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We use ab initio pseudopotential electronic-structure methods to ded scribe successfull both the de-y
tailed static structures and the structural transformation in B&03 y . p0 cr stals. Em loying a reduced cell

model the structural transforma-vo ume, wi u1 th f 11 relaxation of all internal coordinates, our calculations
~ ~ ~ ~ ~

rahedraltion from the polymorph containing e 3
r'h

' '
th BO triangular unit into that containing the BO4 tetra

unit In order to interpret the mechanism, individual energy contributions to the total energy are ana-
lyzed.

I. INTRODUCTION

8 0 is an interesting material, showing two po-2 3

lymorphs in which the boron atoms have different coordi-
nation numbers (see Figs. 1 and 2). Neither form of crys-
talline trioxide occurs naturally. Furthermore, it is not
easy even under special conditions to prepare crystals and

asure their properties. In such cases computer simula-
tions can play an important role in determining t e
structural and physical properties. Advances in the tech-
niques of electronic-structure calculations make it possi-
ble to calculate total energies with high accuracy. These
computer simulation techniques are currently used to

study not only static but also dynamical structures in
both the crystalline and amorphous states, although there
are still considerable limitations on the size of a system
that can be studied (in particular, the number of indepen-
dent atoms in the unit cell) because of the constraints im-
posed by computer resources.

In a companion study' of 8203 and borates using
periodic ab initio Hartree-Fock techniques, we provide a
consistent interpretation of the structure and bonding o
borates which accords well with empirical concepts re-
garding the structure and bonding in these crystals.
However, these methods were unable to study fully re-
laxed structures in detail, as automatic relaxation o ce11

dimensions or internal coordinates is not available in the
present version of the periodic ab initio Hartree-Fock
program (CRYSTAL92).

In this paper we discuss how the structures and bulk

FICx. 1. The B203-I structure (Ref. 15). FICx. 2. The B203-II structure (Ref. 16).
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moduli of B203 crystals have been determined employing
the local-density formalism (LDF) electronic-structure
methods rather than Hartree-Fock techniques. Our stud-
ies used the code CASTEP, which performs total-energy
pseudopotential calculation. CASTEP has two distinctive
features: first, the internal coordinates can be automati-
cally relaxed so that the structure with the minimum to-
tal energy is obtained; second, it has the option of ab ini-
tio molecular-dynamics simulation, although this was
not employed in the present case.

The next section examines the theoretical techniques
in more detail and explains the contrast between the
theoretical approaches adopted in this paper compared
with the quantum-chemical, Hartree-Fock methods. We
then apply the LDF technique to optimize the lattice pa-
rameters and internal coordinates of B203. After the opti-
mized structures of both phases have been identified, the
total energies of several points with different cell volumes
were calculated and bulk moduli were estimated. Finally,
we use the results of these calculations to provide the first
suggestion of a mechanism for the structural transforma-
tion between B203 polymorphs.

II. THEORETICAL METHOD

HF,

E=E[p,R ],

E=T[p]+U[p]+E„,[p],
p(r) =X„,~V, (r)

~

BE/Bp =0,
[ —1/2V + V, (r)+p„,(r)]4; =E;~11; .

E=E[%,R],
E=f 4'*[X,h;+X;) . 1/r, ]%5r, "

4 =
~
'P(1),%(2), . . . , V(n )],

BEra+=0,

[—1/2V + V, (r)+p' (r)]%;=e;4;,

(2)

(3)

(4)

(10)

where E is total energy, 4 is wave function, p is electron
density, R or r is coordinate for nucleus or electron, h is
the Hamiltonian, T is kinetic energy, U is electrostatic or
Coulomb energy term, p„,or p is a many-body term or

CASTEP is a powerful code for calculating the
quantum-mechanical total energy of a structure and then
minimizing it with respect to its electronic and nuclear
coordinates. When compared with the Hartree-Fock
based quantum-chemical methods, there are three dis-
tinctly different approaches involved in the techniques
used by CASTEP:

(i) Density-functional theory and the local-density ap-
proximation (LDA) (Ref. 5) are employed to model the
electron-electron interactions. The difference in formu-
lation between Hartree-Pock (HF) theory and density
functional theory (DFT) can be summarized as follows:
DFT,

exchange term, and c is the eigenvalue.
The biggest difference between the two theories is in

the term p„,or p . In HF theory the exchange term p
only describes exchange effects and is calculated from all
the wave functions based on the orbitals

p„'(r)=—X)5(o;,o )

f iII,*. (r)+ (r')(1/~r r'~ )+—(r)+, (r')dr'

+,*(r)+;(r)

where cr is the spin.
On the other hand, in DFT theory p„,contains all the

many-body effects and it is calculated from the total elec-
tron density

p„,(r) =5E„,[p]/dp(r) . (12)

Further, LDA provides a good approximation,

E„,[p]=fp(r)E„,[p(r)]dr, (13)

where E„,[p] is the exchange-correlation energy per elec-
tron in an interacting electron system of constant density
p, and

p„,(r) =E„,[p(r)]+p(r) [5E„,[p(r)]/dp(r) J . (14)

III. STRUCTURAL SIMULATION
FROM FIRST PRINCIPLES

A. Selection of model

The pseudopotentials for boron and oxygen were gen-
erated using Lin's scheme. For both crystal structures

This approximation is generally known to yield only a
small percentage error both in the total energy and in the
structural parameters. However, cohesive energies can
be in error by more than 10%%uo.

(ii) Pseudopotential theory is used to model the
electron-ion interactions. The strong electron-nuclear
potential is replaced by a much weaker pseudopotential,
and plane waves are used as basis functions to model the
electron density outside the core region. This pseudopo-
tential technique makes the solution of Schrodinger's
equations much simpler. The important point is that the
selection of the pseudopotential is as crucial as the selec-
tion of the basis set in the quantum-chemical calculation.
I.in et al. have developed an efficient and general pro-
cedure to generate optimized and transferable nonlocal
separable ab initio pseudopotentials. Another point is
that the cutoff energy, i.e., the number of plane waves,
has to be so large that the total energy is converged. For
oxides a larger number of plane waves are necessary than
for semiconductors, to express the more complex
charge-density distribution.

(iii) The counterpart to the self-consistent field method
in the quantum-chemical terms is the use of the
conjugate-gradients technique, i.e., iterative diagonaliza-
tion approaches, ' ' are employed to relax the elec-
tronic coordinates. This provides an efficient method to
minimize the Kohn-Sham energy functional for large sys-
tems and it is applicable to oxide materials.
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TABLE I. Relation between cell volume and calculated total

energy in B,O3-I and B,O3-II.

B)03-I
(v/vp)'

1.005
1.0
0.995
0.990
0.985
0.980
0.975

Total energy (eV/B203)

—1442.840
—1442.892
—1442.925
—1442.964
—1442.969
—1442.977
—1442.953

B203-EE
(V /Up )

1.0
0.99
0.98
0.975
0.97

Total energy (eV/B20, )

—1443.124
—1443.221
—1443.254
—1443.258
—1443.237

B. Optimization of structure

First, the relation between cell volume and total energy
was calculated under the condition that the internal coor-

of 8203, the same cutoff energy of 500 eV for the plane-
wave basis set was used to achieve a reasonable conver-
gence of the total energy. The number of plane waves
used was 3459 for the Bz03-I system (15 atoms ) and 1890
for 8203-II (10 atoms).

The other important factor is the k-point sampling.
The Bloch theorem changes the problem of calculating
an infinite number of electronic wave functions to calcu-
lating a finite number of electronic wave functions at an
infinite number of k points. However, it is possible to
represent the electronic wave functions over a region of k
space by the wave functions at a single k point. Several
methods' ' have been devised for obtaining an accurate
approximation for the total energy with a very small
number of k points. Generally speaking, the denser the
set of k points sampled, the more accurate is the result.
However, both the unit cells for B203 crystals are too
large for the calculation with multi k points. Therefore,
several single k points were investigated, and among
them the single k point, which gives the smallest cell
stress and internal force, was selected. The resulting k
point was (—,', —,', —,') for Bz03-I and ( —,', ~~, —,') for 8203-II.
This difference results from the difference in crystal sym-
metry between the two polymorphs. ' '

dinates remained fixed (Table I). When the optimized
structure (i.e., the structure with minimum total energy)
is compared with experiment, the error in the lattice con-
stant is —2.0% for Bz03-I and —2.5% for 8203-II. The
error in volume is converted into —5.9% for Bz03-I and—7.3% for Bz03-II. This result is satisfactory, consider-
ing that a common pseudopotential set for boron and ox-
ygen was used for both polymorphs, and only one k point
was sampled.

Second, internal coordinates were relaxed, with the
constraint that the optimized cell parameters remain
fixed. The initial and final (optimized) total energies,
bond lengths, and angles are shown in Tables II and III.

Regarding the relative stability of the two polymorphs,
the total energy of B203-II is lower than that of B203-I,
regardless of whether the internal coordinates are re-
laxed. Periodic Hartree-Fock calculations employing
the CRYSTAL code also show the same result. ' However,
the phase diagram of the Bz03 system' suggests that
B203-I is more stable than 8203-II under ambient condi-
tions. More sophisticated calculations may be required
in order to reproduce the small difference in total energy
in either method. Thus Nada et al. ' showed that to
reproduce correctly the relative energies of quartz and
stishovite it was necessary to use high-quality basis sets in
their CRYSTAL calculations. CASTEP calculations may
need a more dense set of k point sampling to give the
correct order of energies for the two phases of 8203. We
should also point out that the relative energies of the two
phases are unknown and that the difference in free energy
may include a large contribution from entropic factors.

When the calculated bond lengths and bond angles are
compared with the experimental values, the errors in the
bond lengths and bond angles are within 0.055 A and
3.5'. Both calculated structures reproduce the corre-
sponding experimental structures well. It is interesting to
note the change of the B(1)-O(1) bond length in B203-II.
In the cRYSTAL calculations the B(1)-O(1) bond is
elongated by 10% with the constraint that all the other
atomic positions are fixed. On the other hand, the B(l)-
O(1) bond is shortened by 4% in the same manner as the
other B-O bonds when all the atomic positioned are re-
laxed. Therefore, the full relaxation of internal coordi-
nates is almost certainly important for discussing the de-
tailed structure.

C. Estimation of bulk modulus

An estimate of the bulk modulus was obtained using
the total-energy calculation technique. The procedure
used was based on Murnaghan's equation. ' Several

TABLE II. Comparison of total energies between initial structures and final optimized structures in
B203-I and B203-II.

B203-I
B203-II

E1 (eV/B 0 )

before relaxation

—1442.977
—1443.258

E2 (eV/B, O, )

after relaxation

—1443.059
-1443.358

E2-E1 (eV/B 0 )
difference

—0.082
—0.100
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TABLE III. Comparison of bond lengths and angles between experimental structures and Anal opti-
mized structures in 8~03-I and B203 II.

Distances (A)
8203-I

Experiment' Calculation
Bq03 II

Experiment Calculation

B(1)-0(1)
-0(2)
-0(3)

B(2)-O(1)
-O(2')
-0(3')

0(1)-0(2)

0(2)-0(3)

0(3)-0(1)

1.404
1.366
1.336
1.336
1.400
1.384
2.387
2.388
2.409
2.333
2.309
2.409

1.354
1.329
1.338
1.329
1.355
1.337
2.327
2.329
2.331
2.284
2.285
2.343

B(1)-O(1)
-0(2)
-0(2')
-0(2")

O(1)-O(2)
-0(2')
-0(2")

0(2)-0(2')
-0(2")

O(2')-0(2" )

1.373
1.507
1.506
1.512
2.364
2.440
2.409
2.428
2.394
2.389

1.358
1.461
1.451
1.507
2.313
2.365
2.408
2.366
2.351
2.350

Angles (deg)

0-B(1)-0

0-B(2)-0

B-0(1)-B

'Reference 15.
Reference 16.

119.0
114.7
126.2
121.5
124.6
113.9
130.5
128.3
133.3

120.3
116.2
122.8
120.4
123.0
116.1
131.2
131.2
133.5

0-B(1)-0

8-0(1)-B
-0(2)-
-0(2')-

—0(2")-

110.2
115.8
113.1
107.4
104.9
104.7
138.6
123.8
114.7
118.9

110.2
114.6
113.7
108.7
104.3
104.7
135.1
121.2
115.7
118.9

values for the total energy as a function of cell volume
were fitted using least-square techniques to Murnaghan's
equation;

E„,( V) =80V/80'[( Vo/V) ' /(Bo' l)+ l ]+con—st,
(15)

where Bo and Bo' are the bulk modulus and its pressure
derivative at the equilibrium volume Vo, both Bo and Bo'
were 6tted.

As each calculation of ionic relaxation requires a large
amount of CPU time, only six points were calculated for

both polymorphs. The cell volume was isotropically
varied and then internal coordinates relaxed in each case.
The relation between the cell volumes and the corre-
sponding total energies is shown in Table IV. The calcu-
lated bulk moduli and the curve fitted to M run gah ans

equation are shown in Table V and Fig. 3. The estimated
bulk modulus is 26 GPa for B203-I and 126 GPa for
8203-II.

No experimental data of bulk modulus are available at
present. The prediction of the bulk modulus is generally
more difBcult than that of lattice constants, and it is also
very difBcult to evaluate the error of these estimations.

TABLE IV. Relation between cell volume and total energy in 8203-I and B203-II. (Each relative
cell volume is the ratio to the corresponding optimized cell volume. )

Volume ratio

0.6
0.8
1.0
1.1
1.2
1.3

B203-I
Total energy

(eV/B203)

—1440.68
—1442.44
—1443.06
—1442.99
—1442.75
—1442.36

Difference

+2.38
+0.62
+0
+0.07
+0.31
+0.70

Total energy
(eV/B203)

—1438.10
—1442.65
—1443.36
—1443.12
—1442.58
—1441.83

B203-II
Difference

+5.26
+0.71
+0
+0.24
+0.78
+ 1.53



51 AB IMT'IO TOTAL-ENERGY PSEUDOPOTENTIAL. . . 1451

Density (g/crn )

Bulk modulus
(GPa)
This work
Empirical'
Experiment

B203-I'

2.56

26
47

B203 II

3.11

126
97

Glass

1.84—1.91

15
15

'Reference 15.
Reference 16.

'Empirical equation between density (p) and bulk modulus (K}
was employed. Reference 21. +(K/p) = —1.75+2.36p.

TABLE V. Experimental density and calculated bulk moduli

in 8203-I and B203 II.
-1436

-1437
0 -1438
CQ

-1439

-1440

c -1441

9 -1442
O

-1443

-1444
0.4 0.6

BO-I
— — — — — B O-II

2 3

0.8 1 1.2 1.4
Relative cell volume

For the CASTEP calculation, the cell volume is only varied
isotropically, furthermore, a more dense set of k points
would probably improve its accuracy. On the other
hand, for the empirical equation detailed structural in-
formation is not taken into consideration.

FIG. 3. Calculated "Murnaghan" curve for B&03-I and

8203 II The relative cell volume is the ratio to the optimized
B203-I cell volume.

D. Structural transformation

The nature of the ionic relaxation for di6'erent cell
volumes can be used to study the transformation between
the two structures. The optimized cell volume was
changed by —40, —20, +10, +20, +30, +70, and

+100% for 8203-I and changed by —40, —20, +10,
+20, and +30% for 8203-II. Their relaxed bond

lengths and angles are summarized in Tables VI and VII.
The structures calculated for B203-I are discussed for
three ranges of the cell volume as follows.

TABLE VI. Comparison of bond lengths and angles at different cell volumes in B~O3-I. (Relative
cell volume is the ratio to the optimized cell volume. )

Volume ratio
Lattice ratio

Distance (A)
B(1)-0(1)

-0(2)
-0(3)
-0(2')

B(2)-0(1)
-0(2')
-0(3')
-0(1")

0(1)-0(2)

0(2)-0(3)

0(3)-0(1)

exp.

1.404
1.366
1.336
2.616
1.336
1.400
1.384
2.636
2.387
2.388
2.409
2.333
2.309
2.409

0.60
0.84
cal.

1.340
1.387
1.290
1.422
1.338
1 ~ 340
1.289
1.423
2.175
2.176
2.271
2.034
2.030
2.273

0.80
0.93
cal.

1.319
1.315
1.308
2.099
1.314
1.320
1.305
2.119
2.252
2.254
2.332
2.184
2.184
2.335

1.00
1.00
cal.

1.354
1.329
1.338
2.524
1.329
1.355
1.337
2.529
2.327
2.329
2.331
2.284
2.285
2.343

1.10
1.03
cal.

1.379
1.343
1.355
2.670
1.344
1.379
1.354
2.675
2.371
2.372
2.346
2.337
2.339
2.347

1.20
1.06
cal.

1.407
1.357
1.372
2.807
1.358
1.407
1.371
2.812
2.414
2.417
2.414
2.388
2.372
2.358

1.30
1.09
cal.

1.439
1.370
1.389
2.931
1.371
1.440
1.388
2.935
2.457
2.460
2..457
2.439
2.441
2.370

1.70
1.19
cal.

1.535
1.387
1.399

1.390
1.542
1.398

2.606
2.618
2.373
2.503
2.504
2.375

2.00
1.26
cal.

1.655
1.368
1.380

1.368
1.656
1.379

2.727
2.727
2.387
2.503
2.502
2.387

Angle (deg)
O-B(1)-O

O-B(2)-0

B-0(1)-B
-0(2)-
-0(3)-

119.0
114.7
126.2
121.5
124.6
113.9
130.5
128.3
133.3

105.8
101.1
116.1
105.8
116.3
101.3
116.1
116.3
110.4

117.5
112.5
125.6
117.7
126.1
112.6
122.4
122.4
127.0

120.4
116.2
122.8
120.4
123.0
116.3
131.2
131.2
133.5

121.1
117.7
120.8
121.2
120.9
117.6
134.5
134.5
135.8

121.7
118.6
119.5
121.8
119.5
118.5
137.4
137.2
137.2

122.0
119.4
118.5
122.2
118.4
119.2
139.7
139.1
139.2

126.1
117.0
116.8
126.4
116.9
116.7
149.4
149.2
139.1

128.7
110.7
120.6
128.6
120.6
110.8
152.7
152.8
138.5
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TABLE VII. Comparison of bond lengths and angles at different cell volumes in B&03-II. (Relative
cell volume is the ratio to the optimized cell volume. )

Volume ratio
Lattice ratio

Distance (A)
B(1)-0(1)

-O(2)
-0(2')
-0(2")

O(1)-0(2)
-0(2')
-0(2")

0(2)-0(2')
-O(2")

O(2')-0(2")

exp.

1.373
1.507
1.506
1.512
2.364
2.440
2.409
2.428
2.394
2.389

0.60
0.84
cal.

1.274
1.335
1.314
1.367
2.142
2.202
2.205
2.125
2.179
2.080

0.80
0.93
cal.

1.328
1.406
1.390
1.447
2.234
2.305
2.319
2.257
2.281
2.230

1.00
1.00
cal.

1.358
1.461
1.451
1.507
2.313
2.365
2.408
2.366
2.351
2.350

1.10
1.03
cal.

1.376
1.498
1.484
1.568
2.376
2.402
2.464
2.428
2.403
2.415

1.20
1.06
cal.

1.396
1.535
1.517
1.636
2.446
2.450
2.530
2.489
2.466
2.489

1 ~ 30
1.09
cal.

1.416
1.561
1.542
1.725
2.507
2.499
2.604
2.539
2.525
2.567

Angle (deg)
0-B(1)-0

B-0(1)-B
-0(2)-
-O(2')-
-0(2")-

110.2
115.8
113.1
107.4
104.9
104.7
138.6
123.8
114.7
118.9

110.4
116.6
111.7
106.7
107.5
101.8
104.5
112.1
111~ 1

107.1

109.6
115.9
113.3
107.6
106.2
103.6
117.6
117.0
114.3
113.2

110.2
114.6
113.7
108.7
104.3
104.7
135.1
121.2
115.7
118.9

111.5
114.2
113.5
109.0
103.3
104.6
141.7
121.5
115.7
120.4

113.0
114.5
112.8
107.7
102.1
104.2
145.4
121.8
115.8
121.6

114.6
115.3
111.6
109.9
100.4
103.5
148.9
119.4
116.0
123.2

1. Relative cell volume = 0.80—1.30

In the initial configuration, all the B-O bond lengths
were varied in proportion to the cell-volume change.
After optimization the intertriangle angles (0-B-0) do
not change much, but the connecting angles (B-0-B)
change considerably. Thus the shape of the BO3 triangle
does not vary significantly; moreover, the B-0 bonds ex-
pand by S%%uo, so that they come close to the un-
cornpressed values. The change in volume is accommo-
dated largely by the change in the B-O-B connecting an-
gles. Among the contributions to the volume change, the
change in the B-0 bond lengths contributes 28%, while
the change in the connecting angles contributes 72%%uo.

The change in the B-O-B connecting angles therefore
clearly dominates the deformation of the structure.

2. Relative cell volume -0.60

The most interesting result is that the BO3 triangular
structural unit in the minimized structure for the 60%
cell volume turns into a BO4 tetrahedron. This corre-
sponds to a pressure-induced phase transition. Although
the original cell is only isotropically compressed and the
final structure is not completely the same as 8203-II, it
agrees with the observed phase diagram in that the four-
fold B04 structural unit is more stable than threefold
BO3 structural unit at high pressure. '

In the case of B203-II, the structure at 130% volume
does not exactly show the reverse structural transforma-
tion, but it shows the fourth B-0 bond becoming much

2.5
'D
O
cU

CO 2

O

O 1.5
CO

1-01
& -02

(~)-o(3)
(1)-O(2')

0.5
I I I I 1 I I I I I I I I I I ( I I I

1.5 2

relative volume

2.5

FIG. 4. Relation between the cell volume and B-O bond
length in 8203-I.

longer than the other B-O bonds. Therefore, this sug-
gests that this transformation is probably reversible at 0
K. On the other hand, it is interesting to note that no
transformation from B203-II to Bz03 -I has been ever ob-
served. There may be a barrier to the transformation
due to entropic factors.

We now consider the manner of the transformation.
We note first that the original structures of 8203-I and
8~03-II are closely related. Considering the latter, if we
define the B-0 bond length as being shorter than 1.51 A
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then only the first three shortest B-0 distances partici-
pate in the B-0 bonding; all boron atoms become three-
fold coordinated and all the oxygen atoms become three-
fold coordinated. These coordination numbers are the
same as for B203-I. Conversely, when B-O bonding is as-
sumed to be within 2.7 A in B203-I, that is, the first four
shortest B-0 distances participate in B-0 bonding, all the
boron atoms become fourfold coordinate, and one-third
of the oxygen atoms become twofold coordinated and the
remaining two-third become threefold coordinated.
These coordination numbers are the same as for B~03 II.
It is interesting that Berger's data, ' for B203 I which
was shown by Strong and Kaplow, and by Gurr et al. '

to be incorrect, has the same distribution of coordination
numbers if the cutoff in the B-O bonding is assumed to be
1.8 A. Therefore, Berger's data are not far from those of
the other two authors, although Berger concluded that
B203-I consists of B04 tetrahedra.

With this background we can explain the observed
manner of the transformation in B203-I as follows: As its
cell volume is reduced, the O(1) or O(2) atom approaches
the third 'new boron atom, B(2') or B(1'), which lies on
the other ribbon, and the oxygen and boron atoms start
to bond. However, the O(3) atom, which cross links the
different ribbons of the B03 triangle, keeps it coordina-
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FIG. 6. Various energy contributions to the total energy in
B&03-I. (Ek is the total kinetic energy; E, is the local pseudopo-
tential energy; E„Iis the nonlocal pseudopotential energy; Ez is
the Hartree energy; E,„„,is the exchange-correlation energy
correction; E, is the Coulombic energy; E„„is the core ener-

tion. The change in the B-0 bond distances is shown in
Fig. 4. The pattern of the structural transformation is
shown in Fig. 5.

The B-O coordination number changes from three to
four smoothly without breaking any B-0 bonds. It is in-
teresting to note that Tsuneyuki also observed the
smooth structural transformation from the Si04 tetrahed-
ron into the Si06 octahedron in his MD study.

What is the driving force for this transformation? It is
useful to analyze the individual energy contributions to
the total energy, as was shown by Yin and Cohen.
These are shown in Table VIII and Figs. 6 and 7. The
contribution of the Coulombic energy (E, ) is much larger
than that of the others. When the cell volume is reduced,
the Coulombic energy becomes larger, and as is well
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FIG. 5. Schematic diagram for structural transformation.

FIG. 7. Various energy contributions to the total energy in
B203-II. (Ek is the total kinetic energy; E, is the local pseudo-
potential energy; E„Iis the nonlocal pseudopotential energy; Ez
is the Hartree energy; E,„„,is the exchange-correlation energy
correction; E, is the Coulombic energy; E,

„

is the core ener-

gy. )
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TABLE VIII. Comparison of various contributions to the total energy in 8203-I and B,O3-II. (Relative cell volume is the ratio to
the optimized cell volume. )

82-03-I
Volume ratio 0.6

(eV/B&03)
0.8 1.0 1.2 1.3 1.7

Total kinetic energy
Local potential energy
Nonlocal potential energy
Hartree energy
Exchange-correlation
Coulombic energy
Pseudopotential core energy

992.94
—1182.92

226.99
—270.55

110.46
—1336.11

18.51

959.38
—1242.35

229.31
—351.10

107.72
—1159.29

13.88

940.78
—1282.02

236.65
—428.66

106.10
—1021.02

11~ 10

932.50
—1294.40

231.80
—461.61

105.40
—966.76

10.09

924.87
—1303.78

233.05
—490.83

104.75
—920.05

9.25

917.76
—1310.85

234.28
—516.67

104.14
—879.56

8.54

905.87
—1341.47

236.10
—635 ~ 58

103.03
—715.43

6.53

Total energy —1440.68 —1442.44 —1443.06 —1442.99 —1442.75 —1442.36 —1440.94

8203-II
Volume ratio 0.6

{eV/B 0,)

0.8 1.0 1.2 1.3

Total kinetic energy
Local potential energy
Nonlocal potential energy
Hartree energy
Exchange-correlation
Coulombic energy
Pseudopotential core energy

1017.84
—1128.88

228.27
—202.41

112.77
—1488.57

22.89

969.27
—1188.96

231.42
—280.21

108.97
—1300.32

17.17

944.14
—1231.32

233.70
—363.06

106.82
—1147.37

13.74

931.53
—1241.91

235.52
—391.71

105.78
—1094.81

12.49

918.67
—1247.78

237.60
—410.45

104.72
—1056.79

11.45

907.69
—1253.03

239.34
—427.25

103.81
—1023.15

10.57

Total energy —1438.10 —1442.65 —1443.36 —1443.12 —1442.58 —1441.83

known this Coulombic energy favors high coordination.
On the other hand, when the cell volume increases, the
electronic kinetic energy (Ek ), the electron-electron
Coulomb energy (Eh ), and nonlocal pseudopotential en-

ergy (E„&)are reduced. This favors the lower coordina-
tion state in which the valence electrons prefer to be uni-
formly distributed. The Coulombic contribution is clear-
ly, however, the driving force for the transformation
from the B203-I to 8203-II structures.

3. Relative cell volume =2.0

The 170%%uo cell volume corresponds to the volume in
the 1500 K molten state. However, even in the case of
200% cell volume, the structure still keeps the same
structural units and the boroxol ring is not observed. It
is interesting to note that one of the longest B-0 bonds is
elongated, while the other two bonds begin to shorten.
Although the longest bond is still thought not to be bro-
ken, its bonding is weakened and the other two bonds are
strengthened. This means that the bonding state is
changing from threefold to twofold coordination. This
structural feature may be present in the molten state.

IV. CONCLUSIONS

The application of first-principles total-energy calcula-
tions to Bz03 has given the following important results.

(i) A common set of pseudopotentials for boron and ox-
ygen can reproduce two different crystal structures
(Bz03-I and Bz03-II) well. With this pseudopotential, not
only lattice parameters but also internal coordinates are
adequately modeled.

(ii) The bulk modulus is estimated as 26 GPa for B203-
I and 126 GPa for B203-II.

(iii) When the cell volume is reduced, the structural
transformation from the BO3 triangular structural unit
into the B04 tetrahedral unit is observed. The manner of
its transformation has also been elucidated.

The cASTEp program can be used for MD. In the near
future, the structure of a large system, that is a super cell
of a disordered system, will be simulated. At the moment
the feasible number of atoms would be 50—60 which
when used would be dificult in realistically reproducing
the vitreous structure. In subsequent papers, we will,
however, show how the structure of glassy B203 may be
modeled using MD simulation methods employing
effective potentials.
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