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Theory of the interface exciton in a strong magnetic field
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A simple theoretical model for the interface exciton in a strong magnetic field is developed. We pro-
pose that in the case of a strong magnetic field, a bound state for the interface exciton exists for fields
greater than some critical value Bo. It is shown that contrary to the case with no field, the interface exci-
ton in a strong magnetic field is localized near the junction plane and can have a large binding energy.
Using the developed model, we made a theoretical study of the explanation by Clark et al. of the nature
of the B peak observed in their recent photoluminescence experiment [Clark et al. , Physica B 201, 301
(1994)],and we obtained good agreement with their results.

As proposed by Clark et ah. ,
' the 8 line in the photo-

luminescence of a GaAs single heterojunction in a strong
magnetic field can be interpreted as the recombination of
an exciton lightly bound in the z direction [the direction
perpendicular to the interface (x,y) plane] which retains
the character of a single-pair excitation, and which does
not directly involve the electrons in the correlated two-
dimensional (2D) electron system. The theory of this in-
terface exciton was given by Balslev, who showed that
its effective Bohr radius is a few Bohr radii of the bulk
(3D) exciton, and that it is strongly polarized, since the
oscillator strength is rather small due to the small overlap
of the electron and hole wave function in the z direction.
The structure of interface excitons is in a way similar to
those formed in quantum wells in an external electric
field. Balslev's model of the interface exciton provided a
good explanation of the result that the luminescence line
vanishes at temperatures about 10—20 K. Unfortunately
the model is too complicated, so it can be treated by nu-
merical calculation only.

In order to examine the proposal by Clark et a/. , in a
previous paper we presented a simple model for the in-
terface exciton with no magnetic field present, which can
be used to give analytical expressions for its main param-
eters such as binding energies, efFective Bohr radius, wave
functions, and oscillator strengths. We concluded that
for an explanation of the experimental results we need a
theory for the stabilization of the interface exciton in the
presence of a strong magnetic field. For that purpose, in
this paper we develop a theory for the interface exciton in
a strong magnetic field.

We assume that due to the conduction-band-gap poten-
tial N„ the electrons are confined in the junction plane
(x,y), i.e., we have 2D electrons with their wave func-
tions in the z direction given as y'(z) —5(z) and with
effective mass m„and 3D holes with effective mass m&.
We consider a strong magnetic field B applied in the z
direction. The motion of the center of mass of the
electron-hole pair in the (x,y) plane can be separated as
usual, and we obtain the Schrodinger equation for the rel-
ative motion of the electron and hole in the form

2

+ y(B rXp) — B r + +C&(z)
2p 2pc 8pg~ 2mh

2
1 Eg(r)—y(z) =0,

e& Q(r+ro) +z

z
&b(z) =Noexp —— —U, , (2)

where No and I are the parameters of our model, and I
means the depletion length of the hole.

We shall show later in this paper that a magnetic field
produces binding of the interface exciton; i.e., for any N,
we can determine some value of magnetic field 80, such
that if B& Bo then the bound state of the exciton is stabi-
lized.

where A, =&A'c /eB is the magnetic length,
ro=(A, /B)BXP; p and r are the operators of 2D
momentum and coordinates of the in-plane relative
motion, respectively; z is the out-of-plane coordinate of
the hole, co is the dielectric constant of the medium; p is
the reduced mass of the 2D electron-hole pair; P is the
exciton total momentum operator; Mo=m, +mI, is the
exciton mass at zero magnetic field; and
y=(mt, —m, )/Mo. Here we denote @(z) as the valence
edge potential, which was the solution of a Poisson equa-
tion and strongly dependent on the charge-carrier con-
centration. We note that the band-edge potential
pushes away the hole from the junction plane, and resists
the formation of a bound state. In contrast the Coulomb
potential attracts the hole to the (x,y) plane and favors
binding. For the case of large N, and in the absence of a
magnetic field, a bound state of the interface exciton has
a very small binding energy or does not exist. '

Balslev and Appelbaum previously described the
determination of N(z) in some detail. It was shown that
measuring N from U„where U, is the average Coulomb
potential in the absence of the edge potential and magnet-
ic field, we can perform a simplifying ansatz
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We consider that 4o& U„so at zero field 8=0 the
bound state of the interface exciton cannot exist, and we
shall study two limiting cases: (i) l is large, l »a; and
(ii) l is small, l «a„, where a is the Bohr radius of the
bulk exciton.

For case (i), the edge potential 4 varies slowly with z,
so that we can replace it by some constant value N* such
as

4 *= 1 dz @(z)iq)(z) i

—U, =No —U, .

Then the theory can be developed in analogy with that
for the hydrogen atom in a magnetic field. ' For the case
of weak magnetic fields, such that the cyclotron energy
fico, =A'e8/pc is much smaller than the effective bulk-
exciton Rydberg R, i.e., A'co, «R„,we can use perturba-
tion theory and obtain the well-known quadratic Zeernan
effect with the exciton energy shift AE caused by a

magnetic field given as

n* & ~chE„= (4)

where Rh =mhe"/2A eo is the hole effective Rydberg, n*
is the effective quantun1 number, and n*=0.15 for the
ground state.

In the case of medium Beld such that Am, -R, the sit-
uation is rather complicated. We can use the trial wave
function in the form

g(r)qr(z)=(2 ir a a e)

—1 2 2 z
Xexp x +y +

4a a E

with two variational parameters a and e. A straightfor-
ward computation for the trial value of energy gives

E =Am, +N* —R„ 1+E' p +a c'Rco
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where I.& are the Laguerre polynomials. However, their
corresponding energies turn out to be strongly dependent
on p:

Minimizing the expectation value of the energy with
respect to a and e, we obtain the set of two equations
BE/Ba =0 and BE/Be=0, and resulting equations should
be solved by numerical calculation only.

For fields so strong that Acu, &)R„,however, the situa-
tion again becomes simple if we use perturbation theory.
In the zeroth approximation in the Coulomb interaction,
the in-plane relative motion wave functions are indepen-
dent of y and are given by

an exciton in the zeroth Landau band, then

e'v'2 z'
W(z) = Wo o

=N' — exp z
erfc

Eo~ 2A. A, 2

From this equation we find that for any values 4o and I of
the actual potential @, there exists some value of magnet-
ic length Ao such that if A, &Ao (or B&Bo) then the total
effective potential 8' has a negative part 8'&0, i.e., we
have the stabilizing effect of the applied strong magnetic
field for the interface exciton. It is of course not possible
to solve Eq. (8) for motion in the z direction with the
form of potential W(z) taken like Eq. (10). It may, how-
ever, be solved approximately by using the methods
developed in Refs. 6 and 7 for hydrogenic aton1s in a
strong magnetic field. Then the energy of the interface
exciton equals

Ev M=co, [X+—,'(~M~ —@M+1)] .

We note here that the 2D effective exciton mass is infinite
in the zeroth approximation.

For out-of-plane motion, the problem is then reduced
to solving a 1D Schrodinger equation of the form

2
Pz + W~ M(z) (p(z) =E,„p(z), (9)

2mh

E =A'co, +4*—E,
with the energy of the 1D exciton given as

Ei =R~g

where q is the solution of the equation

pax
'g =21n

v'Zm„k, i)

(12)

(14)

where

2 1dr ~M r
Eo Q(r+ro) +z

(10)

For the orbital case P=O, and if we confine ourselves to

where y is the Euler's constant.
With increasing magnetic field B, the effective potential

S' becomes deeper and narrower near the point z =0;
thus, contrary to the case when the field is absent, the in-
terface exciton in a strong magnetic field is localized near
the junction plane, and can have a large binding energy.
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Here we obtain the effect of stabilizing the interface exci-
ton by a strong magnetic field.

In the limit of extremely high field B~~, the inter-
face exciton has the behavior of a 2D exciton in a strong
magnetic field, with the energy

E (P)=fico +N*—
X C

1/2
2 2e + P.~+2M '

~ (vneV)

100A)
where the effective mass of the 2D exciton at low momen-
ta M can be obtained by calculating the matrix elements
of the Coulomb interaction in the first approximation, or

1/2
2~o 2me

e2
(16)

FIG. 1. The negative part (attractive region) of the e6'ective
potential W as a function of the magnetic length A, and the rela-
tive coordinate z between the hole and electron.

It tends to infinity in the limit B—+ ~. We can conclude
that in extremely high magnetic field the energy of the in-
terface exciton is independent of the effective masses of
the electron and hole, and that it has a universal charac-
ter for all semiconductors.

For case (ii), with small I ((a„, the picture is more
complicated because the edge potential now varies rapid-
ly with z. If I «a„«A, , the contribution of the magnet-
ic field is small, and the effective potential has a form like
that we studied in our previous paper. We can use the
same model for the interface exciton, and take the mag-
netic field as perturbation, and obtain the Zeeman effect.
The interface exciton has stable states a few Bohr radii
from the heterointerface with small binding energy. In
the case of strong and extremely high magnetic fields, we
have a situation corresponding to case (i). The interface
exciton is localized near the junction plane, and has a
large binding energy. We note here that this is a univer-
sal behavior for all semiconductors in the extremely high
field. In the case of medium field, where l -A, , or a„-i,,
the problem is very difficult, and it is possible to obtain
numerical results only by using the variational methods.

Now we apply our theory of an interface exciton in a
magnetic field to parameters relevant to the work of
Clark et al. ' For GaAs, take l =4800 A »a, i.e., corre-
sponding to case (i), and note that the results are not sen-
sitive to that large value of l. We chose standard parame-
ters for the bulk exciton as a = 137 A, R =4 meV, and
m, =0.06mo. In Fig. 1 we present the negative part of
the effective potential 8'& 0; this is relevant for A, & Ap OI

B&Bo. The case of threshold field Bo=2 T for the B
line, which was observed in the experiment of Clark
et al. , corresponds to the value 4*=0.5R . We also cal-
culated the dependence of the photoluminescence peak
on the magnetic field, where the hole mass was taken to
be the light one m& =0.12mp. The results of the numeri-
cal calculation are plotted in Fig. 2. We find rather good
agreement between the theoretical results and experimen-
tal data of Clark et al. (1994) (Ref. 1) for the B line. If we
took the heavy-hole mass, the curve was too far below the
experiment. Two possible reasons for this might be that
the light interface exciton is much more strongly coupled
to light than the heavy one, and the decrease of the
effective mass resulting from intralayer Coulomb interac-
tion. '
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FIG. 2. The calculated photoluminescence peak as a function
of magnetic field B. The agreement with the experimental data
taken from Ref. 1 for the 8 line is rather good. The threshold
field Bp is about 2 T. We chose standard parameters for the

0
bulk exciton in GaAs as a =137 A, R =4 meV, m, =0.06Nlp,

mg =0.12mp, and l =4800 A.

The main behavior observed in the recent experiment'
on field dependence of the photoluminescence intensity of
the B peak can also be understood in the framework of
our model. At the field B& Bp, a bound state cannot ex-
ist, hence there is no overlap between electron and hole
wave functions in the z direction, and thus the oscillator
strength is null, so that no B peak appears in the photo-
luminescence spectrum. At B=Bo, the B line begins to
be observed, and its intensity increases with the field, be-
cause the interface exciton is more localized near the
junction plane, and this causes an increase of the overlap
of the wave functions and thus increases the oscillator
strength. At higher field B»Bp, the interface exciton
behaves more like the 2D exciton in a strong magnetic
field, so the intensity of the B peak slopes with the field. '

More detailed variations of the B peak intensity as a
function of magnetic field at fractional Landau-level
filling factors v=

7 9 5
. , and its splitting into two

peaks S and B' from the field Bp=8 T are related to
Wigner solidification and many electron effects of the 2D
electron state, and need further theoretical modeling in
order to carry out investigations.
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In summary, we have presented a simple theoretical
model of the interface exciton in a strong magnetic field.
The erat'ect of stabilizing the interface exciton by a strong
magnetic field was shown. Contrary to the case when the
field is absent, ' the interface exciton in a strong magnet-
ic field is localized near the junction plane, and can have
a large binding energy. This is similar to the eftect of the
enhancement of the exciton binding energy in quantum
wells by a strong magnetic field, which was investigated
in the work by Cen, Chen, Bajaj„and Branis. Within our

model, we made a theoretical examination of the inter-
pretation of the nature of the B line given by Clark et al. '

in connection with their recent photoluminescence exper-
iment. We obtained good agreement with our model us-
ing accepted values of the parameters in our theory.
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