
PHYSICAL REVIEW B VOLUME 51, NUMBER 20 15 MAY 1995-II

Nonlocal optical response of assemblies of semiconductor spheres
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Linear optical response of asserr:blies of small semiconductor spheres is studied by using a nonlocal
theory. A self-consistent treatment of the Schrodinger and Maxwell equations naturally leads to
complex radiative corrections to electronic levels. The size and the dimensionality dependence is
examined from the response spectra and the matrix elements of the retarded interaction. For one and
two dimensional infinite lattices of the spheres, it is shown analytically that the complex radiative
corrections obtained by this semiclassical approach agree with those obtained by +ED. The size
dependence in finite systems is investigated numerically for some geometries. It is shown that the
Coulomb interaction causes a strong geometry dependence of response spectra even if the system
is much smaller than the wavelength of resonant light. The size-resonant enhancement of induced
polarization is also investigated.

I. INTRODUCTION

Recently, there has been a strong current interest in the
study of mesoscopic (MS) systems. A common feature of
the interest is the appearance of material coherence in
observed quantities. Physical properties of MS systems
are expected to d.epend. strongly on the size and shape
of samples, because of the coherence of electronic wave
functions. This aspect has stimulated the studies of MS
systems &om both fundamental and. applicational points
of view.

As to the optical properties of MS systems, the fun-
damental problem is how to include nonlocality in its
theoretical &amework in a feasible manner, and. the main
applicational interest is to find out systems with high op-
tical nonlinearity through optimal combination of size,
shape, and internal structure. As a measure of the
strength of the radiation-matter interaction H', one usu-
ally considers oscillator strength, but a spontaneous emis-
sion (SE) rate is more appropriate. Though both of them
are directly related to the matrix element of the transi-
tion dipole moment, the former is a valid concept only in
a long wave approximation (LWA), with the information
of field amplitude eliminated. The matrix element of H'
reflects both the details of material wave functions and
the mode structure of the electromagnetic field, thus de-
pending sensitively on the size, shape, and internal struc-
ture of MS systems, and the SE rate is largely affected by
putting resonant systems into various cavity structures.

A simple argument of the size dependence of the SE
rate is based on the LWA of the transition dipole mo-
ment of size-quantized excited states. Within the LWA,
i.e. , when the sample size is much smaller than the light
wavelength, the SE rate (or the radiative width) of size-
quantized excited levels and. the third-order nonlinear
polarizability yls& (Refs. 6 and 7) are proportional to the
sample volume. There is also an experimental report on
the size enhancement of radiative decay rate in a semi-
conductor microcrystallite in a certain range of sample
size.

Though this type of size enhancement of the SE rate
occurs for small samples satisfying the LWA condition,
infinitely large systems also show an enhanced SE rate.
A calculation of the SE rate for crystalline arrays of
molecules in one- and two-dimensional lattices shows a
larger rate than for a single molecule, and the rate de-
pends strongly on the dimensionality of the array. This
calculation makes full use of the translational symmetry,
and therefore, is limited to the infinite lattices.

Theoretical studies of the size dependence of the SE
rate have been limited to either LWA or infinite crystals,
and the size region connecting these two limiting cases
has been left unexplored. Its study is one of the main ob-
jects of the paper. Prom this study, it will be elucidated
how the size enhancement in the LWA regime becomes
saturated. through the increasing weight of nonlocality,
and how the size-dependent nonuniformity of internal
electromagnetic field plays an essential role in the op-
tical response. The present study is based on the frame-
work of nonlocal response theory developed previously.
Though it is a direct consequence of quantum mechanics
and (microscopic) electromagnetic theory, its appearance
is somewhat different &om standard theory. Therefore,
we give its outline and the relationship with other re-
sponse theories in Appendix A.

Generally, perturbation at a point can induce response
at other points through the coherence of the electronic
wave functions. In this sense, the susceptibility is non-
local. Mathematically, the nonlocal form of the suscep-
tibility function is nothing but a result of application
of the perturbation theory to the Schrodinger equation.
The current density is given as a functional of the vector
potential, while the vector potential is obtained as a func-
tional of the current density plus the &ee field, by solving
the Maxwell equations. Another important feature of the
susceptibility function is that the current d.ensity is writ-
ten as the sum of the products of the matrix elements
of the current density operators at two positions. This
separability feature allows us to reduce the problem to
a set of linear equations, whose coeKcients contain the
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retarded interaction among the induced current densities
mediated. by rad. iation fields and give rise to the radia-
tive correction (shift and broadening) to the material lev-
els. This interaction may be called radiation reaction. In
the following, we will conventionally use the polarization
density and the transverse electromagnetic fields instead
of the current density and the vector potential, because
those are essentially the same physical quantities.

It is not surprising that the SE rate can be obtained
without quantization of light. It is known that the SE
can be attributed either to the radiation reaction or the
vacuum fluctuation or to both according to the ordering
of operators. ' Thus, whether one should ascribe SE
to radiation reaction or to vacuum Huctuation is just a
problem of interpretation. The radiative decay is explain-
able semiclassically if we consider the radiation reaction
correctly, because the equations of motions are the same
and the main part of the radiative decay does not contain
the Planck's constant. In fact, it has been shown for a
two level model in Ref. 10 that the radiative decay can be
correctly obtained &om this formalism and we will show
it again for infinite periodic array systems.

The nonlocality is essential to a unified description of
optical responses &om microscopic to macroscopic sys-
tems. The size and. the shape of the induced polarization
density determine the character of the retarded interac-
tion. The shape of the polarization strongly depends on
the geometry of the system. It will be shown that the
radiative correction is diferent for di8'erent geometries
even if the system is much smaller than the wavelength
of the resonant light. Careful treatment by the nonlocal
theory has also shown that y~ ~ grows linearly with the
volume when the system size is small and gets saturated
as the size becomes larger.

Another importance of the nonlocality has been
pointed out as to the radiative shift in finite systems.
The y( ) in w representation has poles at the excita-
tion energies Eg, of unperturbed material systems. Since
the susceptibilities are defined perturbationally and de-
scribed in terms of the variables in unperturbed systems,
the energies do not contain the radiation-matter inter-
action. The energy of pump light is chosen so that the
systems are resonantly excited in order to get the strong
third-order response. The retardation, however, shifts
the resonant energies &om E~ to Ep. This causes incom-
patibility of the resonant conditions for the large y~ ~ and
for the large induced dipole moment density. When the
size (or the shape) of the system is changed, the radia-
tive shift changes as well as Ep's subject to the boundary
condition. It may happen that Ep = E~ for A P p, . In
this case, the two conditions mentioned above can be sat-
isfied simultaneously and we can expect a large nonlinear
signal. The spatial form of the induced dipole density is
unlike that of the incident field, because the dipole den-
sity corresponding to the state p, is dominant. This eÃect
may be called "nonlocality induced double resonance in
energy and size (NIDORES). "i4 Although the NIDORES
e8'ect is referred to the nonlinear processes, its condition
can be fixed within the linear response.

In this paper, we study the linear optical response of
various assemblies of small semiconductor spheres, using

the nonlocal theory. Changing the number and the ar-
rangement of the spheres, we examine the size and the
dimensionality dependence from the response spectra or
more directly from the matrix elements of the retarded
interaction. The matrix elements can be evaluated an-
alytically for a single sphere and infinite lattices of the
spheres. Comparison with the results obtained for molec-
ular systems by QED (Ref. 9) shows that the same com-
plex radiative shift can be obtained also &om the semi-
classical approach. A sum rule is derived for the radiative
widths. It is shown that the sum of the radiative widths
of all the modes is the sum of those of individual spheres.
The main part of the radiative widths is, however, con-
centrated on the modes whose averaged wave numbers
are smaller than the wave number of the resonant light.
The radiative width is monopolized by the mode with the
largest dipole moment, when the system size is smaller
than the wavelength of the resonant light. The responses
of finite systems are investigated numerically. The size
dependence is simple for a linear system. The behav-
ior can be understood from the analytic consideration.
In two and three dimensional systems, the behavior is
more complicated, due to the long range nature of the
dipole-dipole interaction. The NIDORES condition is
also investigated.

In Sec. II, we summarize the nonlocal formulation
which is to be used. The model is introduced in Sec.
III. In Sec. IV, we analyze the matrix elements of the
retarded interaction. Comparison with the results of a
QED calculation is made for a single sphere and peri-
odic systems. Section V gives numerical results for finite
systems. Section VI is devoted to a discussion and con-
cluding remarks.

lI. FQB.MULATION

dr'y(r, r', ~)E, (r', ~), (2.l)

where E, is the transverse part of the Maxwell electric
field. E:

Ed,p(r) co) = giad dlv dr' P(r', cd) (2.3)

We here just summarize the part of the formulation
that we are to use. The detail is described in Ref. 10.
The essential point is the self-consistent determination of
induced polarization and corresponding electromagnetic
field (or the current density and the vector potential) by
solving Maxwell and Schrodinger equations simultane-
ously. Solving the Schrodinger equation with the vector
potential A (in Goulomb gauge, i.e. , divA = 0) perturba-
tionally to the first order, we have the polarization given
as
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. ( p), (r)*p„(r') &„(r)p~(r')* )
& YA EA + ~ + &+A )

where

&'g(r) —= 0(r)&'(r)e&. (2.9)

+ ) yI„eye„h(r —r')8(r)g(r') .
Cn

{2.4) The coeKcients F, F, and G are defined as

The p&(r) is the transition dipole density between the
ground state and the state A with excitation energy Ep.
It should be noted that the material Hamiltonian is de-
fined to contain the full (instantaneous) Coulomb inter-
actions among charged particles. The electronic system
is assumed to be in the ground state in the remote past,
and the interaction with light is switched on adiabati-
cally (p& = 0+). We have neglected the quadratic term
of A in the Hamiltonian, since we are considering linear
response. We have also neglected the linear term of A
in the expression of the current density, since the reso-
nant efFect is our concern. If we retain this linear term, it
can be shown that the term yields factors (he@/Eg) and

(Ru/Fp—) for the resonant and antiresonant terms, re-
spectively. It should be noted that the factor (Ru/Eg) is
almost equal to unity at the resonance condition. Though
there appears an extra factor —1 for the antiresonant
terms, they are negligible as far as we investigate the res-
onant structures. The neglected terms will be included
in future work, in which we generalize the present theory
together with the extension to nonlinear responses.

The last term of Eq. (2.4) is attached to take account
of neglected degrees of freedom in the form of the back-
ground susceptibility. The eg is the unit vector pointing
to the ( axis (( = x, y, z) and 0 is unity in the region
which the matter fills, and is zero elsewhere. Although
we introduce the background susceptibility, the formu-
lation can be applied almost in parallel with the case
without it. By expanding the b function in terms of a
complete set, (p;f, as

Pr = (&. —d —*») ' f dr p~(r) K (r),

P, = (Z„dn +r~„)-'f drpi(r) E, (r),

(2.10)

(2.11)

G;r = ) yq~„~ f dry„(r) K',.(r) . (2.12)

(EP Rl) zing )Fg ) [AgdFdd+ dAgP FP]

—) Bp,gG;( = c„, (2.13a)
ig

(E), + Ru + ipse)cp —) [A~„F„+A'„„F„]

—) Bg,;gG;( = c„, (2.13b)
ig

) (y~ l )t„G;„—) C;g „G.„

—) (B,'~ „F„+.B,'(„F„)= d,.~. , (2.13c)

The self-consistent equations (2.1) and (2.6) for E(r, ~)
and P(r, cu) are rewritten into a set of linear equations
for F, F, and G as

~(r r ) = ).&'(r)&'(r ) (2.5)
where

E(r, (u) = Eo(r, (u) + E„(r,cu), (2.6)

the "separable" property of y(r, r', w) is preserved. The
solution of the Maxwell equations with the polarization
as a source term is given as

A),„= R[p„,p„*], Ap„——7Z[p)„p„],

= &(&~ ~,] A~, = &[I~ &*]

»,*( = &[S~ V,g] B~;~ = &[s~ &;g]
where Eo is the incident field (the homogeneous term)
and the inhomogeneous term E„ is given as

&iq[r —r'[
E (r, tu) = (q + grad div) dr', P(r', u), (2.7)

[r —r'[
with

B,'g, ~ = &[V,'g ~~]

&'~,'. = &[~,*~ ~,.]

&['P'g~ »] ~

(2.14)

Combining Eqs. (2.1) and (2.6) and making use of the
separability of y, we get

( 2 iq(r —r'(
Rfpq, p„] = fjdrdr' pq(r) . p„(r')

P(r, ) = ) [E„p„*(r)+F p„(r)j +) G;g~;~(r), —div p„(r)div p„(r') r —r'
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(o)

px(r) ' Eo(r)dr

»(r) E.(r)dr,

~p,*~ (r) Eo (r) dr .

(2.16a)

(2.16b)

(2.16c)

It should be noted that 'R represents the retarded inter-
action among induced dipoles via photons, while all the
information of the incident field are included in c& )'s,
c~ ) 's, and d~ ) 's on the right hand side of the equations.
Equations (2.13a)—(2.13c) may be written in a matrix
form,

(2.17)

The resonant frequency is determined by the zeros of the
determinant of the coefficient matrix (S), which contains
R. This is the same condition for the existence of non-
trivial solutions of (I', I",G) in the absence of the incident
field (c&

——c&
——d,

&

——0). The energy correction,
due to the retarded interaction, has generally a complex
value. The imaginary part of the correction gives the
spontaneous emission rate.

With the use of the Fourier transform, 'R may be ex-
pressed as

+[pxi pg ]
1 f 1 ].

dk —
l

. +
I

~'s (k) p, (—k) — p (k)», (—k). k
k (k Q

—EC k+ g+ XE)

+ —„ I k, + ~, I fi»(k) klfi„(—) ).k)I,
1(

(2.18)

where

S»(k) = d»~(r) e'"' (2.19)

with k = lkl and e = 0+. The behavior of p&(k) at
lkl M oo is iiilportant to give a finite retarded interaction.
Point dipole approximation for p&(r) yields ultraviolet
divergence in Eq. (2.18).

The solution (2.7) with (2.8) gives the response field at
any position r. At a point far from the matter (lrl —+ oo),
the response 6.eld has an asymptotic form as

system size in comparison with the wavelength A.

Although the above formulation will generally be used
in the numerical calculation of response spectra, only the
part of the equations containing the matrix A dominates
the resonant structures. In particular, when the resonant
energies are well separated &om one another or when the
ofF-diagonal elements of the matrix S are small, the self-
energy correction to Ep is determined mainly by —App.
It mill be shown that the response spectra in resonant
ranges are reproduced by the diagonal elements of A. at
least for the parameter values and geometry used in the
numerical study.

E.(o) - — Q(+o)V*io(~) —m i»'(~))
III. MC)DEI

+I"oIV'i oI a) —m io(—~)l)—

(2.20)

with q = qr/r . The quantity inside the outermost brack-
ets depends only on the angle but not on the distance.
The response spectra to be calculated later is its abso-
lute square. When the matter system is small compared
with the wavelength A = 2n/q, the leading term of p&(k)
is k independent and p&(0) is a vector associated with
the Ath excited state. Then E„(r) is the superposition of
the dipole patterns of all p&(0) and ip;&(0) . When the
system is large, the k dependence of p becomes impor-
tant, which produces an extra angle dependence of K„
at r ——i oo. From Eq. (2.18), vie see that the retarded
interaction also follows this criterion. Thus, the response
of the systems is expected to change according to the

p g(r) = pg~oi o(&olr —r l)6'(& —lr —r I),

(No =
2R3 (3 1)

We consider D-dimensional lattices with a lattice spac-
ing 6 of semiconductor spheres. The 6 is taken to be much
smaller than the wavelength of resonant light so that the
system may be either microscopic and macroscopic de-
pending on the number of the spheres. It is assumed
that each sphere is so small that the level separation due
to size quantization of the exciton center-of-mass (CM)
motion is quite large and thereby a degenerate two level
model may be adopted to describe the resonant structure
of each sphere. We also assume that the radius of the 18-
type relative motion is so small like in CuC1, in which
the radius is about 7 A, that the transition current den-
sities reQect the detail of the CM wave functions alone.
Then the transition dipole densities for each sphere are
expressed as
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where B is the rad. ius of the sphere, r is the center of
the mth sphere, 8 is the Heaviside function and ( refers
to the degenerate excitation levels with the transition
dipole moments directed to the x, y, and z axes. The kp is
determined by the size-quantization condition, jo(koR) =
0, i.e. , kpR = vr . The amplitude of p& is related to
the longitudinal and transverse splitting Lg~ in the bulk
crystal as

Pg 4
~b ) (3.2)

p„(r) = ) i()i( tp ((r),
m(

(3.3)

where tug g and the corresponding excitation energy are
determined by

.tmg;n~~wn& = E~~~mg,
nn

(3.4)

with

~m( mg = Ep~(g ) (3.5)

(&). & ) 3(&g 'r )(p 'r )
rmn

(m g n) (3.6)
&mn —X'm &n y ~mn — &mn q ~mn —&mn ~mn

where eb is the background dielectric constant. The reso-
nant energy E„ofan isolated particle is given as the sum
of the bulk excitation energy Eb, the size-quantization
energy E,q = (hko) /2M, and the depolarization shift
E~,~ = Ai,~/4m inside the sphere, where M is the mass
of the exciton. It is assumed that the charge transfer does
not occur among the spheres, but the excitation itself can
hop like a Frenkel exciton, due to the dipole-dipole inter-
action included in the material Hamiltonian. Thus the
transition dipole density for the Ath excited state is writ-
ten as a linear combination of p

(b)
Xg&

= Xb~gg ~ (3.9)

IV. ANALYTIC EXPRESSION OF A.

The final approximation is concerned with (p;}. We re-
place it by (8(R —~r —r ~)}. Since the approximation is
made to the background susceptibility of a sphere, this
is related to the well-known Mie theory. A criterion for
the maximum angular momentum 1M~x has been given
for the Mie theory as follows. The value of 8M~x is the
integer closest to x + 4x ~ + 1, where x = R/A. For
the parameters used in our paper, EMAx becomes 2. Our
coarse graining seems rather rough. However, because
we are discussing the resonant structure of mesoscopic
systems, the contribution from the background suscepti-
bility is of secondary importance. We have checked. this
by discarding some terms including the contribution from
the background susceptibility when we calculate the re-
sponse spectra. (See the explanation of Fig. 3 in the
text. ) Therefore, we believe that the approximation will
not change the results given in this paper. For more gen-
eral cases, the above criterion must be considered.

In the following, we will consider a linear chain, a pla-
nar system (a square lattice) and a simple cubic system of
the spheres. For simplicity of the description, we assume
that the chain lies along the z axis. In the linear chain,
the dipole moments pointing to the x, y, and. z axes,
have no mutual dipole-dipole and retarded interactions,
due to the geometrical reason, and they can be treated
independently. In the planar system, the dipole moments
perpendicular to the plane also can be considered sepa-
rately from those lying in the plane. The dipole moments
in the plane in finite planar systems and those in finite
cubic systems can no longer be decoupled. , while they can
be further decoupled in infinite systems (because of the
translational invariance as will be seen later). Actually,
this coupling will be seen to lead to a complex behavior
of the size dependence of the matri~ A in D = 2 and 3.

„p 4R3
pg = QFp ( = Nppg ot: R

7r

It should be noted that m's form a complete set;

.~Xmg~q„„= ~mn~g~.
A

(3.7)

(3.8)

We investigate the matrix elements of S analytically
within the present model. Only A is considered. here,
since it dominates the energy correction and the others
can be calculated similarly. Expanding p&(r) in terms of
p &(r) as in Eq. (3.3), we have

&~my&„„A g,~~ .
mn, (r]

This will be used to derive a sum rule of A.
The background susceptibility g~ ~ is assumed to be

isotropic;
The integration inside the spheres in A
7Z[p~ &, po*„] yields the explicit form as

1 —iqrmn
[uq ~„' —~(I q '-)(~; '-)l)

q "mn

Ip~ gs„* —3(~~ . r „)(p,„* r „)] (for r g r„),
rmn

(4.2)
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A ), „——gag
. p„ i

e'~ V, (qR) + —
i

(for r = r„), (4.3)

where For infinite lattices, because of the translational invari-
ance, we have

V, (X') = (4.4)
ikp. r

mpmg
——

~D~2 mAge (4.12)

For general cases, the use of the Fourier transform is also
convenient. Putting

p' 4(k) = f drp' 4(r)e*"' = p4V, (kR)e*" '-, (4.5)

into Eq. (2.18), we have

which allows us to perform the lattice sum in Eq. (4.1)
or (4.9). Here, kp is a wave vector in the D-dimensional
Brillouin zone. V7e conventionally introduced the number
of the lattice points, N, and take the limit % —+ oo
after the lattice summation is carried out. From Eqs.
(4.9), (4.11), and (4.12), we obtain

A 4 e ——f dke*"' "A4»(k), (4.6) f2
A&) = ~&ik„).'dd)~Eu)„~

I

4~ ' k (k —q —ie k+ q+ ie),V.2 (kR)

x [q p( p, „* —(p( . k) (p„* . k))

x ) 6»„e»„ f dk&A4»(k) . (4.43)
I k =k +k

+k I

k „+„,, l (p4 k)(p: k))
1(

Equation (4.1) may be written as

A»e = ) f dkee»4(k)ree'e(k)A4»(k),
Cn

(4.7)

(4.8)

In the periodic systems, the ultraviolet divergence of Ap„
for a point dipole mentioned in Sec. II appears in the
integration over k~ and in the sum over g for D = 1
and D = 2, respectively. For finite extension of dipole
density pz(r), this divergence is suppressed by V, (kB)2
in Ag„(k).

For simplicity in the following, we define

(4.14)

with

Cu),g(k) = ) e'"'-mp (4.9)

kp = k), /k), .

We also define, for a later use,

(4.15)

u)p((kii + g) = u)p((kii) . (4.10)

Denoting the remaining component of k as k~, we can
rewrite Eq. (4.8) as

Ap„= ) dklimp) (kii)m)'„~(kii)
BZ

For the finite D-dimensional array in question, we con-
sider the corresponding periodic lattice by allowing r to
be extended infinitely in the D dimension. Let us define
k~~ as the component of k describing the periodicity of
the D-dimensional lattice, and the corresponding recip-
rocal lattice vectors are denoted as fg). Then, it is clear
that mph', being a function of k~I, satisfies

pg = mggp~ . (4.16)

A. Zero-dim. ensional case

For a single sphere, Eq. (4.3) gives At& itself;

The p,&'s are either parallel or perpendicular to kp, and
the two perpendicular ones with the same kp's are per-
pendicular to each other by virtue of the dipole inter-
action (and by orthogonalizing them if they are degen-
erate. ) Therefore, gc&'s corresponding to the same kg
are perpendicular to one another. We will see that A is
diagonal in infinite systems because of this fact.

x ) f dk»A4»(k)l»=»„+e+» (4.11) A( ——p,g
. gs„*

~

e'~ V, (qB) + —
~

(0),2q2 vr2 )(' ' R lb

where the integration over k~~ is carried out in the first
Brillouin zone of the infinite system. For D = 3, k~~ is
three dimensional and the integration over k~ is omitted. By the LWA (qB (( 1), we have

(4.17)
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A -p bt„l —+i q-(p) 2 f q .2

3
(4.18)

B. One-dimensional periodic case

where we have used p& p,„=p bg„. The imaginary

part of A&& ss the well-known formula of the spontaneous(o) .

decay width in @ED and has apparent linear dependence
on the volume through p [see Eq. (3.7)].

Evaluation of the sums over m and n in Eq. (4.1) with
Eqs. (4.2), (4.3), and (4.12) can be done analytically.
Appendix B gives the result, which is valid even for qb )
1. The resonant wavelength is, however, much larger
than the lattice constant for the present geometry and
resonant energy. Assuming 0 & q & 7r/b, we have

A„„=bi, „i,„p,„jc„'
l

cos(qR)V, (qA) + —
l"3B~'—qB' (

'
2r

2

+V, (qB) —Ii ) ln
l
cosqb —coskgb] —2—(p& kp)(p k ) ln2

( Apb qb- k„b+qb
+Ii )

l
dt(kgb —t) ln sin — + dt(kgb —t) lnsin —+ 2((3) + kgb ln2

l

0 2 0 2

+«~~(V —»«) —,(V' i « i:+(»« i«)(». i:) +»« i« i' —3(»« i«)(». i')
I(.g b

—I 2 dt kgb —t lnsin —+ 2 3 + k), b ln2
0

(4.19)

where Ig s are given in Appendix B. A 6nite imaginary
part appears for kp ( q. This is a general matching con-
dition of the wave vectors for matter states and radiation
states. Only for kp ( q, there occurs a coupling between
the matter states and the propagating light states, which
leads to the radiative decay of the former. Dipole den-
sity with kp & q emits only evanescent electromagnetic
waves. It is recognized that the argument of the absolute
values in the erst and third terms in the curly brackets
are negative for kp ( q and their logarithms yield the
imaginary part. For qb, kgb && 1, Eq. (4.19) is reduced to

A&
———by„—

l q (1+cos p) + k&(l —3cos p) l

(i) p ( 2 2 2

(p) 2'7t 1
A~ = 8k&k q Pgll P

k —q2
II

1+—(p), k
kll

—klIPP~ P
kll

—kP

(4.21)

x
l

lnlq' —k„'lb' —i~0(q —k, ) l

—(1 —3 cos rp) k& ln(kgb) —2q R (4.20)

where
phyll

and p&& are the components of p& parallel
and perpendicular to the two-dimensional plane, respec-
tively, and kll = lklll. We have neglected the sum over
nonzero I and V, (kB) because V, (kB) is very small for
large k and is 1 for kR « 1. Taking account of the
orthogonality of p,&'s gives

where we have used the orthogonality of p,&'s mentioned
below Eq. (4.16) and p is defined by p&.kp = pk& cos p .
(In the present model, p is 0 or vr/2. ) The final result is
almost the same as that of Orrit, Aslangul, and Kottis.
A small diR'erence comes partly from the fact that they
have ignored the size of the molecule but introduced cut-
oK by multiplying a I orentzian to the integrand.

+—(p~ kII)' —
kII p~~

kll k
(4.22)

(2)
+xi = ~&i

b2 q»II (&& II) + II»L
k —q

II

C. Tvvo-dimensional periodic case

For the infinite layer, from Eq. (4.13), we have P

For kll ( q' k2ll q corresponds to —i q2 kll '

which gives the imaginary part of A. The result is again
the same as that of Orrit et a/. if we assume that p,&'s

lie in the plane.
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D. Three-dimensional periodic case

For the infinite three-dimensional lattice, no integra-
tion remains and we have

(~'».v~ —(k») (~.~, )I
pp, kakp b3 g 8 'L k2 — 2

(k»)(k. ~ )
Q2

k=g —kg

(4.23)

In this case, A has no finite imaginary part. The real
part corresponds to the energy shift, due to the formation
of "polariton, " whose decay time is infinitely long. The
disappearance of the radiative decay in the infinite three-
dimensional lattice is due to the fact that the matter and
light occupy the same space and there is no outside world
to which light can escape. In other words, coupling to the
radiative fields with infinite degrees of keedom is neces-
sary to give rise to a finite lifetime. The experimentally
observed radiative decay of polaritons in real crystals is
due to the presence of surfaces on macroscopic samples.

In the following, we assume q ( m/b for simplicity. As
seen above, the modes whose wave numbers are smaller
than q have a Rnite imaginary energy shift I ( ) for the
lattices in D = 1 and 2. If we neglect kp dependence, we
have

~iii~g(k~~) ~

. Only the part of the distribution within the
sphere of a radius q around the origin, S (q), contributes
t;o the radiative width. As the system size becomes large,
the peaks approach to the origin and the widths become
sharper. When the distribution begins to enter S~(q),
the radiative width starts to grow. When the whole dis-
tribution of a given state A has entered S~(q), the radia-
tive shift becomes almost saturated. The radiative width
is monopolized by a single mode only when the system
is smaller than the wavelength of the resonant light. As
we increase the system size, the modes with large radia-
tive width appear and get saturated successively. This
behavior is shown numerically in the next section.

V. NUMERICAL STUDY FOR FINITE SYSTEMS

Here we show numerical results for finite systems (as-
semblies of N spheres) and investigate the dependence of
the response on the size % and the dimensionality D of
the system. We consider a linear chain (D = 1), a square
lattice (D = 2), and a simple cubic system (D = 3). We
choose B = 15 A and b = 50 A. as the parameters of
the system size, and use Az~ ——5.7 meV, Eb ——3.2041
eV, and eb ——5.59 for the particle's internal parameters.
We set p's to 0+ so that the widths of the peaks in the
response spectra are the net radiative decay widths.

7r2
I (2) I (~) I (o)

qb (qb) 2 (4.24)
A. D=1

In the present models, 1/qb can be quite large and this
has been called an amplifying factor by Orrit et OI,.

Putting Eq. (3.8) into Eq. (4.1), and forming the trace
of A, we have

TrA = NNI, A ( (, (4.25)

where N is the number of the spheres and Nl. the number
of the degrees of the freedom associated with the direc-
tion of dipole moment inside each sphere. (In the present
model, Nr, = 3 .) This sum rule holds for both finite and
infinite systems. If the dipole moments pointing to dif-
ferent axes are decoupled, t;he above identity holds for
each decoupled set. When the ofF-diagonal elements van-
ish or are negligibly small, and therefore the (complex)
radiative shift is determined by the diagonal elements,
Eq. (4.25) means that the sum of the radiative shifts is
the sum of those of t;he transition dipole moments of the
individual sphere. This sum rule has important meaning
especially for the imaginary part of the radiative shift
(that is, radiative width) because its sign is positive for
all the states. The amplifying factor may be considered
as a consequence of the matching condition and the sum
rule.

The transition dipole moment p& in the k space has
a distribution with a width inversely proportional to the
dimension of the system. The peak positions of the distri-
bution are determined by the boundary condition. From
the comparison of Eqs. (4.11) and (4.13), it is found that
the App for a finite system is regarded as the weighted
sum of the App for the corresponding infinite system
in the same dimension, where the weighting factor is

Since the dipole moments pointing to the x, y, and
z axes are decoupled, we can treat them independently,
as mentioned earlier. Due to the coupling of the excited
states of the spheres via dipole-dipole interaction, there
arises a set of discrete levels, which can be regarded as
the size-quantized levels of the chain. The evolution of
the response of these resonances as a function of N will
be shown below.

Figure 1 shows the response spectra of the chains with
small N's. The incident Geld comes perpendicularly to
the chain with the polarization parallel to it. The re-
sponses are observed at the direction perpendicular to the
chain and far from the chain so that only the dipole radi-
ation component corresponding to Eq. (2.20) contributes.
The peak in each frame corresponds to the lowest size-
quantized level of the chain, which, in this geometry and
size range, monopolizes the oscillator strength. The peak
position is mainly determined by the dipole-dipole inter-
action, and in addition there is a slight shift due to ra-
diative correction. The peak width, as expected, grows
linearly with the size % in this size range.

Figure 2 shows similar spectra with larger ¹ The ge-
ometry is the same as in Fig. 1. Only main peaks are
shown though other peaks with a narrower width ap-
pear in a higher energy range. The dash-dotted and the
dashed lines show the energy levels, Ep's, of the unper-
turbed Hamiltonian. Only the modes with even parity
(shown by the dash-dotted lines) contribute the peaks
under t'h e geometry [We refer . to the parity according to
the inversion symmetry of mg g. The modes with odd
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N=1

3. 27721 3. 277214

N=2

3. 27686 3. 276864

3. 276693 3. 276697

3. 276600 3. 276604

3. 276543 Energy(eV) 3. 276547

FIG. 1. The response spectra of the chains with small num-
bers of the spheres. The incident field is a plane wave prop-
agating perpendicularly to the chain with the polarization
parallel to it. The responses are observed at the direction
perpendicular to the chain and far from it.

parity (shown by the dashed line) have no total transi-
tion dipole moment. ] The peaks are shifted from them,
due to the retarded interaction. The growth of the low-
est peak width is almost saturated, while other peaks are
becoming wider and approaching to the lowest one.

Figure 3 shows spectra for the chain with N = 80
observed in the direction at various angles 0 from the
chain. The projection of the wave number of the incident
electromagnetic wave to the chain is zero in the present
geometry. The lowest peak decreases more rapidly than
cos2 (vr/2 —0), which is expected from the dipole radiation
pattern. This means that the system becomes momen-
tum selective when the size becomes comparable with the
wavelength.

We have also calculated the response spectra by dis-
carding all matrix elements, except the diagonal elements
of A. It has been found that the difference is negligibly
small for the range of the energy and the size shown here.
As N becomes larger, A tends to be diagonal because of
the conservation of the momentum and the orthogonal-
ity of the transition dipole moments. These facts suggest
that the radiative (real) shift and radiative width are
dominated by the diagonal elements of A.

Figure 4 shows the N dependence of the radiative
width and (real) shift for the modes with the transition
dipole moments parallel and perpendicular to the chain.
They are estimated from both of the response spectra
and the diagonal elements of A. Only the modes whose
radiative width is larger than that of a single sphere are
shown. This criterion is also used in the following fig-
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FIG. 2. The response spectra of the chains with
N = 80 180. The geometry is the same as in Fig. 1.

FIG. 3. The response spectra for the chain with N = 80
observed in the direction at various angles 0 from the chain.
The other condition of the geometry is the same as in Fig. 1.
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monotonously to the limiting value in (a), while it once
overshoots in (c). The imaginary part of A in the infi-
nite chain, has a maximum at A:p = 0 and a minimum at
kp ——q for the polarization parallel to the chain, while
the relation is opposite for the polarization perpendic-
ular to the chain, as seen in Eq. (4.20). This fact and
the consideration of the averaging mentioned in the last
section explains the difFerence in the limiting behavior of
the radiative width.

ures. The filled and open circles correspond to the modes
with even and odd parities, respectively. The horizontal
dash-dotted lines depict the values of the modes with
k = 0 in the infinite chain. The radiative width grows

1 0 I I I

B. D=2

Figure 5 shows the radiative width and shift for the
modes, whose transition dipole moments are perpendic-
ular to the plane of the square system. The filled and
open squares correspond to the modes with and without
a net dipole moment, respectively. Because the linear di-
mension of the system is still smaller than the wavelength
of the resonant light even for the largest size, the satu-
ration is not as clear as in the linear chain. The behav-
ior is, however, almost similar. It should be noted that
only the states with a net dipole moment interact with
radiation fields in the LWA theory. This criterion ap-
proximately works only when the system is much smaller
than the wavelength of light in the present theory. The
figure shows that the LWA is not valid when the linear
dimension is larger than 206 1000 A. .

In Fig. 6, the N dependence of the radiative width
and shift are shown for the states with the transition

b)
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FIG. 5. The dependence on the number of the spheres of
the radiative width and the radiative shift in the square sys-
tem. The transition dipole moments are perpendicular to the
plane. The filled and open squares correspond to the modes
with and without a net dipole moment, respectively.

FIG. 4. The dependence on the number of the spheres of
the radiative width and the radiative shift in the linear chain.
The polarization is parallel to the chain in (a) and (b), and
perpendicular to it in (c) and (d). The filled and open circles
correspond to the modes with even and odd parities, respec-
tively. The horizontal dash-dotted lines depict the values of
the modes with k = 0 in the infinite chain.
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is divided according to the sum rule mentioned earlier. It
should be noted that the number of degrees of freedom,
Nl„ is two in the present case. The states with a net
dipole moment, however, appear in pairs of linearly in-
dependent states, because of C4 symmetry. This is why
the sum of the shown radiative corrections is almost the
same as in Fig. 5. The small di6'erence is attributed to
the states without a net dipole moment.

In order to see what happens when the dips appear, the
dipole moments of the corresponding states are shown for
N = 3, 4, and 5 in Fig. 7. When N = 4, for which
the first dip appears, there are two states which have
similarly large net dipole moments and close excitation
energies. Once such states appear, they have to share
the total available radiative width and thereby the width
of each must be small. If the dipole-dipole interaction is
truncated within the nearest neighbors, the eigenstates
can be described as a direct product of the states in the
linear system. Then the dips would disappear. The dips
are attributed to the long-range nature of the dipole-
dipole interaction.

FIG. 6. The dependence on the number of the spheres of
the radiative width and shift in the square system. Transition
dipole moments lie in the plane.

dipole moments lying in the plane. For simplicity, only
the width and shift of the states with a net dipole mo-
ment are shown. Unlike Fig. 5, there are some dips at the
points indicated by arrows if we follow the mode with the
largest radiative width. Other modes with considerably
large radiative width appear there. The radiative width

C. D=3

The partition of the radiative width seen in the two-
dimensional system is more significant in the three-
dimensional systems. Figure 8 shows the N dependence
of the radiative width and shift, in the cubic system.
More modes appear with comparable radiative widths
even for small N and no size-linear dependence is visible
for N ) 3 . It should be noted that the linear dimen-
sion of the largest system considered here is about 350 A. ,

10—

t

r

N=4& 4

Lk

-20

cQ

40
200

Number of spheres

I

400

FIG. 7. The dipole moments of the states which have a
large total dipole moment in the square systems with N = 3,

2 and 52
FIG. 8. The dependence on the number of the spheres of

the radiative width and shift in the cubic system.
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which is I/10 as small as the wavelength of the resonant
light.

V-. o
' h»

D. Nonlocality induced double resonance
in energy and size condition in linear systems

[& oI' h~=E3

L
I

The resonant energies Eg's are shifted &om the ex-
citation energies Ep's of the unperturbed systems, due
to the radiative correction as investigated so far. Here,
we consider the NIDORES condition, which has been in-
troduced in Sec. I. Figure 2 shows how Ep's and Ep's
move, as the length of the array of the fine particles is
changed. (Because of the geometry, only the peaks cor-
responding to the states with even parity are visible in
the response spectra. ) As the system becoines longer, the
size-quantization eBect becomes smaller and the energy
separation between Ep's gets narrower. The radiative
shift becomes larger on the other hand. We will label
the state according to the ascending order of the nodes
of the wave functions. (For the states with dipole mo-
ment parallel to the chain, the lowest state corresponds
to A = 1, while the highest does to A = 1 for the states
with dipole moment perpendicular to the chain. ) When
N 100, the second lowest peak (corresponding to Es)
crosses the position of the lowest excitation energy Ei
in Fig. 2. The dipole pattern corresponding to the E3
state is resonantly induced if the energy of the incident
light is Axed to Eq. The peak goes to the lower energy
side for larger N, but a similar situation occurs again
for K 180, where the third lowest peak (corresponding
to Es) passes Ei. Figure 9 shows the size dependence
of ~Pp~, where Fi 's are the expansion coefficients of the
polarization P [see Eq. (2.8)]. The energy of the incident
light is fixed to Ej. The periodic resonant enhancement
of the polarization is clearly shown.

Such resonant enhancement is generally expected.
The behavior is, however, considered to have a variety
according to the energy dispersion, the energy separa-
tion, the radiative shift and width, the coupling to the
incident field, and their dependence on the size and the
geometry, etc. In Fig. 10, the size dependence of ~E~~
is shown for the polarization perpendicular to the chain.

L

100 200
Number of spheres

300

FIG. 10. The size dependence of ~Fp~ for the polarization
perpendicular to the chain. The incident light comes perpen-
dicularly to the chain. The energy of incident light is fixed to
E2 and Es in (a) and (b), respectively.

~am
P-~ N

""N+1

This is found numerically to be a good approximation in
the one-dimensional case. Using the above expression,
we have

(p) 2 71 A
c) = (kg Ep —cot

N N+1'

The incident light comes perpendicularly to the chain.
The energy of incident light is fixed to E2 and Es in (a)
and (b), respectively. The ~Ei~ has a peak, but also has
a large tail linearly increasing with the size in this case.
The difference results &om the following facts. The ra-
diative correction and the coupling to the incident field,

(o)c&, determine Fp. The radiative correction to Eq is al-
ready saturated for N 50 in case of the present geom-
etry, while those to Ep (A = 3, 5, 7) are not. The linear
growth shown in Fig. 10 comes &om the linear growth of
~ci ~

. If the dipole interaction is truncated within the(o) 2

nearest neighbors, the dipole density has a form as

:1 2 —7

I!
i I

I

Ii!
i '
I

I
i

'I

I
I

I

100 200

Number of spheres
300

FIG. 9. The size dependence of ~Fq~ 's for the polarization
parallel to the chain. The incident light comes perpendicu-
larly to the chain. The energy of the incident light is fixed to

where Ep is the coefBcient vector of the incident electric
Beld. The c& is proportional to ~K if 2V is large. Fig-(p)-

ure 11 shows the size dependence of ~Ep
~

for the incident
light coming in parallel to the chain with the polarization
perpendicular to it. The energy of incident light is also
fixed to E2 and Es in (a) and (b), respectively. It should
be noted that only the propagating direction of the inci-
dent Geld is diferent in the geometries used for Figs. 10
and 11. The projection of the wave number of the inci-
dent light is finite in Fig. 11, while it is zero in Fi.g. 10.
Only the states with the same wave number component
as the projection of the wave number of the incident light
can be excited. In a small system, the distribution of the
wave number is broad. As the system becomes long, the
states have a sharper distribution of the wave number.
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CuCl microcrystallites, but deviation has been observed
when the radii is larger than 5 nm. The critical radius
seems smaller than the one at which the long wavelength
approximation loses validity. One of the reasons may be
the effect of the other neglected degrees of freedom such
as phonons, for temperature dependence has also been
observed. The critical radius is, however, too small even
at T = 10 K. Although we cannot directly compare the
present results with the experiment, the experiment may
refl.ect the three-dimensional nature of the microcrystal-
lites. The NIDORES cond. ition has also been investi-
gated for chains of the spheres. The effect is common,
but shows a variety of behaviors speciBc to geometrical
factors. This effect is expected to lead to a more precise
description of the radiation-matter interaction.
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FIG. 11. The size dependence of ~Ep,
~

for the incident light
coming in parallel to the chain with the polarization perpen-
dicular to it. The energy of incident light is also fixed to E2
and E3 in (a) and (b), respectively.

APPENDIX A: POSITION
OF THE NONLOCAL FORMALISM

AMONG THE KNOWN FRAMEWORKS
OF RESPONSE THEORIES

The state with A = 1 is always strongly excited if the in-
cident light propagates perpendicular to the chain, while
the coupling of the state with the incident light prop-
agating along the chain becomes weaker as the system
becomes larger. This yields the difference between Figs.
10 and 11.

VI. DISCUSSION

We have studied with a great interest in the complex
radiative correction how the size and the geometry of
matter systems afFect their optical responses, applying a
nonlocal theory to a model of assemblies of semiconduc-
tor spheres. The obtained. results take advantage of the
theory, which is free from the boundary condition. The
change of the radiative correction with increasing the sys-
tem size has been investigated numerically for difI'erent
geometries. In particular, the change from one sphere to
an infinite chain of the spheres has been demonstrated.

. It has been shown that the radiative correction is sig-
nificantly afFected by the geometry as well as the size,
even if the system is much smaller than the wavelength
of the resonant light. The radiative width deviates &om
the linear dependence on the size at a smaller size in a
higher dimension. As mentioned in Sec. I, the volume-
linear dependence has been conGrmed experimentally for

e ep-A+ A
mc 2mc (A1)

for all the charged particles.
The quantities to be determined self-consistently are A

and current density j(r, t). [Of course, one may translate
them into electric field E,(r, t) and induced polarization
P(r, t).] The motion of charged particles (EM field) is
determined by Schrodinger (microscopic Maxwell) equa-
tion(s). Thus, we obtain A as a functional of j from

In order to clarify the positioning of the nonlocal re-
sponse theory among the known frameworks of response
theories, we add this appendix. In any optical response
theory, we need to determine the electromagnetic (EM)
Geld. produced as a result of the interaction of an incident
EM Geld and a given material system. Since the motions
of EM Geld and matter interact with each other, we have
to Gx the motions self-consistently. In order to achieve
this in a semiclassical framework, we need the following
steps.

For a clear deBnition of matter and EM Geld, we take
Coulomb gauge (divA = 0). In this gauge, the scalar
potential P(r, t) is the full instantaneous Coulomb inter-
action of all the charged particles in the system, and we
regarded it as a part of matter Hamiltonian Ho. Then,
the EM field is purely tran. sverse, represented by A(r, t),
and the radiation-matter interaction H;„t is the sum of
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microscopic Maxwell equations, which have j and P as
source terms, as

A(r, t) = Ap(r, t) + p[j], (A2)

where Ap is the &ee (incident) field. Since j and (tb are
related via continuity equation, Q is a functional of j
alone. From the Schrodinger equations for the Hamilto-
nian Hp + H;„t, we can determine the time development
of matter wave function, from which we can calculate the
expectation values of any physical quantities as c num-
bers. The current density j is determined in such a way
as a functional of A:

j(r, t) = %[A], (A3)

g (r, w) = f gv (r —r')j(r', w) dr'

where we assume that j = 0 in the absence of A, as
usual. Froin these two equations (A2) and (A3), we can
determine A and j self-consistently for a given initial con-
dition (of matter and radiation field). The forms of the
functionals are as follows. The ~-Fourier component of

is

E8:EM Eg~p (AS)

If one notes E, = iqA and j(r, w) = —i~P(r, cu), (A2) is
certainly rewritten as Eq. (AS), where

1
EM ——E + —grad div E,

g2

point. If the point r describes a "macroscopically small
but microscopically large volume, " as in the traditional
response theory, it may well be a reasonable approxima-
tion. However, in (microscopic and) mesoscopic systems,
we need a microscopic description of EM field, and we
must keep the nonlocality as required by quantum me-
chanics. In this way, it is clear that the nonlocal theory
is closer to the first principles than the local one.

The feasibility of solving (A2) and (A3) in nonlocal
manner is supported very much by the separable nature
of the integral kernels, which is valid for resonant pro-
cesses, in general. In such a case, the equations are re-
duced to a set of simultaneous Nth order polynomial
equations, where, N is the order of the nonlinearity in
consideration. In this paper, the case N = 1 is treated.

In Ref. 10, the relation (A2) is described as the one
among the source (E,), Maxwell (E~), and depolariza-
tion (Eg,~) Fields as

—gp(r —r')] grad div j(r', ~)dr',

(q = u/c) .

(A4)

(A5)

E(r, tv) = g J gv(r —r')P(r')dr',

Ea,r(, ) = g f g (r —r')grad div P(r')dr',

(rot rot —q )EM ——4~q P .

The functional T contains A up to the infinite order, in
general, as

g(r, tv) = f iii'i(r, r', ~)A(r'tv)dr'

xA(ri, ~i)A(ri, ~2)d»dr2

+ ~ 0 ~ (A6)

where the integral kernels are called linear, second-
(third-, . . .) order nonlinear "susceptibilities. "

The branching point for various response theories lies
in the treatment of the susceptibilities y~~~. According
to the quantum mechanical perturbation treatment, they
are functions of various coordinates. In the nonlocal the-
ory, we keep its position dependence as required by quan-
tum mechanics, while, in the traditional response theory,
one makes local approximation to them as, for example,

In this way, we can reconfirm that the basic relation
Eq. (AS) used in Ref. 10 is the solution of microscopic
Maxwell equations.

The nonrelativistic @EDstarts with the same Hamilto-
nian Hp+H;„t added with Bee-field Hamiltonian H~, and
then quantizes A included in H;„& and H~. One can show
that the Eqs. (A2) and (A3) are the c-number versions of
the @ED equations of motions for the operators A and
j. (There is precise coincidence of the coefFicients be-
tween the set of equations. ) The nonlocal theory should
be placed just below the nonrelativistic @ED, and above
the local response theory as a semiclassical scheme.

APPENDIX 8: CALCULATION OF A&ii

We calculate A&„ for an infinite linear chain. Putting
Eqs. (4.2), (4.3), and (4.12) into Eq. (4.1) yields

3

A „=b„„„A„+V, qB I~~
e=1

y~ l(r, r', (d) = g~ l(4J)b(r —r') . (A7) x Ee q+kx 6 +Ee, g —kgb

If one considers EM fields as a macroscopically averaged
field, this assumption often holds rather well. This local
approximation means that the induced current (or polar-
ization) at point r depends only on the Fields at the same where

I r (Er(b&b) + Er( b~b)]), — —



NONLOCAL OPTICAL RESPONSE OF ASSEMBLIES OF. . . 14 393

I"= —b[~ ~; —(k .~ )(1..~.*)]

~:—3(1 ~ )(1.~.*)]

(;qbl(s) )

I"= —
b, [V~. u* —3(k~ k)(k ~'„)],

xnan

Ee(x) —= ).

(B2)

(B3)

(B4)

(B5)

x zE, (z) = —ln (2 sin — ——(x —z),
2 2

1 2E2(x) = —(x —7r)
4 12

—k
i

x ln 2 + dt ln sin —
~l 0 2)

E3(x) = ((3) + —x ln 2 + dt(x —t) ln sin
1 2 t
2 0 2

(B8)

(B7) with the use of Ei(7r) = —ln 2 and Et(0) = ((/) for
8 ) 2. The Eg's are given for 0 ( x ( 2' by

Eg (x + 2'�) = Et (x),
d

Eg i (x) = —i—Eg (x) .
dx

(B6)

(B7)

The Eo(x) can be easily evaluated for Imx $ 0. The
other Eg's are obtained by integration according to Eq.

I

We have replaced I' 's by kp's because all of them are
the identical unit vector parallel to the chain. (Though
the orientation may be diferent, they always appear in

pair. ) The &
is obtained from A& by replacing p)q

and ~* by p, & and p, „*, respectively. The Ep's satisfy

z+—x(x —vr)(x —2~) .
12

(B10)

(B11)

where the Heaviside function appears to ensure that the
argument of Eg on the right hand side is in the above
definition range. Putting the explicit forms of Eg s into
Eq. (Bl), we have

The definition range is extended according to Eq. (B6),
which leads

Et(x) = ) 8(x —2am)8[27r(n+ 1) —x]Et(x —2~n),

where

i,"„'+V.' qa I('~
& q, k, —I(') .o, k&

1=1

ln sin —dt
~2

fs(q kq) = ) q(q„+ q) k( m0—qq„—kq)I2j(S) k (q„k ~k&b )(nq

(q„+kg)b
+

f
(q„—kp)b

+
0

[(q„+kp)b —t] lnsin dt—
2

[(q —kp) b —t] ln sin —dt
2
2

2 3 2—q k~b —~q kgb + —q„b+i
~

q„b-
l6 "

fi(q, kp) = ) 8(q„+ kp)8(2m —q„—kp)

x —ln 2 cos k~ b —cos q b —iq„b + i vr8 q„—k„
2 w Tl

f2(q, kp) = ) 8(q„ + kp)8(27r —q„ —kg)
n

(q„+kg)b (q„—kg)b
x —i 2q bln2+ lnsin —dt+

l 0 2 0

b2 7r2
+—(q„'+ k'„) —zk„k+ ——m(q —k„)kq(q —k&))2 3

(B12)

(B13)

(B14)

——(q„—kg) b 8(q„—kg)
~

Rara

fs(0, kg) = 2((3) + k&b ln2+ 2 [kgb —t] lnsin dt . —
0 2

(B16)
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