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Precise nonequilibrium distribution function for a one-dimensional electron gas
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A precise solution of the stationary one-dimensional Fokker-Planck-type equation is obtained in quad-
ratures. The interaction of a one-dimensional electron gas with longitudinal-acoustic phonons and
charged impurities is considered in detail. The nonequilibrium distribution functions of the gas are
found and investigated in a wide range of electric fields and other parameters for the degenerate as well
as the nondegenerate gas. The structure peculiarities of the distribution function are discussed. Numeri-
cal calculations of the field dependence of the drift velocity and the average kinetic energy are per-

formed.

I. INTRODUCTION

Systems of reduced dimensionality such as quantum
wires are the subject of numerous investigations, in pure-
ly theoretical as well as applied aspects.! ™

The motion of particles in quantum wires is confined in
two directions to the space of the order of the de Broglie
length. The result is the quantization of energy. The
quantization reveals itself most when the distance be-
tween the discrete levels is greater than or comparable
with the temperature. Thereby particles move, at most,
in one dimension because the thermal transitions between
these levels are rare enough.

We consider here the case when only the lowest level
acts in an infinitely thin quantum wire. The motion of a
particle along the wire is described in classical approxi-
mation. The latter is allowed when the mean momentum
and energy transmitted at collisions are small in compar-
ison with the average momentum and energy of particles.

There is a special reason to choose just that model for
the theoretical investigation. Although, in general, kinet-
ic equations cannot be solved precisely, one can obtain a
precise analytical solution of the stationary Fokker-
Planck-type equation for the one-dimensional macroscop-
ically uniform electron gas. In this case, the kinetic equa-
tion becomes an ordinary differential equation contain-
ing only the derivatives by the velocity v,. We suppose
below the scattering system to be equilibrium so that
there is no necessity to solve the system of coupled kinet-
ic equations for electron and scattering systems. Finally,
if we use the equilibrium dielectric screening function
€(w,k, ), then the considered Fokker-Planck-type equa-
tion can be solved in quadratures: Then, we obtain a
challenging opportunity to see the precise nonequilibrium
distribution function. The obtained nonequilibrium dis-
tribution function is used farther to calculate some ma-
croscopical characteristics of the nonequilibrium electron
gas. As a scattering system, we consider longitudinal-
acoustic phonons and charged impurities.
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II. THE FOKKER-PLANCK-TYPE EQUATION
AND ITS SOLUTION

The quantum kinetic equation for the one-dimensional
system was derived from the first principles in Ref. 5.
For the stationary case, it has the form [see Eq. (51) in
Ref. 5]

eE, 9f,
# ok,

=Stfi_» (1)

where E, is an applied uniform electric field. Here we
have used the plane-wave representation, k, is the wave
vector. The collisional integral for the equilibrium
scattering system is constructed in the following way:

Stfi, =(e2/BL) 3, (8% ) uq, [ fi, g, S,

9x
=S )
+ i g, (1= Si)]
Xtanh(#io/2Tg)} . (2)

Here L is the length of the system, T'g is the temperature
of the scattering system, &=k, (k. —q,/2)/m,f;_is
the one-particle density matrix (distribution function),
(895),,, is the correlator of scattering potentials

screened by both electrons and the external system:

(885 ) 0,q =[1+Ae(0,q,)/€5(0,9,)] 80%) 0 » ()

where (8¢% ), , is the correlator of scattering potentials

&),qx
screened by the external system only. eg(w,q,) is the
dielectric function of the lattice (see Ref. 10). The value
Aeg(w,q,) is the dielectric function of the one-
dimensional electron gas. It is considered in detail in
Sec. II1.

Equation (1) has no precise solution. Consider the clas-
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sical approach, where transferred momentum g, is sup-
posed to be small in comparison with the typical value of
momentum k,. Expanding in Eq. (2) all the values on the
powers of g, and restricting the expansion by the terms
of the second order, one obtains the classical kinetic
equation of Fokker-Planck type:

e af d | My
mE" . dv, | Ts (v )f (v, )] f(vx)]}
d df (v,)
+ dv. D(v,) v, . (4)
Here v, =%k, /m, where m is the effective mass, and
2
_ e oo e}
D(v)= f_wkfdkx f_wde(w—kxvx)
9 Aelw,k,) | 7*
eslw, k)
X (8¢5 ) ok, - (5)

Note that Eq. (4) can be derived from the first classical
principles using Klimontovich’s method of microscopical
phase operator (see Ref. 11) as well. This procedure was
performed in Ref. 12.

As is shown in Refs. 10 and 12, the dielectric function
€s(w,q, ) for a three-dimensional system with the dielec-
tric constant €; can be represented through the Bessel
function. In the classical approach

/ e, 6

where [ is the width of the quantum well; at this only
point we need to depart from the approximation of the
infinitely thin quantum wire for regularization.

The screening function of the one-dimensional electron
gas (IDEG) is expressed through the electron distribution
function f (v, ) in the following manner:

22k, f [df (v,)/dv, ]dv,

V'8
llg

el

1/eg(w,q,)—1/€5(g,)=21n

Ae(w, k)=~
ok )= o—k,v, +10 @
Here f (v, ) is normalized by the condition
27 rwode,=n', ®)

where n'! is the linear concentration of particles.
The equilibrium function (here F is the Fermi energy)

(mv2/2)—F | ]!

T, 9

folv,)= |1+exp

can be rewritten in the form

(0)exp[ —mv?/(2Ty)
Folvg)=—Tolexpl=m 2 ) .10
1—fo(0){1—exp[ —mv}/(2Ts)]1}

Integrating Eq. (4) over the velocity from v, to infinity
[with the condition f (v, — o0 )=0], we obtain the equa-
tion of the first order:
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df (v,) x
f (v, 4 my
dv, T

%Exf(vx)=D(vx) FwI[1=f(v,)]

(11)

The solution of this equation has an evident symmetry
f,,E)=f(—v,,—E,). Therefore, it is sufficient to
find the solution of Eq. (11) at v, = 0.

We introduce the dimensionless velocity w =v, /vy

=v,1/m /2T and the field function

7/(w)=—7/(-—w)5—|%|Exfoij(u:U,7 , (12)
where
mD (wvp)
Ey(w)=—""
lelvr
-2
le] © Ae(k vrw, k)
4rmuy f~wk"dk" es(k,)
X<8¢7§>kvaw,kx . (13)

Now the formal solution of Eq. (11) takes the form
(w=0)

S W)= f(vpw) _
_ f(0)exp[ —w?+y(w)]
1—2f(0)f0wu du exp[ —u?+y(u)]

(14)

Farther we shall write simply f(w) instead of f(vyw).
The constant of integration f(0) depends on the field E,
and is found from Eq. (8). At E, =0, the expression (14)
goes to (10). Equation (14) shows that the form of the
nonequilibrium distribution function f (w) is determined
totally by the form of the field function y(w). Note that
the function y(w) depends in turn on the distribution
function f (w) through Egs. (12), (13), and (7). If we use
in the electron screening function (7) the equilibrium dis-
tribution function (9), then we can consider the form (14)
as ‘a precise solution of the kinetic Eq. (4) in quadratures.
(Farther, we shall work just in this model.)

As it results either from the form (14) or from Eq. (11),
the inclination of the nonequilibrium distribution func-
tion at w =0 is given by

X

:mmf(()) . (15)

[f"(w)]y=o
For the elastic scattering [see, for example, Eq. (30)]
(893 ), 1 <8(ew) hence the inclination of the nonequili-
brium distribution function at w =0 is equal to zero (see
below, Figs. 1, 2, and 6).
For the nondegenerate gas, the form (14) simplifies to

fw)=f(0)exp[ —w?+y(w)] . (16)

The precise expression (16) allows us to write at once the
relaxation time 7(v, ). Indeed, at usual r approximation
(see, for example, Ref. 13) one introduces the relaxation
time in the following manner:
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FIG. 1. The distribution function of the nondegenerate gas at
different values of electric field € at A=1. (1) €e=0; (2) €=0.02;
(3) €=0.05; (4) €e=0.1. The solid line represents exact screen-
ing, the dashed line represents simplified screening.

eE, dfy/dv,
m  folv,)—f(v,)

Using the same combination with the function (16), we
have

1 =
7(v,)

(17)

(wop)= (18)

mvr fw du
2ew Yo Ey(u)

To obtain the field function ¥ (w), one should first find the
explicit form of the equilibrium electron screening func-
tion A€y(w, k, ) and the correlator (8¢5 ), x, [see (12) and
(13)].

III. THE DIELECTRIC FUNCTION
OF THE EQUILIBRIUM 1DEG
AND THE CORRELATOR OF
SCATTERING POTENTIALS

The calculation of the function Aey(w, k, ) is performed
according to the formula (7) with the equilibrium distri-

1.0

0.0 s = ’» T =
-2 —1 2 3
D|mensxon|ess velocﬁy w

Distribution function f(w)

FIG. 2. The distribution function of the nondegenerate gas at
different electric fields € and A=5 (solid line) and A=0.5
(dashed line). (1) €e=0; (2) €=0.05; (3) €=0.1.
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bution function f,(v, ).
normalized function is

For the nondegenerate gas, the

_ VahnD )
Solw)= mvy exp(—w*) . (19)
Substituting (19) in Eq. (7) we obtain
e2nh
Aeylk vrw, k)= [1+F(w)], (20)
s
where
fco exp(—zz) @1

—10

— Z —W

For the highly degenerate electron gas, we use the step
function

1 for wp> |w|

folw)=Hwp—|w|)= (22)

0 for wp<|w| .

Here wy=v; /v =V F/Ts=#%mn"/\/8mTs.

As distinct from the precise quantum-mechanical ex-
pression, which has a logarithmic form (see, for example,
Ref. 10) in the classical approach (g, | <<kg), the dielec-
tric function of the degenerate gas has the very simple
form

2
Redeg(k,vpw,k, )=;T—%'—;§(—,7 . (23)
[The imaginary part of the function A¢, actually is nearly
8 type and gives no noticeable contribution to the
Ey(w).]

The correlator of scattering potentials {¢?),,, for the

three-dimensional case is introduced by the formula

([p(w,k),p(e, k)] )
=2m* "), So+w)8k+k’), (24)

where k is a three-dimensional vector and there is the
correlator of Fourier components of potentials ¢(r,?) on
the left side. It is adopted that [ 4,B].=1(A4AB +BA).
The value 8¢ entering Eq. (5) is defined as ¢=¢p— ().
For the infinitely thin quantum wire (see Refs. 10 and 12),

1
S¢? = 8¢?) , \dk, dk, . 25
( P >w,kx (27)2 f( (4 >m,k y z ( )

For equilibrium longitudinal-acoustic phonons with the
dispersion law w=sk (here s is the sound velocity,
k=V'k2+k2+k?) the correlator takes the form (see
Ref. 12)

2
2 _ | Bd | mheo fiw
(5¢’ac>w,k - _ZPSZCOth —ZTS
X[8(w—sk)+8(w+sk)] . (26)

Here E; is the constant of the deformation potential and
p is the crystal density. Substituting (26) into Eq. (25) we
obtain finally
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E2#io? the degenerate gas, and use the forms
(8¢%,), x =—-—coth filo] Ho’—sk?) . 27 ~ 72
x 4e?pst 2T 2e2p D) V3
n(w)= |1+ < [1+F(w)]n %l (32)
According to Eq. (13) the value {8¢2, ) vpw,k, ENtErs the Les : T
field Eo(w). This results immediately that the velocities ~ for the nondegenerate gas, and
|w| <5 /vy, ie., |v,|<s give no contribution in the in- 8e? vi 1P
tegral (12). Indeed, in the classical approach the energy- n(w)= |1+ —ze;mln — (33)
. i ﬁ?.n (1) € k1
momentum conservation law cannot be satisfied at ™ L F

|[v,|<s for the IDEG being scattered by three-
dimensional acoustical phonons.

As the other scattering system, we consider impurities
(with the charge e;) disposed macroscopically homogene-
ously in three-dimensional space with the concentration
n }3). For this case, we have for a single impurity

4me;
¢l k)=278(w) T (28)
€L
The value averaged over the positions of impurities is
32m3eln®
(8¢3) px=—578w) . (29)
y 6%‘ k4
Substituting (29) into (25) we obtain
87r2e12n }3 )
<5¢%)m,kx:Wa(w) . (30)
L%x

IV. THE CALCULATION OF THE FIELD Ey(w)
AND THE FIELD FUNCTION y(w)

Regarding the mentioned two scattering systems, we
can represent the characteristic field Ey(w) as a sum

Eo(w)=E§(w)+E{(w)

e K,
| | fO k)?dkx[<8‘p§c)kxvrw,kx

2rmun(w)

+<5‘P§ )quTw,kx] .

(31)

Here, in accordance with the classical approach, we limit
the integration with the value K, =kr=muv/# for the
nondegenerate gas and K,=kp=muvp/=mn"/2 for
il

for the degenerate gas. Performing in (31) the integration
with the functions (27) and (30), we obtain

Ef(w)= _E (34)
lwln(w)

E¥(w)=~Ew>3|w|—w)(p +|wl ™" /q(w]), (35)
where p =Kkp/kp; w =s/vr;

E,= —————WLQZL' ‘;fzn’ , ' (36)

2

E,= Eei % . (37)
We also introduce the dimensionless electric field

e=—eE, /(2|e|lE,) (38)
and the ratio of characteristic fields

A=E,/E, . (39)
Then the field function ¥ (w) can be written as

y(w)=2¢ [ un(u)du (40)

0 14+Au2(1+pu)Hu—w?)

This function reflects the details of the electron screening.
The details of the screening are especially significant for
the nondegenerate gas. For the highly degenerate gas, we
use the constant value (33) as n(u).

To perform the analytical integration in (40), we set in
(32) approximately

ReF (w)=—1+exp(—2w?) . 41)

Then for the nondegenerate gas (p <<1), we have the
form (16) with

2 — _
yw>0=¢ | % [1+a+2 | +80w, —wik(w)+ [In [E2A | 4o |1— T2 | R (w,w,, M) +a’R (wV3,w0,V2,4/2)

4 a g(wy,A) 21

2 —2w?
+f§— =20l 4 ak(w),) k_lﬁ(w—wl)l, (42)
[
where 22D V'8
5 a='—6—T—ln Rk g(w,?»)=—2w2+27»_1 .

k(w)=w?—a(1+ma/4+wira /e '~ e =47 £es r

R (w,wl,k)=e2”‘{Ei[g(w,?»)]—Ei[g(wl,)»)]} ,

Here Ei is the integral-exponent function. Remember
that y(w)=—y(—w) and f(—w,e)=f(w, —¢€).
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For the highly degenerate gas (p >>1)
y(w>0)=e{w’+Hw —ww? —w?+u 2o(w,p)]} ,

(43)
where u=(Ap)!”3 and
2
o(w,u)=¢In L, 1 —pw +pw?
° Itpw | 1—pw, +p’wi
. — 2uw,—1
+‘/L§ arctan—z%—arctan—i&%—] .
(44)

The functions (42) and (43) give the approximate
analytical forms of the distribution function for the limit
cases ky/kp <<1 and kg /kp>>1, respectively. Howev-
er, in numerical calculations of figures presented below,
we use the precise solutions of the kinetic equation in
quadratures (14).

V. THE NUMERICAL CALCULATION
OF THE DISTRIBUTION FUNCTION
AND MACROSCOPIC CHARACTERISTICS
OF THE ONE-DIMENSIONAL GAS.
DISCUSSION OF RESULTS

Below we represent the graphs of the distribution func-
tion obtained by means of the numerical calculation of
the formulas (14) and (40).

In what follows, we use the parameters pertinent to
GaAs: m =6X10"% g, p=5.3 g/cm?, s =4 X 10° cm/s,
E;=7.8 eV, and €;=13. The electron gas can be
considered as nondegenerate at vy <<vy, oOr
V' 2Tg/m >>#nzn'Y /2m. The condition of high degen-
eration is straightly opposite. At T'g=4 K, the gas is
nondegenerate at n‘!) <<10° cm ™! and highly degenerate
at n'V>>10° cm™!. For the given temperature and
charged impurities concentration n}*’=10'> cm ™3, the
characteristic fields become, respectively, E, ~ 103 V/cm,
and E,~4.3 V/cm. Note [see (37)] that E, < Tg ! and
E,xT§. For the given values of parameters
E,=E,=280V/cmat Tg~16 K.

The values mentioned above are used in the graphs
that follow. For the nondegenerate gas, we take the con-
centration n'’=5X10* cm™!, correspondingly the pa-
rameter p =0.3. For the degenerate gas, n'1)=3.27X 10°
cm ™! and the corresponding p =2.

In Fig. 1, the solid lines correspond to the calculation
of the distribution function (16) and (40) with the exact
screening function (32). The dashed lines correspond to
the simplified treating of screening with the approxima-
tion (41). Figure 2 shows how the form of the distribu-
tion function depends on the electric field € and on the
parameter A [see Eq. (39)]. Note the zero inclination at
the point w =0 (see discussion in Sec. II). At the weak
electric field, the form of the distribution function is rath-
er complex. A somewhat similar complex form of
the distribution function was obtained in Ref. 14 by
numerical calculations of kinetic equation for
the three-dimensional case. The dependences of the aver-
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FIG. 3. Dimensionless drift velocity of the nondegenerate gas
vs electric field. (1) A=0.5; (2) A=1;(3) A=5.

Electric

age velocity (drift velocity) on the field, practically the
current-voltage characteristics of the nondegenerate
gas, are shown in Fig. 3. Here and below
(wy=[*_w"f(wdw/ [*_f(w)dw. At high fields all
the characteristics are sublinear: It is typical of the pho-
non scattering.

Consider two other macroscopic characteristics of the
electron gas. The first is the total kinetic energy of the
gas. The second is the difference between the former and
the energy of the drift of the gas as a whole, i.e., it is the
energy of the intrinsic disorderly motion. The first value,
normalized on the kinetic energy of the equilibrium gas,
we denote as Q; and the second normalized by the same
way as @,. So

(w?) _ (w)—(w)?
<w2)€=0’ (wz)e=0

Note that while the total energy Q; monotonously rises

Q,(e)= Q,(e) (45)

Total Q; and intrinsic Q,

kinetic energies

0

T
10.0

0.0 25 50 75 _
Electric field (107 arb.units)

FIG. 4. Normalized kinetic and intrinsic energies @, and Q,
of the nondegenerate gas vs electric field € at A=1 (solid lines)
and A=35 (dashed lines). (1) Q,(€); (2) Q,(€).
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FIG. 5. Field dependence of the right and left effective tem-
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peratures of the nondegenerate gas.
A=1 (solid lines), A=175 (dashed lines).

(1 TL/TS; (2) TR/TS-

with the increase of the field €, the intrinsic energy Q, is
the nonmonotonous function of the field (see inset in Fig.
4). At high fields one can say about the “cooling” of the
electron gas (see also Ref. 15). One can notice in Figs. 1
and 2 that at sufficiently strong electric fields the distribu-
tion function acquires a form rather similar to the Gauss-
ian function. The more detailed observation discerns
here the different curvatures on the right side of the func-
tion and on the left one. Therefore, it seems to the point
to approximate the distribution function with the follow-
ing forms:

(w—{w) )Ty ) ]
Agexp . | °on the right side
R
fw)= (w—(w))Ty
Ajexp 7 | on the left side ,
L

(46)

o

Distribution function f(w)

0 3
Dimensionless velocity w

FIG. 6. Distribution functions of the degenerate gas. (1)
€=0; (2) €=0.05; (3) €=0.1. A=5 (solid lines), A=1 (dashed
lines).
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temperatures Tg,

0 T T T
0.0 2.5 5.0 10.0
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FIG. 7. Field dependence of the right and left effective tem-
peratures of the degenerate gas. (1) T, /Ts; Q)T /Ts. A=1
(solid lines), A=35 (dashed lines).

where A ; and Ty ; are the parameters to pick out. By
this manner we actually introduce two effective tempera-
tures Tx and T;. The graphs of the right and left
effective temperatures versus the electric field € at two
different A are plotted in Fig. 5. We draw the curves for
T; beginning from the nonzero field € because of the
complex non-Gaussian form of the left side of the distri-
bution function at small fields. The graph Tz (€) shows
the monotonous cooling. Along with that, the field
dependence of T; changes from the heating to the cool-
ing at high fields.

The results obtained show that the one-temperature
model of the distribution function and the use on this
basis of the terms ‘“heating” and ‘“‘cooling” can be mean-
ingless. Really, if in the obvious manner we used the
model of Gaussian with a single effective temperature 7,
we would obtain T /Ts=Q),; in accordance with Fig. 4, it
would be the cooling at € >5X 1073. On the other hand,
if an effective temperature were introduced through the

- | 1
9
o
o
o |
(O]
C 6
[
1 2
O
'__; 4
(0]
L3
X -
T
2
2o : .
T
—o0 25 50 ., 75 100
Electric field (107° arb.units)

FIG. 8. Normalized kinetic energy Q, of the degenerate gas
vs electric field €. (1) A=1; (2) A=5.
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FIG. 9. Normalized intrinsic energy Q, of the degenerate gas
vs electric field €. (1) A=1; (2) A=5.

total kinetic energy, i.e., T/Tg=Q), it would follow the
heating from Fig. 4. At the same time, Fig. 5 shows that
in the two-temperature model there is no cooling or heat-
ing of the electron gas as a whole since the left and the
right effective temperatures can depart from the T in the
opposite directions.

Now we go to the discussion of results related to the
degenerate electron gas. Here the distribution function
has the form (14) and we use (40) and (33). The following
numerical calculations were performed for the same pa-
rameters m, €;, Ts, E;, A, s, and n}> as for the nonde-

(w—Aw))P—w?

exp Tk s
Slw)= (w—(w))P—w?
exp T, R

where T and T, are the right and left effective tempera-
tures, wy is the Fermi velocity found from the normaliz-
ing condition at e=0. The field dependences of the T’z
and T; are shown in Fig. 7. The dependences of the
kinetic energy and the energy of the intrinsic disorderly
motion [see Eq. (45)] on the electric field are represented
in Figs. 8 and 9; the current-voltage characteristics are
represented in Fig. 10. These three latter figures have, in
general, the same features as those for nondegenerate gas
(see Figs. 3, 4, and 5). For example, Fig. 7 shows the
necessity to use the two-temperature model instead of the
one-temperature model.

The results obtained show that the investigation of the
precise solution of the kinetic equation allows us to find a
lot of interesting and even unexpected earlier information

-1
+1 ] on the left side ,

00 25 s0 ., 75 100
Electric field (1077 arb.units)

FIG. 10. Dimensionless drift velocity of the degenerate gas
vs electric field. (1) A=1; (2) A=5.

generate gas but at the concentration n'!=3.27X10°
cm™ .

Figure 6 shows the distribution function at different
electric fields € and different values of the parameter A
[see Eq. (39)]. All the graphs have the zero inclination at
w =0 and something as a plateau, which shifts with
change of €. At high € the graphs get the form similar to
the shifted Fermi distribution with different curvatures
on the right and left sides though. By the same manner
as above, we approximate the distribution function for
great € with the forms:

+1 ] on the right side

(47)

concerning the form of the distribution function of the
nonequilibrium gas. We regard as nontrivial details the
zero inclination in the origin of coordinate related to the
elastic scattering and the necessity to describe the form
by two effective temperatures. We have considered the
classical kinetic equation for particles moving in an
infinitely thin wire. In this work, we have used the
screening function with the equilibrium distribution func-
tion. In the following papers we intend to consider the
case of the nonequilibrium screening function and to find
the ranges when one can use the equilibrium form. We
hope also to consider more general models of kinetic
equation. The results of this work will be used as bench-
marks for the cases that do not allow precise solutions.
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