have restricted ourselves to calculations performed within
the local-density approximation using norm-conserving
pseudopotentials in combination with a plane-wave basis
where one might expect the most systematic cancellation
of errors. The calculation of total energy differences be-
comes even more difBcult when use is made of a localized
orbital basis, nonfrozen cores, a cluster representation, or
combinations of these. From our study of the reconstruc-
tions of the Si(100), we conclude that the systematic can-
cellation of errors has been overstated in the past. While
the evaluation of an error bar is very time consuming, if
done critically it would make the repetition of the same
calculations by different groups largely unnecessary.

A. Improving the calculations

A well defined aim of electronic structure calculations
is to solve the Kohn-Sham equations within the local-
d.ensity approximation. To do this in practice, some ap-
proximations must be mad. e. The most basic approxi-
mation at this level is the choice of exchange-correlation
potential, of which a number exist which are commonly
used. ' ' ' ' As discussed in Sec. IIID, this choice
may well lead to changes in total energy differences of
the order of meV per atom and even larger. This should
be checked. However, we note that if the results are
found to depend on this choice, there is no criterion for
preferring one potential to another since no one poten-
tial consistently outperforms the others when tested for a
range of materials and properties. Eventual scatter in re-
sults must then be attributed to the intrinsic uncertainty
of the LDA.

Other approximations may depend on the physical sys-
tem being studied. To study the electronic structure of
a surface, the semi-infinite system is frequently modeled
with a finite slab (two free surfaces, periodic in two di-
mensions), a repeated slab (periodic in three dimensions)
or with a finite cluster. The use of a repeated slab config-
uration and norm-conserving pseudopotentials makes it
possible to use a plane-wave basis. The advantages of this
are that (i) the treatment of nonspherical charge densities
and potentials is straightforward (no shape approxima-
tions), (ii) the calculation of Hellmann-Feynman forces is
greatly simplified so that extensive geometry optimiza-
tion is possible, (iii) the basis is spatially unbiased with
no preference for a particular arrangement of atoms, and
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(iv) the basis can be systematically improved in a very
simple way. One of the disadvantages of this approach
is that a frozen-core approximation is made whereby the
core electron charge density does not relax in response
to changes in the valence charge density. Although such
effects are not significant under normal circumstances, it
is certainly possible that the frozen-core approximation
may affect energy differences on the meV level.

The slab approximation can be tested systematically
by increasing the slab thickness. A more elegant way of
treating semi-infinite systems makes use of Green's func-
tions and such a method has been implemented for semi-
conductor surface calculations based on norm-conserving
pseudopotentials. The advantage of this method is that
the correct boundary conditions for the semi-infinite sys-
tem are obeyed and by formulating the problem in terms
of the change made to the bulk by introducing a surface,
surface states and resonant states can be identified with-
out the ambiguity encountered in slab calculations. The
disadvantage of the method is that a localized orbital
basis must be used and such bases cannot be improved
systematically. We have not attempted a critical evalua-
tion of the Green's functions localized orbital calculations
of Kruger and Pollmann. Fortunately there are no ob-
vious discrepancies between their results and our own.

Common to all of the calculations discussed so far is
the use of norm-conserving pseudopotentials. It certainly
would be interesting to know to what extent this ap-
proximation limits our ability to calculate total energy
differences. The all-electron localized orbital cluster cal-
culations of Tang et al. are interesting in that they do
not make such an approximation. Unfortunately, it is not
possible to draw any conclusions about the importance
of the use of pseudopotentials, because other features of
these calculations, namely, the use of finite clusters to
represent infinite systems and the use of a localized or-
bital basis, make a detailed comparison impossible.

One way of improving the pseudopotential approxima-
tion is to take account of the (nonlinear) contribution of
the core electron density to the exchange-correlation en-
ergy of the valence electrons using a scheme such as that
proposed by Louie, Froyen, and Cohen. This so-called
nonlinear exchange-correlation correction is apparently
important for elements with extended core states such as
the alkaki elements. To the best of our knowledge, none
of the calculations for the clean Si surface make use of
this correction and we have not attempted to do so our-
selves. Such an improvement could lead to changes in
total energy differences on a meV scale.

In Secs. III and IV as well as in this section we have dis-
cussed a number of improvements which should be made
in order to calculate energy differences reliably at the
meV level. The effort required to do this would be very
substantial. It is very unlikely that anything about the
reconstruction of the Si(100) could be learned from such
a calculation which would justify the effort.

B. Improving the physical model

So far we have been concerned with the predictions of
the LDA assuming implicitly that it is a model capable

of describing the real physical system in which we are
interested. In this context we should point out a number
of other limitations of the calculations here.

First, it should be remembered that the calculations
discussed so far assume that the temperature is zero
whereas almost all of the experimental work which has
been discussed was carried out at room temperature.
While this temperature may not be significant on the
energy scale of the electrons, it must certainly be taken
into account for the ions in view of the small energy dif-
ferences between different reconstructions. Finite tem-
perature simulations can in principle be carried out us-
ing the Car-Parrinello method, and a simulation of
the Si(100) surface is possible. s However, in order to
make direct contact with experiment possible it would
be necessary to study a system containing an impossi-
bly large number of atoms (to avoid spurious correla-
tions due to the periodic boundary conditions) for an
impossibly long time (in order to accumulate enough
statistics). In view of the discussion in previous sec-
tions, this simulation would have to be carried out with
a plane-wave kinetic energy cutoff and Brillouin zone
sampling far in excess of anything which has yet been
attempted. An alternative is to create a parametrized
model which is suKciently simple that a finite temper-
ature treatment is possible and to evaluate the parame-
ters in the model using the results of electronic structure
calculations. This approach was introduced to study the
c(4 x 2) to p(2 x 1) phase transition of the Si(100) surface,
using empirical tight-binding calculations to determine
the parameters. A Monte Carlo simulation by Saxena et
al. led to the prediction of a transition temperature
of 250 K which was subsequently observed in tempera-
ture dependent LEED experiments. In recent work In-
oue et al. have evaluated the parameters on the basis
of first-principles calculations and elaborated the Monte
Carlo simulations by considering the effect of pinning by
defects. A weak point in all of these approaches is the
mapping onto an Ising spin Hamiltonian which assumes
that the transition is of the order-disorder type, whereas
STM clearly indicates that the p(2 x 1) structure at roam
temperature does not consist of static disordered buck-
led dimers. The low-temperature LEED and STM
studies both indicate that the ground state has c(4 x 2)
symmetry.

A second possible inadequacy of the LDA calculations
is that spin ordering on the surface is neglected. This
point was made by Artacho and Yndurain in an at-
tempt to reconcile theoretical predictions which favored
an asymmetric dimer ground state ' with experiments
which they interpreted as favoring a symmetric dimer
ground state. These authors proposed that symmetric
dimers could be stabilized by antiferromagnetic ordering
of the spins. They estimated that such ordering could
lower the surface energy by as much as 1 eV per dimer,
which is almost an order of magnitude larger than the en-
ergies favoring buckling that we have been considering up
till now. It is difIicult to assess the reliability of this con-
clusion as it was drawn on the basis of a combination of ab
initio Hartree-Fock calculations using very small clusters
of Si atoms to model the surface and tight-binding Hub-
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TABLE V. Lattice constant as, bulk modulus B, and its pressure derivative dB/dP for a number
of cutoff energies and k-point samplings. The k points are derived from the I' point of an equivalent
unit cell which contains the number of atoms given in the second column. The values given in the
table were determined by fitting the energies calculated for a number of volumes ranging from 85'P()

to 110%of the equilibrium volume to Murnaghan s expression for the equation of state Ref. 74. The
cohesive energy E, h, which is obtained by comparing the bulk energy with the energy of a single
(non-spin-polarized) Si atom calculated with the same pseudopotential/plane-wave formalism and
the same cutoff energy, contains a spin polarization energy of 0.612 eV obtained from a standard
atomic calculation. It is not corrected for zero-point motion.

E, t, (Ry)
12
16
24
24

Expt.

No. atoms
64
64
64

512

ap (A)
5.418
5.388
5.384
5.368
5.429

B (Mbar)
0.95
1.02
0.98
0.98
0.99

dB/dP
3.3
3.6
4.1
4 4
4.2

E, h (eV)
5.35
5.34
5.34
5.44
4.63'

Reference 80, 0 K.
Reference 81, 77 K.
Reference 75, 0 K.

bard Hamiltonians. Their proposal has been supported
by similar studies by Vinchon et al. We note here that
this issue can be addressed by extending the LDA to
take account of spin ordering. The corresponding local-
spin-density approximation (LSDA) 7 's~ has been by and
large very successful in describing the ground state prop-
erties of transition-metal itinerant electrons such as Fe,
Co, and Ni. Indeed, the possibility of spin-ordering on
a semiconductor surface has already been studied within
the LSDA for the Si(ill). Using the plane-wave basis,
norm-conserving pseudopotential formalism, Northrup et
al. found that the surface energy could be lowered by
40 meV per dimer if spin ordering was allowed. This
value is a factor 25 smaller than the estimate of Artacho
and Yndurain. Even if spin ordering did occur on the
surface, it would not necessarily lead to a reordering in
Fig. 16. Although there is no experimental evidence for
spin ordering on the Si(100), LSDA calculations should
be carried out to resolve this issue.

VI. CONCLUSIONS

In this paper we have presented a numerical study
of the extent to which total energy differences can be
calculated within the local-density approximation using
norm-conserving pseudopotentials in combination with a
plane-wave basis. Because of our interest in adsorption
on the Si(100) we chose the reconstructions of this sur-
face as the object of our study. We showed that the
ideal surface and four reconstructions which are gener-
ally considered as possible ground states of the surface
form a sequence of states which are separated by energies
which range from eV's to meV's. With the exception of
the lowest energy reconstructions, which are separated
by an energy of only a few meV per surface dimer, we
were able to order the different reconstructions unam-
biguously according to their energies. By carrying out
the calculations over a large range of cutoff energy and
BZ sampling density, we are able to evaluate previous cal-
culations which were carried out with the same methods
and resolve most of the discrepancies.

APPENDIX

As stated in Sec. II, we use the norm-conserving pseu-
dopotential for Si as tabulated by Bachelet et aL and
modi6ed according to the prescription given by Klein-
man and Bylander. We use the d component as the
reference potential for / & 2, which means that the po-
tential contains 8 and p nonlocal terms. The results of
convergence tests on the properties of bulk Si are given
in Table V. The lattice constant, bulk modulus, and its
pressure derivatives were obtained by Gtting the energies
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FIG. 20. Total energy (lower curve) and cohesive energy
(upper curve) of bulk Si in eV/atom as a function of the
plane-wave kinetic energy cutoff used in the calculation. The
total energy is referred to the (converged) energy of a Si atom;
the cohesive energy is obtained by comparing to a Si atom
calculated with the same energy cutoff. The latter is seen to
converge much faster as a function of the energy cutoff. The
k-point sampling used in these calculations is equivalent to
using a 512 atom unit cell and only the I' point. A correction
of 0.612 eV for the spin polarization energy of the atom is
included.
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calculated for a number of volumes, ranging from 85%
to 110% of the equilibrium volume, to Murnaghan's ex-
pression for the equation of state. As in our surface
calculations, we have used k-point sets derived &om I.
Each such set is equivalent to using a larger unit cell and
only the 1 point; in the table, we characterize the k-point
set by giving the number of atoms in the larger unit cell.
The lattice parameter and bulk modulus for a cutoff en-
ergy of 24 Ry and a 512 atom unit cell are approximately
1% smaller than the experimental values. This agrees
with other pseudopotential/plane-wave calculations7
and also with all-electron calculations, within the un-
certainties present in such calculations. These values are
not extremely sensitive to the basis set used. For a cut-
off energy of 16 Ry and a 64 atom unit cell, the lattice
constant changes by 0.4% and the bulk modulus by 2%%uo.

The pressure derivative of the bulk modulus, and to a
lesser extent the bulk modulus itself, is Inore sensitive to

the basis set. However, the intrinsic uncertainty due to
using the Murnaghan expression is also much larger.

The cohesive energy given in Table V is obtained by
comparing the energy of the crystal with the energy
of a single (non-spin-polarized) Si atom calculated with
the same pseudopotential/plane-wave formalism and the
same cutoff energy. A spin polarization energy of 0.612
eV was obtained &om a standard atomic calculation. The
cohesive energy is not corrected for the zero-point mo-
tion, which would reduce it slightly. The convergence
with respect to cutoff energy is fast; for 16 Ry, the cohe-
sive energy is converged within 0.01 eV. This is in marked
contrast with the convergence of the total energy of the
crystal, which is at least an order of magnitude less con-
verged at this cutoff. The different behavior of total and
cohesive energy as a function of the cutoff is shown in
Fig. 20 and nicely illustrates the systematic cancellation
of errors in pseudopotential/plane-wave calculations.
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