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High-frequency damping of plasmons in quasi-one-dimensional electron systems
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An asymptotic expression for the imaginary part of the dynamic dielectric function e2(k, ~) is
studied for model quasi-one-dimensional (@1D) electron systems. Derived within the two-particle-
hole pair excitation approximation, valid for all k and high frequencies, e2(k, u) is utilized to cal-
culate the plasmon damping in a GaAs QlD structure. An interpolation formula for the frequency
dependence of the the dynamic local-Beld factor G(k, w) is obtained.

I. INTR.ODUCTION

Quasi-one-dimensional (Q1D) electron systems as re-
alized in semiconductor structures, in which the elec-
trons are confined to moving freely only in one space
dimension, have been a subject of much interest. With
the advent of growth techniques, it has become possi-
ble to manufacture Q1D systems with many interesting
experimental results. The main motivation for study-
ing these low-dimensional systems comes from their tech-
nological potential such as high-speed electronic devices
and quantum-wire lasers. Apart from the practical impli-
cations, electrons in Q1D structures offer an interesting
many-body system for condensed-matter theories.

Collective excitations in an electron gas, may be stud-
ied as complex poles of the density-density response func-
tion y(k, ~) or as peaks of the dynamic structure factor
S(k, w). The density-density response function is quite
generally expressed in terms of the proper polarizability
II(k, cu) and the interaction potential between the parti-
cles V(k):

y(k, cu) = II(k, ~)/[1 —V(k) II(k, ~)j = II(k, ~)/e(k, cu),

(1)

where we have also defined the dynamic dielectric func-
tion e'(k, w), the zeros of which describe the plasmons
(collective excitations of an electron gas). In the random-
phase approximation (RPA), the proper polarizability
is approximated by the Lindhard function II (zeroth-
order diagram in perturbation theory). Experimen-
tal observation of collective excitations in QlD electron
systems came from far-infrared and magnetoresistance
Ineasurements and they are in accordance with theo-
retical predictions.

Landau daInping is a decay mechanism for collective
excitations in which the mode excites a single particle-
hole pair. In contrast to the 2D and 3D cases, the QlD
electron system does not exhibit Landau damping ex-
cept on lines k /2m+ kk~/m, where k~ is the Fermi mo-
mentum. Furthermore, the Q1D plasmons, due to their
dispersion (within RPA), approach the Landau damping
line k /2m + kk~/m only asymptotically. Thus, QlD

plasmons do not decay into a single particle-hole pair,
and have a very long lifetime. A finite width (damping)
of the collective excitations arises due to diagrams con-
taining multiparticle-hole excitations in the intermediate
states. Our aim is to study the damping of plasmons
in Q1D electron systems originating from multipair ex-
citations at high frequencies. Glick and Long have sys-
tematically investigated within the second-order pertur-
bation theory the damping in a 3D electron gas, consid-
ering all two-particle —hole pair excitations. Extending
this asymptotic approach, Holas and Singwi obtained
results valid for all wave vectors k, and high frequencies
~ )& E~. There have been other approaches to investi-
gating the s(k, ~) in different regimes and approximation
schemes. '

In this paper, we apply the analysis of Holas and
Singwi to Q1D electron systems as they occur in
semiconductor structures. For model interactions be-
tween electrons, we investigate the imaginary part of
the (second-order) dielectric function ez(k, u). Based on
e'2(k, u)), we estimate the plasmon damping at high fre-
quencies, and study the dynamical local-field corrections
by constructing a model that would be useful for further
applications. Since the Q1D plasmons are undamped
within the RPA, it is important to include the effects
of multipair processes in order to obtain finite lifetime
results at zero temperature.

The rest of this paper is organized as follows. In Sec. II
we introduce some models for QlD electron systems. The
asymptotic form of e2(k, ur) in Q1D systems is presented
in Sec. III. We use Ez(k, m) to calculate the high-frequency
plasmon damping and to construct a &equency depen-
dent local-field factor in Secs. IV and V, respectively. We
conclude with discussion of our results and some remarks
in Sec.VI.

II. MODELS

The first model we use in our calculation for the Q1D
electron system is developed by Hu and O' Connell, and
is applicable to the experimental realizations of semi-
conducting systems. The charge carriers are assumed
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to be in a zero thickness x-y plane with a harmonic
confinement potential in the y direction so that the
subband energies are s = O(n + 1/2), where 0 de-
scribes the strength of the confining potential. The
Coulomb interaction between particles in the lowest sub-
band within this model is given by V(k) = (2e /ep) E(k),
where E(k) = (1/2) exp(b k /4) Kp(b k /4), in which
Kp(x) is the modified Bessel function and ep is the back-
ground dielectric constant. The characteristic length
b = I/(mO) ~ is related to the confining potential. The
large k limit of the parabolic confinement model gives
E(k) m (7r/2)'~'/(bk).

As a second model, the Q1D structure is realized as
a cylinder of radius B with an infinite potential barrier.
Gold and Ghazali have obtained an analytic expression
for the Coulomb potential for this case using approximate
wave functions

r-

r

FIG. 1. Characteristic frequencies and frequency ranges for
a Q1D electron system. Horizontally hatched region is the sin-
gle-particle —hole region, of which the upper edge is (dspE(k).
Dashed line indicates u, ~ (k). Vertically hatched area is
the estimated region of validity of the asymptotic form of
sz(k, u). Thin solid line gives the plasmon frequency, cup&(k)

for the cylindrical model at B = a&, and r, = 1.
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For large A:, the cylindrical confinement; model gives
F(k) ~ (36/10)/(kR) z. We note that the two models we
consider difFer in their large A: behavior. For long wave-
lengths, viz. , k m 0, both models behave as ln(xk),
where x is some length parameter, depending on the Q1D
model used. The weak logarithmic A: dependence, on the
other hand, is a result of the efFective Coulomb inter-
action between the charge carriers in a QlD structure,
and is essentially independent of the model describing
them. ""

III. ASYMPTOTIC EXPRESSION
FOR THE DIELECTRIC FUNCTION

Employing the asymptotic formula of Holas and
Singwi for the imaginary part of the dielectric func-
tion corresponding to second-order diagrams with two-
pair excitations, we obtain for Q1D systems

volved in this problem in Fig. 1. The vertically hatched
area is the region of validity of the asymptotic form of
zz(k, u), calculated by w & 2max [tu,„(k),(uspE(k)].
Shown by the horizontally hatched region is the single-
particle —hole continuum. The upper edge of this region
is the single-particle excitation line given by tuspE(k).
The dashed line indicates cu,r (k). We also show, by
the thin solid line, the plasmon frequency (upi(k) for the
cylindrical model with B = a~, and r, = 1.

We note that the asymptotic form (i.e. , k ~ 0, u —+ oo)
of the imaginary part of the dielectric function behaves
as sz(k, u)) - ~ln(xk)~ k ~ "~', or ~ln(xk)~ k (u

for parabolic confinement or cylindrical models, respec-
tively. Here we assumed that for any reasonable confine-
ment model, the Q1D Coulomb potential V(k ~ 0)

~
ln(xk)~, where x is some length parameter. These re-

sults for s2(k, u) in Q1D are to be compared with the
corresponding forms A: w / in 2D and A: u / in
the 3D. The large w dependence of the parabolic confine-
ment model is similar to that of the 3D case, whereas the
cylindrical model yields a much stronger w dependence.

IV. PLASMON DAMPING

g
4

s2(k ~) =
I

—
I (r.'i~) +(k)(~) (kp) I ~ )

x+'(Q) I&(Q) —1]' [1+&(~)] (3)

where A(Q) = [Q/V(Q)] dV/dQ, Q = (m~)i~, and EJ;
is the Fermi energy. In the above, r, is the electron gas
parameter defined by r, = I/(2na~), where n is the num-
ber density and a~ = ep/(me ) is the effective Bohr
radius. The accuracy of the above expression (which
is valid for any k) is of the order r), defined as g
[u,„(k)/ur] ~, where w, ~ (k) = (k2 + 2k+2/3)/(2m).
Choosing q & 0.7 already results in better than 1%% accu-
racy, as evidenced from exact Monte Carlo integration of
the full integral. As shown by Holas and Singwi, the
validity of the asymptotic formula for sz(k, w) is also re-
stricted to the region ur )) wspE(k) = (k + 2kk~)/(2m).
We display various frequencies and frequency ranges in-

The plasmon dispersion relation for QlD electron sys-
tems js obtained in closed form within the RPA '

u(k) ~2 ~2
~,'i(k) =,„(„)+ (4)

where si(k, u) =
& si (k, w), and more explicitly for QlD

where u(k) = (2/vr) (7r/4) (k/k~)/E(k) and
2E~

~
(k/ky ) /2 + (k/k~) ~. The function urpi(k) gives the

plasmon energy (or frequency) for a given k, as the peak
position in the energy-loss function S(k, w). The width
of the plasmon peak associated with a damping mecha-
nism is also determined from the loss function, written
for frequencies in the vicinity of upi(k). The full width
at half maximum is given by

I'(k) sz (k, ~)
2 si(kl) (8) (~)
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systems,

0 4 (k jkp)s
t ur2(k) ) 6 1 )Q(kcu) = —

/ i
1+Q i—

) (~) (8)

(cu/2EJ. )
[(~/2Ep) ' —~'-] [(~/2Ep) ' —~+1

'

in which su~ = ((k/kp) /2+ (k/kp)]. We have calculated
the plasmon width I'(k), in our model Q1D systems using
the RPA results for peak position u~I(k), and ei(k, w),
while employing the asymptotic formula for e2(k, cu). In
Fig. 2, we show I'(k) (in units of 2') as a function of k
for the electron gas parameter r, = 2 and 3 (from top to
bottom). The solid and dotted lines refer to the cylindri-
cal wire and parabolic confinement models, respectively.
We have used B = a~ and 6 = a~ in the calculations.
The use of the asymptotic expression of e2(k, ur) in Eq. (5)
requires that the ratio (dspE(k)/(d&I(k) be small. How-
ever, this quantity approaches unity as k increases. The
validity of our results for I'(k) also depends on the small-
ness of the parameter Fl = [Id,~ (k)/~pI(k)] ~, which
increases sharply for small k. Therefore, in Fig. 2, we
have only plotted I'(k) for those values of k that allow a
meaningful estimate. We considered the region bounded
by ~»E(k)/~»(k) & 0.5 and FI & 0.5. Similarly to the
2D case analyzed by Holas and Singwi, there appears a
minimum r, below which the present method fails.

V. LOCAL-FIELD CORRECTION

where (u (k) = (4/vr) r, (k/kp) F(k) (2Ep) is the long-
wavelength limit of plasmon dispersion relations. Note
that ur (k) may be obtained from the full RPA expres-
sion w I(k) by letting u(k) ~ 0 (i.e. , k ~ 0 limit). Us-
ing now the asymptotic expression for e'2(k, w), the high-
&equency limit of the imaginary part of the local-field
factor becomes

27r/(bkp)2 (2EF/u))si~,
vr E(k) (108/10) (Rkp) 4 (2Ep/u)) si2

for parabolic confinement and cylindrical models, respec-
tively. We contrast this with the corresponding results
of Im G ~ k ~ and Im G ~ k ~ j in 2D and 3D, re-
spectively. We observe that the large u behavior of Im G
for the cylindrical Q1D model displays an unusual w de-
pendence. Since the Im G u j case has been treated
by Dabrowski in the context of 3D electron gas, we turn
our attention to the Im G ~ u / behavior and develop
a model for the local-field factor of a cylindrical quan-
tum wire. The high-frequency limit of Im G, combined
with the small-tu behavior (lim ~o Im G ~ w in all space
dimensions), may be used to construct a model G(k, w)
that incorporates these limits. We propose the form

As a second application of the asymptotic form of
e2(k, cu) in QlD systems, we consider the dynamical
local-field corrections defined as

G(k, (u) = 1/Q (k, ~) —1/Q(k, ~),

where Q (k, w) = —V(k) II (k, w), and similarly for
Q(k, w). In particular, using Eq. (1) we have Q(k, u) =
e(k, cu) —1. The local-field corrections take the exchange
and correlation eKects into account, in an approximate
way, neglected by the RPA. Since Im Q vanishes for
frequencies w ) (uspE(k), we may write Im G(k, ~)
e2 (k, w) j~Q (k, u)

~

. In the large w limit,

a(k) (cu /2ep)
[1+6(k) ((u/2Ep)2]7~4 '

in which a(k) and b(k) are wave vector and number den-
sity dependent parameters to be determined. The real
and imaginary parts of the local-field factor are related
by the Kramers-Kronig relations. This allows us to ob-
tain lim ~o Re G(k, cu) = G(k, 0), the static local-field
factor, and lim ~ Re G(k, w) = G(k, oo). Comparison
of Eq. (9) in the large-u limit, and Eq. (10) yields a(k) =
A 6 ~ (k), where A = (r, /7r) (108/10)2/[(Bkp)4 E'(k)].
Considering the Kramers-Kronig relation at ~ = 0,

G(k, 0) = G(k, oo)

2.0

1.5—

k/kF
I

I
I I I I

I
I I

2 a(k)
II [1 + b(k) ((u/2Ep) 2]~/4

1.0— we finally get

0.5—

Q Q I I I

0.0 0.5
k/kF

1.0
I I I I I I

1.5
and

G(k, 0) —G(k, oo)
AD (12)

FIG. 2. Plasmon damping as a function of A;, for cylindri-
cal wire (solid lines) and parabolic confinement (dotted lines)
models. Upper and lower curves are for r, = 2, and 3, respec-
tively.

G(k, 0) —G(k, oo)
AD

where the numerical constant D is given by
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D = —
i 0.55642.

2 dx
vr o 1+x' 7i4

This shows that a model of G(k, w) may be constructed
for a cylindrical quantum wire, provided the static local-
field factors are known.

VI. DISCUSSION

We have used the general formulation of Bolas and
Singwi to calculate the asymptotic form of the imagi-
nary part of the dynamic dielectric function for QlD sys-
tems. Considering the QlD electron gas formed in con-
fined structure in the lowest subband, we used the bare
Coulomb interaction between the electrons. The low-
est subband approximation is valid provided the higher
subband energies are much larger than any other energy
scales in the problem.

Bachlechner et al. have investigated the plasmon
damping in 3D and 2D electron gas within the second-
order perturbation theory, and showed the equivalence
of different approaches that take the two-pair excitations
into account. Carrying out a detailed Monte Carlo in-
tegration of the exact expression for s2(k, w) which in-
cludes two-pair excitations, they showed that asymptotic
results well represent the full e2(k, tu). We have not per-
formed such a calculation for Q1D systems, but expect
similar accuracy, provided that care is taken in handling
the mathematical structure of the integrand.

Recently, Hu and Das Sarma studied the many-body

properties of QlD electron systems using finite temper-
ature perturbation theory techniques. They found that
temperature and impurity scattering effects cause damp-
ing of the plasmons as k increases. It is interesting to
note that; our calculated plasmon damping is of the same
order for comparable electron densities and wire sizes, al-
though the decay mechanisms in two cases are of different
origin.

Our discussion in Sec. V shows that a parametrized
model of a local-field factor may be constructed. for
Q1D electron systems consistent with the low- and high-
frequency limits. The parameters of the model are the
static local-field factors G(k, 0) and G(k, oo), which, in
turn, may be related to the correlation energy of the
Q1D system similarly to the 2D and 3D electron gas. is
Presently, there are no parametrized expressions for the
correlation energy of Q1D electron systems from which
the static local-field factors can be deduced. A similar
construction of G(k, w) is also possible for different wire
models.

Our results of plasmon damping and the dynamical
local-field factor for widely employed models of Q1D elec-
tron systems could be used for further applications such
as density-functional calculations.
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