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We present a theory of second-harmonic generation from thin alms of chiral materials. The formal-
ism makes distinct the contributions of electric- and magnetic-dipole transitions to the radiative process.
Three susceptibility tensors form a minimal description of the optical nonlinearity, two for the nonlinear
surface polarization and one for the nonlinear surface magnetization. The influence of optical interfaces
is made explicit by using Fresnel coefficients to describe the reflection and transmission of the fundamen-
tal and second-harmonic radiation. Hence, the characterization and metrology of chiral materials by
surface second-harmonic generation are given a 6rm theoretical foundation. In agreement with recent
experimental observations, second-harmonic signals from chiral surfaces are predicted to depend sensi-
tively upon whether the fundamental light is right- or left-hand circularly polarized. We show that this
second-harmonic-generation circular-dichroism efFect is a key signature of chirality and originates fun-
damentally from contributions of magnetic-dipole transitions to the nonlinear polarization and magneti-
zation of the surface.

I. INTRODUCTION

Surface second-harmonic generation is an acknowl-
edged method for the characterization and metrology of
material systems. ' The method has gained particular
attention because a second-harmonic signal may originate
from a surface of a material, whereas little or no signal
comes from the bulk of the sample. This behavior occurs
owing to the surface having different physical properties
than those of the bulk. In particular, assuming radiation
from only electric dipoles, a centrosymmetric material
system cannot radiate at the second-harmonic frequency
of the fundamental wave that is driving the nonlinearity.
However, for a surface, the centrosymmetry is broken
and second-harmonic radiation can occur. The analysis
of real material systems has been complicated by the fact
that the source of the second-harmonic radiation may be
other than electric dipoles, for instance, magnetic dipoles
and electric quadrupoles. Theoretical forrnalisms have
taken into account these other contributions by the use of
an efFective susceptibility for the second-order nonlinear
response of the surface. ' The result of comparing theory
and experiment is a numerical value of this effective sur-
face susceptibility. This approach is merited by the fact
that in many cases distinguishing the particular source is
extremely difficult, if not impossible.

Chiral materials possess a material structure that leads
to optical activity, which includes such phenomena as op-
tical rotation, optical rotary dispersion, and circular di-
chroism. ' All of these effects demonstrate that optically
active materials interact differently with right- and left-
hand circularly-polarized light. Nonlinear optical pro-
cesses in chiral media may also be sensitive to the hand-
edness of the electromagnetic field driving the nonlineari-
ty. Some specific examples have been worked out
theoretically. ' ' In recent experiments, sensitivity to
the handedness of the fundamental light is observed in
the process of second-harmonic generation from chiral

molecules adsorbed on an air-water interface by Petralli-
Mallow et al. ,

' from a Langmuir-Blodgett-deposited
monolayer of a chiral polymer by Kauranen et al. ,

' and
from bacteriorhodospin by Verbiest et al. ' In all of
these experiments, the phenomena may be said to be
forms of nonlinear optical activity. We note that other
experimental demonstrations of nonlinear-optical pro-
cesses' have taken advantage of the specific proper-
ties of chiral materials, but they do not demonstrate non-
linear optical activity in the sense of the process depend-
ing differently upon whether the fundamental radiation is
right- or left-hand circularly polarized.

Linear optical activity has been traced to contributions
of magnetic dipoles, ' which are substantial because of
the helical structure that chiral molecules possess. Recent
experimental results show that magnetic dipoles may also
be responsible for nonlinear optical activity observed in
second-harmonic generation' ' and for the occurrence
of a second-harmonic signal. All of this evidence
makes it desirable to include explicitly in the formalism
of surface second-harmonic generation the contributions
of magnetic dipoles.

In this paper, we present a theory of second-harmonic
generation from chiral surfaces. We make use of the for-
malism of Pershan, which was used recently by Meijer
et al. in their description of second-harmonic genera-
tion from the bulk of a centrosymmetric crystal of chiral
molecules. This formalism allows the contributions of
electric- and magnetic-dipole transitions to the surface
nonlinearity to be made distinct. In the limit in which
the magnetic interaction is treated to first order, three
different susceptibility tensors result. Two of them are
for the nonlinear polarization and one is for the nonlinear
magnetization. The infiuence of optical interfaces is
made explicit by using Fresnel coefficients to describe the
refIection and transmission of the fundamental and
second-harmonic radiation. Hence, the characterization
and metrology of chiral materials by surface second-
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harmonic generation are given a firm theoretical founda-
tion. Furthermore, we use the theory to demonstrate the
origin of the sensitivity of surface second-harmonic gen-
eration to the handedness of fundamental light and show
that this sensitivity is a key signature of chirality.

The form of the nonlinearity leading to second-
harmonic generation from a chiral surface is reviewed in
Sec. II. In Sec. III, we summarize the general result of
Ref. 23 for the electric field generated by a thin layer of
both nonlinear polarization and magnetization. The
specific form of the electromagnetic field that drives the
nonlinearity is overviewed in Sec. IV. In Sec. V, we as-
semble the results of the previous three sections. Formu-
las for the rejected and transmitted second-harmonic
waves as functions of the tensor components of the non-
linear susceptibilities are thus found for a chiral surface.
We discuss the implications of the theory in Sec. VI. The
main conclusions of this work are given in Sec. VII.

II. FORM OF THE SURFACE
SECOND-ORDER NONLINEARITY

The helical structure of chiral molecules forces elec-
trons displaced from their equilibrium position, by the
application of an electric field, to follow a helical path.
Thus, in addition to the usual electric-dipole moment
that is present, a significant magnetic-dipole moment may
also be present. For the same reason, chiral molecules
also have a substantial response to the magnetic com-
ponent of the driving field. For the process of second-
harmonic generation, the magnetic-dipole interaction can
result in the annihilation of a photon at the fundamental
frequency co or in the creation of a photon at the second-
harmonic frequency 2'." The lowest-order contribution
of magnetic dipoles is where only one of these transitions
is due to a magnetic-dipole interaction. '" For a
magnetic-dipole interaction at co, a contribution to the
second-order nonlinear surface polarization,

P;(2')=y', "kE (co)Ek(co)+y', ."k E (a))Bk(co),

results, the strength of which scales with the surface-
susceptibility-tensor element y,''k . (Here, E and B are
the fundamental electric field and magnetic-induction
field, respectively, at the location of the nonlinear materi-
al. ) For a magnetic-dipole interaction at 2', a second-
order nonlinear surface magnetization,

M, (2')=y; k'E (o))Ek(co),

occurs, the strength of which scales with the surface-
susceptibility-tensor element y;Jk'. Note that the first
term of Eq. (I) is the nonlinear surface polarization re-
sulting from response only to the electric field, the
strength of which scales with the surface-susceptibility-
tensor element y,'g. In Eqs. (I) and (2), the subscripts i, j,
or k refer to Cartesian coordinates and summation over
repeated indices is implied. We see that three surface-
susceptibility tensors form a minimal description of
second-harmonic generation from a nonlinear surface
when magnetic interactions, to first order, are made ex-
plicit.

We do not consider the detailed microscopic nature of
chiral molecules, but do consider the general features
that determine the nonvanishing elements of the macro-
scopic susceptibility tensors. The helicity of chiral mole-
cules may be right or left handed. A consequence of this
structure is that a chiral molecule cannot be superim-
posed upon its mirror image. There are no mirror planes
for a single, chiral molecule. For an isotropic distribution
of chiral molecules of a given handedness (i.e., one of the
two possible enantiomers), the macroscopic structure of
the material will also possess no mirror planes and hence
is also chiral. The material may actually have a percen-
tage of each enantiomer and still be chiral; however, for
an equal percentage (i.e., a racemate), the macroscopic
properties would possess mirror planes and the material
system would be achiral and centrosymmetric. This
achiral material would show no optical activity, which
may be understood to be due to the magnetic-dipole tran-
sition moments of the two enantiomers being equal in
magnitude but opposite in sign. '

The specific material system we shall consider is a thin
layer of chiral molecules distributed isotropically upon a
substrate. There continues to be no mirror planes, so the
surface is chiral. Owing to the isotropic distribution of
the molecules upon the surface, there is full rotational
symmetry about any axis that is perpendicular to the
plane of the surface (assumed to be in the x-y plane).
These symmetry properties lead immediately to predic-
tions of the nonvanishing elements of the susceptibility
tensors. The nonvanishing elements of g"', y ", and

are summarized in Table I. We also give the nonvan-
ishing elements for the case of an isotropic surface of
achiral molecules. The presence of chirality is thus seen
from Table I to lead to many more nonvanishing ele-
ments of the susceptibility tensors over those for the case
of no chirality. For the case of a chiral surface, i.e., for
only rotational symmetry, the same nonvanishing ele-
ments occur for each of the tensors y'", y ", and y" .
However, the tensor g'k does not obey intrinsic permu-
tation symmetry in the indices j and k, because the com-
ponents of the electric field and magnetic-induction field
of the fundamental wave are distinguishable. Hence, the
susceptibility y" has seven independent elements, while
g'" and g " each have only four. We note that the
electric-dipole-allowed susceptibility elements y„"',=y",'

pyz pyzx become nonvanishing for the chiral
surface. These susceptibility elements do not involve
magnetic dipoles; hence, magnetic dipoles are not respon-
sible solely for the nonlinear optical response of the chiral
surface being different from that of the achiral surface.

Second-harmonic generation (SHCx) has been observed
in a bulk sample of chiral molecules. The material sys-
tem was a centrosymmetric crystal made of an equal
number of the two different enantiomers of the chiral
molecule. Due to the centrosymmetry, second-harmonic
generation is not allowed in the electric-dipole approxi-
mation, i.e., the bulk form of y'" must vanish. The ob-
served second-harmonic signal was found to confirm the
presence of magnetic dipoles and hence makes g" and

a compelling formalism. Furthermore, there is
theoretical evidence that g"' for SHCz in bulk should
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TABLE I. Form of the second-order susceptibility tensors for an isotropic surface of an achiral ma-

terial or a chiral material, where the surface is in the x-y plane. Each element is denoted by its Carte-
sian indices.

Susceptibility

Independent nonvanishing tensor elements
Isotropic and achiral Isotropic and chiral

(has mirror planes) (no mirror planes)

+eee

+mee

adeem

zzz
zxx =zyy

xxz =xzx =yyz =yzy

xyz =xzy = —yxz = —yzx

xyz = —yxz
xzy = —yzx
zxy = —zyx

zzz
zxx =zyy

xxz =xzx =yyz =yzy
xyz =xzy = —yxz = —yzx

zzz
zxx =zyy

xxz =xzx =yyz =yzy
xyz =xzy = —yxz = —yzx

zzz
ZXX =Zyy
xxz =yyz
XZX =yZy

xyz = —yxz
XZy = yZX

zxy = —zyx

continue to vanish even for a noncentrosymmetric, chiral
material providing that the material is isotropic. For a
thin sheet of chiral material, however, the surface-
susceptibility tensor y'" will be nonvanishing because of
the strong broken symmetry. In principle, electric-
quadrupole effects, which occur together with magnetic-
dipole effects in the multipole expansion of the matter-
field interaction, may inhuence the measured values of
the surface susceptibilities. ' Many chiral molecules,
though, have magnetic-dipole transitions that are much
stronger than their electric-quadrupole transitions.
This fact makes it a well-justified assumption not to in-
clude the contributions of electric quadrupoles in the
present theory.

For lossless materials (off-resonance excitation), the
elements of y" and y "have been shown theoretically
to be imaginary-valued quantities, while y'" is a real-
valued quantity. ' This 90' phase difference allows the
effects of magnetic-dipole transitions to be distinguished
from those of electric-dipole transitions. Magnetic di-
poles will be seen as a dominant factor leading to the sen-
sitivity of second-harmonic signals to whether right- or
left-handed fundamental radiation drives the nonlineari-
ty. This fact is completely consistent with the role of
magnetic dipoles in linear optical activity. '

this layer (z )0) has the index n, and the material below
(z ( D) has the in—dex n2. We take the thickness D, the
position zo, and the indices of refraction to be arbitrary in
value at this stage. The fundamental wave E at frequen-
cy co is incident from medium 1 upon the interface with
medium 3 at an angle 0, with respect to the surface nor-
mal. The incident fundamental wave is transmitted into
medium 3 and drives the nonlinearity. The nonlinearity
will be seen below to generate an electric field at the

xorK

z z()~ 3
'///////////////////////////////////////////////////////////

z = —D

III. THE GENERATED ELECTRIC FIELD
FROM A THIN LAYER OF NONLINEAR POLARIZATION

AND MAGNETIZATION

The geometry of the material system we consider for
surface second-harmonic generation is shown in Fig. 1. A
thin sheet of nonlinear material at z =zo is assumed to be
embedded in a layer of material possessing a linear-
optical index of refraction n3, where the material above

FIG. 1. Typical geometry of surface second-harmonic gen-
eration showing the unit vectors for the incident fundamental
wave, and the rejected and transmitted second-harmonic waves.
The dashed line indicates the thin, nonlinear layer. The circles
with dots or crosses indicate vectors out of or into the drawing,
respectively.
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second-harmonic frequency 2', which forms a rejected
wave E and a transmitted wave E .

In the remainder of this section, we give a brief review
of the result of Sipe for the relation between the gen-
erated electric field and the nonlinear polarization and
magnetization. We deal throughout with monochromatic
fields of the form

F(r, t)=F(r, to)e '"'+c.c.

at the fundamental frequency and

F(r, t) =F(r, 2co}e ' '+c.c.

at the second-harmonic frequency.
Suppose that medium 3 is of infinite extent in the plus

and minus z directions and that the sheet of nonlinear
material at z =zo possesses a nonlinear polarization of
the form

P(r, 2co) =P(2')5(z —zo) exp(i2tc R)

and a nonlinear magnetization of the form

M(r, 2') =M(2')5(z —zo) exp(i2a R),
where 5(z) is the Dirac 5 function, sc=gk; r=zz+R,
R=xx+yy, and I, y, and z are the Cartesian unit vec-
tors.

The nonlinear polarization and magnetization have
been assumed to each have the same component 2' of
their respective wave vectors that is in the plane of the
surface (i.e., in the k direction}. An electric field

E(r, 2co) =E(z,2') exp(i2a" R)

will be generated by this sheet of nonlinear material that
propagates with the same wave-vector component 2~x.
The complete solution of the inhomogeneous, Maxwell
equations for amplitude of the generated electric field is

E(z, 2co)=i [(ss+p~+p~+). P(2')]8(z —zo) exp[iw~" (z —zo)]
w 3

8&6 8
2 2+i

z [(pz+s —spz+). M(2')]8(z —zo) exp[iw& (z —zo)]
Wg

~2

+i [(ss+p&" p& ) P(2co) ]8(zo —z) exp[ —iw z"(z —zo ) ]
w 3

87' 7l
+i [(p~ s —sp~ ).M(2co)]8(zo —z)exp[ iw~ (—z —zo)] — [zz P(2co)]5(z —zo),

Wg Ep
(8)

where co=co/c is the normalized angular frequency, and c
is the speed of light in vacuum. The s-polarized com-
ponents are given by s =sc X z and the p-polarized com-
ponents are given by

2~z —w; "x

2cOn
(9a)

2
2KZ+ W; K

2cOn I

The quantity

(9b)

2a) 2(-2 2' 2)1/2
1 (10)

is the component of the wave vector in the z direction
and e; =(n,~

) is 'he linear dielectric constant. For use
in Eq. (8), i =3 in Eqs. (9) and (10). The superscript 2'
indicates that a quantity is to be evaluated at the second-
harmonic frequency. The unit-step function is given by

8(z)=1, z &0

=0, z (0.

and fourth terms describe downward-propagating (de-
creasing values of z) waves. The last term in Eq. (8) is not
a propagating wave and hence is of no further interest.

We must now account for the finite extent of the ma-
terial with index nz in which the nonlinear layer is em-
bedded. The upward wave will reAect off of the interface
between media 3 and 1, while the downward wave will
reAect off of the interface between media 3 and 2. Multi-
ple rejections of the generated light thus occur similar to
that for light propagating through a Fabry-Perot etalon,
but in this case the source of the light is within the
etalon.

The calculation of the electric field that is transmitted
upward into medium 1 and downward into medium 2 is
also given in Ref. 23, but the contributions of nonlinear
magnetization had been set to zero in favor of using an
effective nonlinear polarization to include implicitly the
contributions of nonlinear magnetization. We have rein-
troduced explicitly the nonlinear magnetization into the
formalism. The results in the present notation are as fol-
lows. The generated electric field that is transmitted into
medium 1 or the reflected second-harmonic wave is

In Eq. (8), the first and second terms describe upward-
propagating (increasing values of z) waves and the third

E (r,2')=[sE, (2')+p, +E (2')] exp(ik, + r),
where

(12)
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v'+ exp( —iw3 zo)+v' r, 32 exp[iw3 (2D+zo)]
E,"(2')= t, 3i (13a)

v+ exp( —iw 3 zo ) + v~ r~ 3$ exp [iw 3 (2D +zo ) ]E (2')=t 3i (13b)

and k, + =w, z+2ak is the wave vector [see Eq. (10) for
the definition of w, ]. The generated electric field that is
transmitted into medium 2 or the transmitted second-
harmonic wave is

E (r, 2to) = [sE, (2')+p2" E~ (2to)] exp(ik~ .r),
where

v' exp(iw3"zo)+v'+r 3i exp( iw3—zo)
E, (2')=t 32

pleteness, we give the formulas

27' itsi-
n,; cosO;

cose;
+ IEJ- cosg.

cosO;

+n- cosO,.

2ni

n; cosa.

(17a)

(17b)

rsij
=

tsij

from which the other coefticients may be calculated using

(1Sa) Jn.
PiJ PIJ

Pl;
(17d)

v" exp(iw3 zo)+vp+r 3, exp( iw3"—zo)E (2')=t q~p p32
1 r, r e—xp(i2w "D)

where for both s- and p-polarized light r, = —r, . The
quantity cosI9;" may be calculated using the relation

(15b) w =2cOn COSH (18)

v+=
2 [s P(2') —n3"p3+ M(2')],

W3
(16a)

and kz = —w2 z+2Kk is the wave vector. The field am-
plitudes at the second-harmonic frequency are

for the magnitude of the component of the second-
harmonic wave vector in the z direction, where w; is
given by Eq. (10). We take ~ to be fixed in value at this
stage, but note that

K=coll sin0 (19)
[p3p P(2')+n3 s.M(2')] .

w3
(16b)

The amplitude reQectivity coefFicient r„" and transmis-
sion coeKcient t„" for an s-polarized electric field as well
as the amplitude reQectivity coefficient r; and transmis-
sion coeKcient t; - for a p-polarized electric field are cal-
culated using the standard Fresnel formulas. For corn-

We now consider the simplified case that medium 3 is
thin such that 2Dw 3 &(1, which also implies that
zow32" «1. In addition, we use Eqs. (18) and (19) to
write the amplitudes of the second-harmonic fields in
terms of the Cartesian components of the nonlinear po-
larization and magnetization. The expressions for the am-
plitudes are

t2~
ER(2 )—

s
3 3 s31 s32

E (2')=

E, (2')=

E~ (2') =

X IM (2')[1—r, 32]n3 cos83 —P (2')[1+r 32]—M, (2')[1+r,&z]n3 sin83" ],
2co

l 47Tco tp31

pl cos6I 1 —r r3 3 p31 p32

X I
—P (2')[1—

r~32] cos83" M~(2')[—1+r~~~]n3 +P,(2')[1+r 32] sin83 ],
2'

E 47Tco ts32

7l cosl9 1 r r3 3 s31 s32

X [
—M (2')[1—r 3, ]n3" cos83 —P~(2')[1+r 3i ]—M, (2')[l+r 3i ]n3" sin83 ],

2'
l 4&@ p32

n "cosO" 1 —r r"
3 3 p31 p32

X [P„(2')[1 r~~", ] cos—8~3 —M (2')[1+r 3, ]n3 +P,(2c)[1o+r ~]3siin83 ] .

(20b)

(20c)

(20d)

For comparison with other formalisms, we insert the explicit expressions for the Fresnel reAectivity and transmission
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coefficien [Eqs. (17)] into Eqs. (20), which yields the expressions

E, (2co)= [M (2co)nz cosOz —P (2co) —M, (2co)nz" sinOz"],
n "cosS +n cosS

(21a)

E„(2co)= P—(2co) cosOz" —M~(2co)n z" +P, (2co)
n i cosO2 +n 2 cosO)

2'
sinO2

n 3

(21b)

E, (2co) = z [
—M„(2co)n," cosO& P—(2co) —M, (2co)n,"sinO, j,

n, cosO&"+n 2 cosO2
(21c)

E (2co)= P„(2co)cosO, —M (2co)n, +P, (2co)
n i cosO2 + Il 2 cosOi

n 2')
1

sinO&" . .
n 2'

3

(21d)

Note that in the limit of negligible nonlinear magnetiza-
tion (M=O), the expressions resulting from Eqs. (21)
agree exactly with the results of Ref. 29. The results of
this section have been presented explicitly for second-
harmonic generation at a surface, but they are equally
valid for many other nonlinear processes such as sum or
difference-frequency generation.

tp&3
(co) =E~(co)

1 r~"3, r~"—3z exp(i2w 3D)

and where the wave vectors are

k3+ —W 3 Z+ Kk,

k3 ——
W3 Z+Kk .

(25d)

(26a)

(26b)

IV. FORM OF THE FUNDAMENTAL
ELECTROMAGNETIC FIELD

E (r) = [sE,(co)+p& E (co)] exp(ik, r), (22)

In preparation for calculating the detailed form of the
nonlinear polarization and magnetization, we must find
the form of the electromagnetic field in medium 3 at the
fundamental frequency co. We assume that the incident
electric field (see Fig. 1) is

PI+=

Pi. —=

KZ Wi +
con;"

KZ+ Wi +
con;"

(27a)

(27b)

The unit vector for the s-polarized components of the
fundamental field is again given by s=kXz as for the
second-harmonic field, but the unit vectors for the @-
polarized components are different and are

E (r)=[sE, +(co)+p3+E +(co)] exp(ik3+ r)

+[sE, (co)+p3 E (co)] exp(ik3 .r)
and the magnetic-induction field in medium 3 is

(23)

where k& = —w
&
z+~k; The form of the electromagnet-

ic field within an etalon is a basic result of optics; hence,
we do not derive it again, but refer the reader to Refs. 23
or 30 for guidance. Thus in the present notation the elec-
tric field in medium 3 is

where

w; =con; cosO",

~=Sn, sinO";

The subscript i equals 1, 2, or 3.
Written in terms of ~, the fundamental field is

E (r, co)=E (z, co) exp(inc R),
B (r, co)=B (z, co) exp(ia"R),

(28)

(29)

(30a)

(30b)

B (r) =n3 k3+ X [sE, +(co)+p3+E +(co)] exp(ik3+ r)

+ n 3 k3 X [sE, (co)+p3 E~ (co) ] exp(ik3 r),
(24)

where the various amplitudes are

for which

E~(z, co)= [sE, +(co)+p3+E'+(co) ] exp(iw 3z )

+[sE, (co)+p3 E (co)]exp( iw3z), —(31a)

BF(z,co)=n3 k3+ X [sE3 (co)+p3+E~+(co)]exp(iw3z)

j3r 3z exp(i2w3D)
E,'+(co) =E, (co)

1 —r,3$r 3z exp(i2w3D)
(25a)

+n 3 k3 X [sE, (co)+p, E~ (co)]

X exp( —iw 3z ), (31b)

rgpf3rpgz exp( i2w 3 D)
E~+(co)=E (co)

1 rp3$rp3z exp(i2w3D)

E,' (co)=E,(co)
1 r 3]r 3z exp(i2w3D)

(25b)

(25c)

where the s- and p-component amplitudes continue to be
given by Eqs. (25). From this form of the fundamental
field, we see that a quadratic nonlinearity will have phase
factors of the form exp(i2a R). It is now clear why the
nonlinear polarization [Eq. (5)] and magnetization [Eq.
(6)] are each assumed to have this phase factor.
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We need only the form of the fundamental field at the
location of the nonlinear layer. For the second-harmonic
wave, the thickness D was assumed earlier to be small
such that 2Dw3 «1. We assume that a similar condi-
tion 2Dw3 «1 is also valid for the fundamental waves,
which also implies that zow3 «1 without actually speci-
fying the exact location of the nonlinear layer. Hence,
the specific form of the Cartesian components of the elec-
tric and magnetic-induction field at the fundamental fre-
quency co that are to be used in Eqs. (1) and (2) is

tions of the tensor components of the nonlinear suscepti-
bilties. The substitution into Eqs. (20) of the specific
form of the nonlinear surface polarization [Eq. (1)] and
magnetization [Eq. (2)] found using Eqs. (32) for the fun-
damental field gives

E (2')=[sE, (2')+p, +E (2')]exp(ikl+. r) (33)

for the rejected second-harmonic wave, where

EP(~) =El(co) [1—r 3z ] cosOf,—
rp31rp32

E, ( )= —E,'( ) [1+; 1,
rs31 s32

E, (u)=E„(co) [1+rp3z]sin83,
rp31rp32

ts"13
B„(co)=—E, (co) [1—r,"3z]n f cosOf,

rs31 s32

(32a)

(32b)

(32c)

(32d)

and

E (2') = [sE, (2')+pz" E (2')] exp(ikz r)

for the transmitted second-harmonic wave, where

(34)

(3&)

(36)

B» (co) = Ep(co) — [1+rp3z ]n f,
rp 31rp"32

~s13
B, (co) = —E, (co) [1+r,3z ]n 3 sinOf .

rs31rs32

(32e)

(32fl
IEI G EIEI + EIEI

p p ~ s s ~ s p (37)

The subscripts j in Eqs. (34}and (36) represent either s or
p. The dependence of the generated second-harmonic
waves upon the incident fundamental wave is given by
the factors

V. EXPRESSIONS
FOR THE SECOND-HARMONIC WAVES

We now have all the information needed to write ex-
plicit formulas for the second-harmonic waves as func-

Note that these three bilinear combinations are the only
possible ones for a transverse fundamental field, which in
a completely general manner can always be expanded in
terms of s- and p-polarized unit vectors. The coeficients
appearing in Eqs. (34) and (36) are

fR/T
1 rp31 p32

2

[2y„"»',[1+r 3, ][1+rp3z][1 rp3z]slnOf cos83

+y", [1+r 3;][1+r3z] nf sinOf+2y „",[1 r, 3; ]n3 cos83"[1+r—3z][1 rp3z]sin83 —cos83

—y,„'„'[1 +r ]3n 3sin83 [1—r"3z] cos Of —y„,"[1+r3;]n3 sin83 [1+rp3z] sin 83] . (38a)

R/T
s

&s"13

31r 32

'2

[y„"„,[1+r 3; ][1+r, 3z ] n 3 sinO f+y '„'[ 1+r, 3",. ]n 3" sin83 [1+r,"3z ] ], (38b)

h, =
I 2y„"„',[1+r, 3; ][1+r, 3z ][1+rp3z ] sinOf

rs 31rs32 rp 31rp 32

—y",» [1+r,3; )[1—r, 3z ][1+rp3z ]n 3 sin83 cosOf

—y'„', [1+r,3; ][1+r,3z ][1 rp3z ]n f sin83 COS83

+2y", [1 r, 3; ]n3 cos83 [1+r,3z—][1+r 3z] sin83 j,
2

(38c)

fR/T
P 1 rp 31rp 32

[+2y"„',[1 rp3;] cos83 [1—+rp3z][1 rp3z] sinOf cos83—
+y,'„"[1+r 3;]sin83"[1 r3z] cos f—O+y,",,'[1 +r~3, ]sin83 [1+rp3z] sin Of

+g„", [1 r„3, ] cos83 [1+—r 3z ] n f sinOf —y,'„' [1+r 3; ] sin83 [1+r 3z ][1—r 3z ]n 3 cos83

+2y„»", [1+r 3;]n3 [1+rp3z][1—r 3z] sin83 COS83 j (38d}
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R/T
P

and

I —r, 3&r,32

2

[y,'„"„[1+r3;]sin83"[1+r,"32] +y„",[1 —r 3", ] cos83"[1+r,"32] n3 sin83

y [ 1 + rp3~f ] sing& [ 1 + r, 32 ][1 —r,"32 ]n 3 cos83 j (38e)

~p r3
[ +2g'„z', [ 1 rzg ] c—osg3"[1+r~&z ][1+r ~&z ] sing f

3]r 32 rp3 harp 32

+y'„'„,[1 rp3
—]cos'83 [1+r, 32 ][1 r&—32 ]n 3 sin83 cos83

+g",„[1—r~3,. ] cosg& [1—r,"32][1+r3z]n 3 sin83 cosg3

+g,'„'„[1+r~3,] sin83"([1+r,32][1+r~zz]n3 —[1—r, z3][1—r 3z]n3 cos 8& )

—g'„', [1+r&3";]sin83 [1+r 3z][l+r 32]n3 sin 83

+2y„",[1+r~z; ]n 3"[1+r, 32 ][1+r~&2 ] sin83 (38f)

where in the coefficients for the rejected wave i =2 and
the upper sign should be used, while in that for the
transmitted wave i = 1 and the lower sign should be used.

The intensity of the rejected second-harmonic wave as
measured in medium 1 is I (2')=(cn, / 2m. )~E"(2')~
and the intensity of the transmitted second-harmonic
wave as measured in medium 2 is I (2co)
=(en&~/2~)~E (2')~ . In an actual experiment, an
analyzing polarizer may be placed before the detection
system in order to measure only the s- or p-polarized
components of the second-harmonic light. For later dis-
cussion, we need consider only that the measured com-
ponents will be of the functional form

I(2')
~ fF +gG +hH~ (39)

Without the use of an analyzing polarizer the measured
intensity will be the sum of the intensities of the s- and p-
polarized components.

This completes the main theoretical development of
the paper. The expressions derived here are as valid for
an isotropic, achiral material as for an isotropic, chiral
material. The only difference between the two cases is
that for the achiral material more components of the
nonlinear susceptibility tensors vanish.

We note that the linear optical activity of a chiral ma-
terial is not included in this formalism. The assumption
that the nonlinear layer is very thin allowed us to ignore
changes in the amplitude and phase of the optical field
due to propagation through the nonlinear layer. Thus the
nature of propagation depending upon the handedness of
the light is ignored completely. Where handedness effects
might enter is through the Fresnel reQectivity and
transmission coefficients. In principle, the Fr esnel
coefficients would need to be generalized to treat the sen-
sitivity to the handedness of the light. ' The difference
between the indices of refraction n RH& for the right-hand
and n LHC for the left-hand circularly-polarized light is as-
sumed to be very small and thus only an average value of
the linear index of refraction for the nonlinear layer is
used (i.e., n3) Note that .it is a formidable task to model

accurately the average value of the linear index of the
nonlinear layer as it is known to depend upon the materi-
als surrounding the layer, such as in the case of a fused-
silica substrate supporting a dye film in air.

VI. DISCUSSION

I" (2') ~ ih i H~

and the p-polarized signal is

(4O)

In this section, we investigate the conditions under
which second-harmonic generation from an isotropic sur-
face will exhibit a different response depending upon
whether the fundamental beam is right- or left-hand cir-
cularly polarized. Such a circular-difference effect is of
particular interest, because it may serve as a means of
detecting the presence of chirality in material systems. In
the pioneering work of Petralli-Mallow et al. , ' surface
second-harmonic generation from a surface known to be
chiral did give a signal whose strength depended sensi-
tively upon whether the fundamental light is right- or
left-hand circularly polarized. This example of nonlinear
optical activity was called second-harmonic-generation
circular dichroism (SHG-CD). The SHG-CD effect was
later observed using other material systems. ' ' The
comprehensive theory developed here provides the first
opportunity to explore in detail the possible mechanisms
or conditions that lead to the SHG-CD effect. Our
specific arguments for the existence of the SHG-CD effect
are based on the general form of the intensity of the com-
ponents of the second-harmonic field given by Eq. (39).
Hence, no assumptions are necessary about the actual
values of the individual components of the three suscepti-
bility tensors.

We first show that no SHG-CD effect exists for an
achiral material. Through the use of Table I, only the
coefficients f, ~, g, , and h ~ are seen to be unique to
the presence of chirality; these coefficients vanish for an
achiral surface. Thus for an isotropic, achiral material
the s-polarized signal is
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IR /T( 2I0 ) &x
IfR / TP +g R / TG

I

2
P P P (4l)

In order to investigate the possibility of the SHG-CD
effect, we model the incident circularly polarized elec-
tromagnetic Geld i.n a completely general manner by tak-
ing E /E, =e' . The incident light is said to be right-
hand circularly (RHC) polarized for 5=sr/2 and left-
hand circularly (LHC) polarized for 5= —m. /2. For cir-
cularly polarized fundamental light,

P —(EI)2ei25 G —(EI)2 and II (EI)2ei5

The s-polarized signal [Eq. (40)] becomes
I, (2') ~ Ih, I IE, I, which is independent of 5 and
hence does not exhibit the SHG-CD effect. The p-
polarized signal [Eq. (41)] becomes I / (2') ~

If /Te'25

+g~" I IE, I, which also does not exhibit the SHG-CD
effect owing to e' = —1 for both RHC- and LHC-
polarized light. Therefore, the SHG-CD effect cannot be
observed using an isotropic, achiral material, which is as
expected.

We next show that in order for the SHG-CD effect to
exist, it is necessary that a phase difference exist between
the coefficients f, g, and h. The case of no phase
difference is addressed by considering the limit of real-
valued coefficients. In this limit, the intensities of the
second-harmonic fields will be of the functional form

I(2~) ~f 'II" I'+g'I GI'+h' IHI'+2fg Re(F'G)

+2gh Re(G*H)+2fh Re(H'Ii) . (43)

which is again independent of whether RHC- or LHC-
polarized light is used as the incident fundamental wave
owing to the fact that the cosine function is an even func-
tion in 6. Hence, the SHG-CD effect cannot be observed
if the coefficients f, g, and h are purely real valued. In
order to observe the SHG-CD effect, one or more of the
coefficients will have to be complex valued and, further-
more, a phase difference between the coefficients must ex-
ist.

A quantitative measure of the SHG-CD intensity
asymmetry is'

LHC RHC
LiI ISHG CD I I

1 [ILHC+IRHC]
2

(45)

where I and I are either the transmitted or
reflected second-harmonic signals measured for the cases
of RHC- and LHC-polarized fundamental light, respec-
tively. For measurements of either the s- or p-polarized
second-harmonic light, the use of Eqs. (39), (42), and (45)
gives

4 &m(g 'h ) +4 Im(h 'f)

Ifl'+ Igl'+ I
~ I' —2 Re(f 'g)

(46)

For circularly-polarized light, the use of Eqs. (42) gives
Eq. (43) as

I(2') ~ [f +g +h

+2[fg cos25+h (f +g) cos5] J IE, I

to be the predicted strength of the SHG-CD effect. A
more complicated expression is required to model the
SHG-CD effect in the total intensity.

Equation (46) shows that a phase difference must exist
between h and either f or g in order for the SHG-CD
effect to exist, where a 90 phase difference is optimum.
Careful examination of the detailed expressions for the
coefficients [see Eqs. (38)] leads to the conclusion that
they may be complex valued if the Fresnel coefficients,
angles 03 and 03, or some of the susceptibility-tensor
components are complex valued. Recall that the suscepti-
bility y"' is a purely real-valued quantity for the condi-
tion of being nonreso nant in the fundamental and
second-harmonic frequencies, while the susceptibilities

and g "are purely imaginary-valued quantities.
We assume that the angle of incidence is chosen such that
total internal reflection does not occur, which would lead
to complex-valued angles 83 and/or 83 . A consequence
of being near to a resonance for the fundamental or
second-harmonic frequencies is that absorption leads to a
complex value of the index of refraction n3, and hence
complex values of the Fresnel coefficients that depend
upon n3 and a complex value of the angle 03. Thus, there
are two interesting regimes under which to examine
whether a phase difference between h and either f or g
will exist, the cases of the fundamental or second-
harmonic frequencies being nearly resonant or non-
resonant.

The Grst regime we consider is that the fundamental or
second-harmonic frequency is nearly resonant, leading to
complex-valued linear-optical quantities and a complex-
valued susceptibility y"'. We are also supposing that
there are no contributions from magnetic-dipole transi-
tions so that y" and y "are zero. In this special case,
the nonvanishing tensor component y„"', is the only one
that is unique to the presence of chirality. The SHG-CD
effect can thus occur, in principle, provided that a
sufficient phase difference exists between the coefficients
f, g, and h. This possibility makes nonlinear optical ac-
tivity very different from linear optical activity, which re-
lies on the presence of contributions from magnetic-
dipole transitions. ' In general, g" and y "may also
be nonzero and would no longer be purely imaginary
valued due to absorption from the near-resonance condi-
tion. The tendency of y" and y "to be -90' out of
phase with respect to y'" would hence further increase
the phase differences between the coefficients, leading to a
larger SHG-CD effect.

The second regime of interest is that both the funda-
mental and second-harmonic frequencies are non-
resonant. Thus, the linear-optical quantities and the sus-
ceptibility y"' are purely real valued, while the suscepti-
bilities g" and y "are purely imaginary valued. There-
fore, this 90' phase difference between some of the com-
ponents of the susceptibility tensors causes a phase
difference to exist between f, g, and h, and the SHG-CD
effect should be measurable.

We believe that the phase difference between the
coefficients should be larger due to magnetic-dipole con-
tributions than due to the inhuence of the near-resonance
absorption on the linear- and nonlinear-optical quantities.



1434 JEFFERY J. MAKI, MARIT'I KAURANEN, AND ANDRE PERSOONS

In addition, magnetic-dipole transitions provide the only
mechanism that can give rise to the SHG-CD effect un-
der arbitrary conditions of being near or far from a reso-
nance for the fundamental or second-harmonic frequen-
cies, such that absorption does or does not play a role.
Certainly, for a completely lossless material, only
magnetic-dipole transitions could be responsible for the
observation of the SHG-CD effect. Therefore, the funda-
mental sensitivity of second-harmonic generation from
chiral surfaces to the handedness of the fundamental ex-
citation is due to the presence of magnetic dipoles.

In further detail, g, ~ has only susceptibility elements
with contributions from magnetic dipoles, namely, g"„,
and y, '„'. An experiment that could prove g, is
nonzero would confirm the presence of magnetic dipoles
independent of the influence of absorption. The
coeKcient g, is also unique to the presence of chirality.
Thus the measurement of a nonzero value of g, should
confirm both the presence of magnetic dipoles as well as
chir ality.

VII. CONCLUSIONS

We have presented a theory of second-harmonic gen-
eration from an isotropic, chiral surface. The formalism

allows one to easily include the specific nature of the elec-
tromagnetic interfaces through the use of Fresnel
coe%cients. The formalism is also valid for an isotropic,
achiral surface.

The formalism verifies that the presence of chirality
may be proven by the measurement of a circular-
difference effect in the second-harmonic signal. Thus,
this SHG-CD effect may be used as an effective method
of metrology of chiral materials.

The role of magnetic dipoles in the process of SHG in
chiral materials has been elucidated. Magnetic-dipole
transitions are traced to be the fundamental reason for
chiral materials to exhibit the SHG-CD effect. However,
it was also shown that, in principle, the SHG-CD effect
could be observed from a chiral material that has a
second-harmonic response due only to electric dipoles
(i.e., y"'), but only for near-resonant excitation such that
optical quantities become complex valued due to absorp-
tion.
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