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This paper describes a simple and general method for deriving the inelastic collision term in
the electron Boltzmann equation for scattering from a coupled electron-phonon system and applies
the method to the case of doped polar semiconductors. In the Born approximation, the inelastic
differential scattering rate N"" ' can be expressed in terms of the nonequilibrium total dynamic di-
electric function, which includes both electronic and lattice contributions. Within the random-phase
approximation lV'" ' separates into two components: an electron-electron interaction containing the
nonequilibrium distribution function for excitations of the electron gas and a Frohlich interaction
including the phonon distribution function and self-energy due to polarization of the electrons. Each
of these two interactions is screened by only the electronic part of the total dielectric function, which
contains the high-frequency dielectric constant, unlike commonly used expressions that contain the
static dielectric constant. The detailed balance between plasmons and electron-hole pairs in steady
state is used to eliminate the nonequilibrium plasmon distribution from the Boltzmann equation,
resulting in a dynamically screened electron-electron collision term. The phonon self-energy modi-
fies the longitudinal optical-phonon dispersion so that two hybrid normal modes contribute to the
electron-phonon collision term.

I. INTRODUCTION

The electron Boltzmann equation for inelastic scat-
tering in solids is usually established either by making
approximations to more general equations derived with
powerful nonequilibrium Green's function techniques
or simply by ansatz with the aid of analogy to simpler
physical systems. An alternative method described here
proceeds by using time-dependent perturbation theory
to determine the inelastic collision term &om the total
dynamic dielectric function for the nonequilibrium cou-
pled electron-phonon system. This paper treats the case
of a system of polar optical phonons in the presence of
conduction electrons and Coulomb interactions, though
the method is more generally applicable. Except for the
nonequilibrium character of the Boltzmann problem, the
approach is similar to Van Hove's correlation function
method applied to doped polar semiconductors to de-
termine the inelastic lifetime of a quasiparticle excita-
tion of an equilibrium system. In addition to providing
physical insight, the total dielectric function approach is
a systematic way to include scattering against coupled
electron-phonon modes in the Boltzmann equation, so
that the inQuence of mode coupling on mobility can be
studied. Numerical results for mobility in n-type GaAs
are presented in Ref. 7.

In the Born approximation, the interaction between a
conduction electron and a coupled electron-phonon sys-
texn can be represented as an efFective electron-electron.
interaction screened by the total dynamic longitudinal
dielectric function eT (g, ur), which includes contributions
&om both electrons and phonons. In this context,
e~ describes the linear response of the electron-phonon

gas not to an externally applied potential, but to the
internal potential due to the probe electron plus the in-
duced density fIuctuations of the gas itself. The efFective
interaction has the form of a total density autocorrela-
tion function. Unlike the lifetime problem, the entire
electron-phonon gas is away &om equilibrium in the dc
transport case and the correlation function must be eval-
uated for the nonequilibrium ensemble. It follows that
the efFective electron-electron interaction is screened by
the nonequilibrium total dielectric function in this case.
In fact, taking account of the nonequilibrium character of
the interaction is essential to obtaining the correct form
of the inelastic collision term, which contains nonequilib-
rium distribution functions for the system's excitations.
Thus this paper generalizes previous work ' '~2 that used
the total dielectric function to study the scattering of ex-
cited electrons &om coupled electron —polar-phonon sys-
tems in equilibrium.

The efFective electron-electron interaction can be sepa-
rated into a purely electron-electron term and a screened
electron-phonon interaction. In the random-phase ap-
proximation (RPA), the electron-phonon part contains
a phonon self-energy that arises from the polarization
of the electron gas. The self-energy correction lnodi-
fies the longitudina1-optical (LO) —phonon dispersion in
doped polar semiconductors, producing two hybrid nor-
mal modes with phonon strength in both. This paper
determines the inelastic difFerential scattering rate TV'" '

for the nonequilibrium case in the RPA Born approxima-
tion. The result consists of an electron-electron compo-
nent containing the nonequilibrium distribution function
for excitations of the electron gas and an electron-phonon
component containing the phonon self-energy and dis-
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tribution function. Each of these two interactions is
screened by only the electronic part of the total dielec-
tric function, which contains the high-&equency dielectric
constant e . Thus the RPA Born result differs from com-
monly used expressions for screened interactions in doped
polar semiconductors, which contain the static dielectric
constant eo. Examples using 60 rather than e for n-
type GaAs include a calculation of dynamically screened
electron-electron scattering, 3 as well as static screening
approximations for electron —LO-phonon scattering~ and
electron-electron scattering. For more strongly polar
doped semiconductors (where es )) e ), it is essential
to treat this aspect of the screening problem correctly.

The collective modes have a Gnite lifetime for decay
into electron-hole pairs. This Landau damping pro-
cess provides an indirect mechanism for single-particle
electron-electron scattering. For the electronic system
in steady state, Landau damping creates a detailed bal-
ance relation between plasmons and electron-hole pairs
that can be used to eliminate the nonequilibrium plas-
mon distribution &om the Boltzmann equation in fa-
vor of the single-particle electron distribution. In the
approximation of no collision damping, the result is an
electron-electron collision term screened in the dynamic
RPA, contaiaing the effects of electron-plasmon scatter-
ing. The important effect of dynamic screening on the
electron-electron interaction in nonequilibrium situations
has been demonstrated in previous work. ~ For direct-gap
doped semiconductors where umklapp processes are neg-
ligible, the collision term conserves total electron momen-
tum and cannot by itself degrade an electrical current if
energy surfaces are spherical. However, by rearranging
the electron momentum distribution, electron-plasmon
and electron-electron scattering can have a significant
indirect effect on the outcomes of other scattering pro-
cesses.

The low-energy hybrid mode arising from the plasmon-
phonon coupling in doped polar semiconductors gives in-
creased low-energy electron-phonon scattering strength
compared to the uncoupled case. Numerical calculations
including the plasmon-phonon coupling have given short-
ened inelastic lifetimes ' and enhanced hot-electron en-
ergy relaxation, ' especially at low temperatures and
low doping. A simple way to treat the coupled modes is to
use the plasmon-pole approximation ' on the phonon
self-energy. This procedure is used here to include scat-
tering against the hybrid modes in the electron-phonon
collision term so that mode coupling can be treated with
the Boltzmann equation in a computationally efBcient
manner.

This paper is organized as follows. In Sec. II, W'"' is
derived within the Born approximation in terms of the
total nonequilibrium dielectric function for the coupled
electron-phonon system. The RPA is invoked to separate
R"" into electron-electron and electron-phonon compo-
nents. Section III deals with the electron Boltzmann
equation by eliminating the nonequilibrium plasmon dis-
tribution &om the electron-electron collision term. The
electron-phonon collision term is simplified by apply-
ing the plasmon-pole approximation to the phonon self-
energy.

II. INELASTIC DIFFERENTIAL
SCATTERING RATE

A. Electron-phonon gas model

Consider a probe electron scattering &om an interact-
ing gas of electrons and polar optical phonons. Interac-
tions with impurities and acoustic phonons can be added
by hand later. The probe electron is treated as a quasi-
particle with states ~k), efFective mass m, and dispersion
relation Eg = h A, /2m*. The Boltzmann equation re-
lies on the validity of the quasiparticle description by as-
suming that the energy-momentum relation remains well
defined when collisions are included. Interactions with
the electron-phonon gas produce transitions between the
quasiparticle states, but do not broaden them signifi-
cantly.

For direct-gap polar semiconductors, local field effects
are unimportant so that electrons couple only to the
macroscopic electric field set up by the LO phonons
and do not interact with the transverse-optical (TO)
phonons. The Hamiltonian for the electron —LO-phonon
gas is

IIs ——) fr,ck ck~+) RuTo(a a~+ 2)
k, cr q

+ 2 ) v pz, (q)pT (q) —x
qgo

where

vq 47t e
v 2&oo g &oo

(2)

1/2

pT(q) = fl "p(q)+&~
l M I &(q) (3)
(2McuTO)

where A(q) = az + a, M is the reduced mass of the
basis ions, Ze is the effective ionic charge, n is the elec-
tron density, 0 is the system volume, and the Fourier
components of the electron density operator are

k,a

The electron self-interaction has been removed &om H~
by subtracting the term with N, the number of electrons

the electron- and the LO-phonon annihilation operators
are denoted by ci, and aq, respectively, o. labels the elec-
tron spin, and ~TQ is the TO-phonon &equency. The
relevant phonon &equency in Hg is the bare one cuTQ.
The ion-ion Coulomb interactions explicitly included in
Hg shift ~TQ to the longitudinal optical &equency ~IQ,
so that only ~gQ appears in expressions for observables.
The first and the second sums in Hg describe the nonin-
teracting systems of electrons and phonons, respectively.
The last sum includes electron-electron, electron-phonon,
and ion-ion Coulomb interactions. The total density op-
erator pz is the summation of the density operators of
the electrons and LO phonons
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in the system. The inHuence of interband electronic tran-
sitions is taken into account by screening the Coulomb
interaction eq with the high-&equency dielectric constant
&oo

The eKects of screening by conduction electrons and
LO phonons are contained in the interaction term in H~
and will appear explicitly in the total dielectric function
below. The RPA or mean-Geld approximation for the
interaction term is made by working with eigenstates In)
of the Hamiltonian H~, which neglects the terms in Hg
that are quadratic in density fluctuations pz —(pT ),
HgIn) = E„In),

Hg Hg
2 ) vq [pT(q) —{pT'(q))1[pT'(q) —{p2'(q))] .

(6)

Hg includes Coulomb interactions at the Hartree level.
Excitations of the electron-phonon gas described by H~
include both electron-hole pair and collective excitations.

Deflne P(n, k ~ m, k —q) as the probability per unit
time for the probe electron to make a transition &om
Ik) to Ik —q) while the electron-phonon gas makes a
transition from In) to Im), assuming that initially Ik) is
occupied and Ik —q) is unoccupied. The interactions in-
cluded in Hg produce charge density correlations, result-
ing in an interaction potential between gas excitations
and the probe electron, which is screened and assumed
to be weak. Using Fermi's golden rule (or the Born ap-
proximation) with the probe particle plane wave states
Ik), the transition probability is

P(n, k m m, k —q)

I I( I
p'(q)

I
)I'b(&- —&-(Ap

+~~,I —q)

This inHuence is included by adding the term

H, (,t) = e/d r U(r, &)pr(r, &) (10)

{O(r t))„„, = (0 (r t)) = Z Tr (e ~ 'GU(r t)),
(11)

Q&(r, t) = V '(t) O(r, t) V(t),

t

V(t) = 7 exp dt'H, „t(t')

where {) denotes an average over the equilibrium pop-
ulation of the electron-phonon gas, P = I/kHT, Z
Tr(e PH~) is the partition function for the equilibrium
gas, and 7 denotes the time ordering operator, which
orders operators with earliest times to the right.

In the presence of U(r, t), the traiisition rate P(n, k ~
m, k —q) in the Born approximation is unchanged &om
its equilibrium form (7), except that the influence
of H, „q must be included in the time dependence of
the matrix element. Using Eqs. (11)—(13) to deter-
mine W'"'i(k, k —q) Rom P(n, k m m, k —q) for the
nonequilibrium case yields

to the Hamiltonian of the system. H, & is independent of
time in steady state, but it is useful to require the poten-
tial to be switched on at a time in the distant past when
the gas was in thermal equilibrium. This requirement
makes it possible to use the KadanofF-Baym method
for evaluating a nonequilibrium expectation value. This
method uses the equilibrium density matrix to evaluate
an ensemble average at a time after U has been switched
on by using the interaction picture to include the depen-
dence on H, „& explicitly. The nonequilibrium expectation
value of an operator C7(r, t) is

/'v~ ) dte' ' "-"(n
I pT (q, t) I m)E»r

x(m
I p~t(q, 0) I n)

( t) iHgt/S
( )

iHgt/5—
where uI, y q

——5[k —(k —q) ]/2m*.
The inelastic difFerential scattering rate ~'"' (k, k

—q) is the probability per unit time for an electronic
transition from the occupied state Ik) to the unoccupied
state Ik —q) due to scattering Rom the electron-phonon
gas. It is found by summing P(n, k ~ m, k —q) over all
possible final states

I m) of the gas and averaging over its
initial states

I
n). For the mobility problem, the average

must be taken over the nonequilibrium gas ensemble.

B. Nonequilibrium ensemble averages

Consider that an electric potential U(r, t) is applied to
the system of probe electron plus electron-phonon gas.

/'v
W'"'(k, k —q) =

I I
NSzU(q, ~i, I, q),g»)

ST,U(q, (d) = — dt e' (pz'z(q, t) pT'U'( —q, 0)), (15)N

( t) V i (t) Hgt/h Hgt/s V(t)—'

where ST~(q, u) is the nonequilibrium total dynamic
structure factor or spectral function for pTU, describing
the density Quctuation excitations of the nonequilibrium
electron-phonon gas. Similarly, the time-reversed rate is

fvq ')'~'"'(k —q k) =
I

'
I

~s»( —q, —~~,~-,). (»)(Oh)

When the gas excitations are not too highly damped.
so that they may usefully be regarded as elementary ex-
citations and when the deviations from equilibrium are
slowly varying in space and time on a scale determined by
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the frequencies and decay rates of the elementary excita-
tions, it is possible to define nonequilibrium distribution
functions and response functions. 's The imaginary (dis-
sipative) part of the response function for the nonequi-
librium coupled electron-phonon system is

Im[yT~(q, (u)]

W'"'{k,k —q) = ~ [N(q, ~), ), ) + 1]
-2(v )2

xlm[yT'v(q, ~l I q)] . (24)

Equivalently, the Born aproximation for R"" can be
expressed in terms of the imaginary part of the total
screened Coulomb interaction vv/eT ~ between the probe
particle and the electron-phonon gas

«" '([p»(q t) p»( —q o)])

[S»(q ~) —S»( q-~-)1

W'""(k, k —q) = [N(q, ~q, l. v) + 1]

XIm eTU( q, hip g v) (25)

25 oSg (q, (d) = N (ur) + 1 1m[hz (q, ~)], (20)

where N (w) = (e(" —1) is the equilibrium Bose-
Einstein distribution function, while ST and Imyr are
the equilibrium forms of (15) and (18). In particular,
since the relation between the time-reversed nonequi-
libriuin spectral functions ST U(q, u) and STU(—q, —(u)
is not known, 1m[yT U (q, ur)] is not determined by
ST~(q, ~) alone. It is possible, of course, to define un-
known dimensionless functions N+(q, u) and N+(q, u)
such that

ST&(q, (u) =

ST ~(—q, —ld) =

—2h )N (q, u))lm[yT~(q, u))],

—2h
N~(q, (u)lm[yT g(q, u))].

(21)

(22)

where [p, p'] is the commutator pp' —p'p.
In general, there is no simple relation between a

nonequilibrium spectral function and corresponding re-
sponse function such as the Buctuation-dissipation theo-
rem (FDT) for the equilibriuin case:

This follows &om the relations between the total suscep-
tibility yz U (q, u), polarization Pz ~(q, u), and dielectric
function ez ~ (q, ur) for the nonequilibrium coupled system

PT U(q, u))

1 —v PT U(q, u))
'

eTp(q, (d) = e~ 1 —v PTg(q, (u)

xz U(q ~) =

C. Separation of the total interaction

The relation (v ) ImyT ~(q, ~) = vvlme&& follows from
(26) and (27) and yields {25) from (24).

The weight factor N(q, u) in (25) plays the role of
the distribution function for the nonequilibrium excita-
tions of the coupled electron-phonon system. Just as for
the equilibrium case in Eq. (20), the structure factor
has been written as a product of a function (Im[e& ])
describing the strength of interactions with the electron
phonon gas and a function giving the occupation prob-
abilities for the gas excitations. However, it should be
emphasized that the FDT has not been used to derive
(25) and N(q, u) is an unknown function.

Equations (19), (21), and (22) then imply

N~(q, ~) —N (q, ~) = 1. (23)

Adopting the notation N (q, ur) = N(q, u), we have,
from (14), (21), and (23),

The total nonequilibrium structure factor S~U defined
by (15) is exactly separable into a purely electronic part
S& plus the remainder SU, which includes electron-
phonon and ion-ion Coulomb interactions. Using the
nonequilibrium version of the total density operator (3),

ST g(q, (u) = S~(q, u)) + S~~"(q, ~),

s;(q, ~) = j ee'-'(p~(q, ~)p, (—q, o)),

S~~"(q, u)) = — dte' ' Zq i

1,-
~ ( nh

N (2M~TOO)
(p~(q t)&U( —q o))+ (&~(q t) pU( —q o))

+(&q)' (& (q ~)&U(—q o)) I.2M(u T~

(28)

(29)

(30)

This section relates S and. S~" to corresponding elec-
tron and phonon parts of the response function, just
as (21) relates the total structure factor to the total
response function. To do so, Eq. (25) must be split
into electron-electron and electron-phonon parts. Im-

posing the RPA for the d.ielectric function is a crucial
step towards this goal. The response of the coupled sys-
tem in the RPA is the sum of the electron and ion re-
sponse taken separately. ' In this approximation, the
total screened interaction vv/eT U is the sum of a purely
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electron-electron part and an electron-phonon interaction
that includes a phonon self-energy due to the polarization
of the conduction electrons,

v M2
+ (31)

The electron-electron part of the total interaction is
v /e~, where eU is the nonequilibrium RPA dielec-
tric function determined by electron-electron interactions
only. The polarization for the noninteracting electron
gas P~ ~ has the same Lindhard form as the equilibrium
case, except that the nonequilibrium electron distribution
function f is used instead of the Fermi-Dirac function, s

e~(q, ~) = 1 —v P( l (q, ~), (32)

M ~U to the noninteracting G~~~~ s f

Dz(q, (u) =

2uTo (e~ eo )
D(o)

U

1 —M2D~ l
yU (q, ~)

Now define unknown dimensionless functions N, and

%ph to relate the electron and the pho non com ponent s
of ST U (q, u) in (28) to the respective components of the
imaginary part of v~e&& in (31),

(v ) S~(+q, +(u) = v N~(q, ur)1m[a~ (q, (u)],

P(~)( )
1)- f(p) —f(p+q)
0 ~ + —)L) —ib

p ~ P)P
(33)

(v ) S~~"(+q, +(u)

The remaining part of the total interaction is a prod-
uct of the screened electron-phonon matrix element
M ~e~~ and the nonequilibrium phonon Green's func-
tion D~ (q, ur) containing the self-energy correction

M2
K~h(q, ~)1m[DU(q, ~)] . (37)

Finally, using (14), (28), (36), and (37),

—2W'"'(k, k —q) = v, [N. (q, ~).~,)+1] Im e~'(q, ~», )

M2
+ ', )~,~(~, ~a, ~-a) + '1 ~~ I&v(~, ~~,~-,)I )

.
eU Q~ ~&,I —q

(38)

Within the RPA, the expressions (25) and (38) for W'"'
are equivalent. The last expression contains two unknown
functions N and Mph playing the roles of the nonequi-
librium occupation functions for the excitations of the
electronic and lattice components of the coupled system.
Notice that N, must describe a distribution with boson
properties. This is because the density Huctuation p
produces excitations of the electron gas that conserve
the total number of electrons, such as electron-hole pairs
and plasmons, which have boson properties.

sponse to the applied potential U. Thus, for a homoge-
neous system under the inBuence of a static electric field
F
—eF Bf(k)

1= —) (W(k, k —q) f (k) [1 —f (k —q)]

—W(k —q, k) f(k —q)[1 —f(k)]). (39)

III. ELECTRON BOLTZMANN EC}UATION

The time rate of change of the nonequilibrium electron
distribution f (k) due to collisions is determined by the
difFerential scattering rate W(k, k —q), i.e. , the prob-
ability per unit time for the transition ~k) ~ ~k —q).
The depletion rate of f(k) is just W(k, k —q) weighted
by the probabilities that ~k) is occupied and ~k —q) is
unoccupied, summed over all possible final states. The
collision term —(f (k)), n, in the Boltzmann equation
is this depletion rate minus the replenishment rate de-
termined similarly. The electric 6eld in the sample is
F(r, «) = —V'[U(r, t) + (U;„g(r, t))], where (U;„g) is the
average induced potential resulting &om the system's re-

(f)'.".)I = Ef):.u + (f):.))" . (40)

A. Electron-electron collision term

The purely electronic component of W'"') in (38) gives
the collision term

W(k, k —q) is a sum of rates for elastic and inelastic
processes TV = W + W'" . Using the separation of
the inelastic rate W;„,~ in (38), the inelastic contribution
to the collision term separates into electron-electron and
electron-phonon collision terms,
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—(f (k)):.11
= —,/ v, ([~.(q ~~,~-Q) + 1]imleU'(q ~~,~-Q)]f(k) [1 —f( —9)]

—N, (q, ~l, g ~)I m[ e~'( q, ~g I, q)]f(k —q) [1 —f (k)]) . (41)

The next step towards putting the collision term into
a useful form is to eliminate the unknown function N„
which gives the occupation probabilities of the den-
sity IHuctuation excitations of the electron system. In
the RPA, the response function contains only single-
particle —hole pair and plasmon contributions to the ex-
citation spectrum; multipair excitations are excluded.
We proceed by making an association between N, and
the nonequilibrum plasmon distribution, denoted here
by Nz. In steady state, there exists a local detailed
balance (LDB) between the plasmons and the electron-
hole pairs that can be used to eliminate N in favor of
f in the electron-electron collision term. s z The LDB
condition is equivalent to the FDT for the nonequilib-
rium ensemble, which applies when y determines the
response not to external forces, but to internal Huctu-
ation forces. It holds when the Landau damping rate
p = 2ImP~ ~ is large compared to the time variation of
f, so that the plasmons come into equilibrium with the
electrons before f changes appreciably. For the mobility
problem, f is stationary and the condition holds exactly,
except at small q values (where p vanishes), which do
not contribute to the electron collision integral because
of energy and momentum conservation restrictions.

If LOB is used. in combination with the "collisionless
damping" approximation, Eq. (41) is equivalent to the
standard single-particle electron-electron collision term,
but screened with the dynamic RPA dielectric function.
This may be shown easily for the case of weak damp-
ing, in which the plasmons are well-defined excitations,
by considering the Boltzmann equation for the nonequi-
librium plasmon distribution N„(q) = N„(g, u~) with
w~ = u„(q). 'z Plasmons are represented by the peaks
in the spectral function Ime& . In the RPA, this func-
tion contains no corrections for collision broadening, so

I

that the relaxation of K„(q) is completely described by
coherent absorption and emission of electron-hole pairs,

m„(q) = ~.
' ).([~ (q) +1]f(k+ q)[1 —f(k)]

-~.(q)f (k) [1 —f(k+ q)])
x b(kuA, q+~ —M~) .

In steady state, Nz ——0. Therefore, the relation between
the distributions K„and f is necessarily

~p(q)1m' v (q ~e)] = ~U (& ~e) (43)

Im[&&" (q ~)] =
Z ) [f(p) —f(&+&)]

P

xb(burp „+~ —her),

~~ (q ) = ~ ):f(p+q)[1—f(p)]
P

x b (Ru„„+~ —Ru),

(44)

(45)

relating the response function Im[P& ] and structure fac-

tor SU for the noninteracting nonequilibrium electron
gas.

The detailed balance relation (43) between plasmons
and electron-hole pairs simplifies the electron-electron
colhsion term (41), if we assume that K, corresponds to
the distribution N„ for mell-defined plasmons. Using the
RPA interaction Im[e& ] = v le~I Im[P& ] and (43)—
(45) gives

(v, )'
(f (kr))' —' = Q b(Er + E2 —Es —E4)h(kr + k2 —ks —k4)""'„,leU(q ' ')I'

t )

x(f(kr) f(k2)[1 —f(ks)][1 —f(k4)] —[1 —f(kr)][1 —f(kz)] f(ks) f(k4)),

when the notational changes k ~ kq and p ~ k2 are
made, the summation variable q is changed to k3
III'q —q, and a summation over a b function for momentum
conservation is included. Notice that the nonequilibrium
inverse dielectric function was needed to obtain the col-
lision term with nonequilibrium distributions for all four
(incoming and outgoing) electrons. The remaining factor
of IeU I

in Eq. (46) appears only in its equilibrium form
if the Boltzrnann equation is linearized with respect

to the field strength F, since the other factors vanish in
equilibrium. Also notice that e rather than eq appears
in the electronic dielectric function e~ (q, u) [see Eq. (32)],

I

which screens the interaction in the electron-electron col-
lision term (46), unlike some previous calculations using
eo for electron-electron scattering in GaAs.

It should be emphasized that (46) includes the efFect
of electron-plasmon scattering through the resonance in
e(q, w) at w = wz. For dc transport, the two-step process

electron-hole pair ~ plasmon ~ electron-hole pair

is equivalent to a dynamically screened electron-electron
scattering event because of the detailed balance between
plasmons and electrons. Since (46) conserves total elec-
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tron momentum (in the absence of umklapp processes),
its eKect on the electrical current in materials with spher-
ical energy surfaces is nonvanishing only because it re-
arranges the momentum distribution, which influences
other scattering processes. The most important di8'er-
ence between using (46) and a previous treatment of the
efFects of electron-plasmon scattering on mobility is that
the earlier work assumed an equilibrium (Bose-Einstein)
distribution function for the plasmons. In the latter case,
there is a net momentum loss from the nonequilibrium
electron system.

B. Electron-phonon collision term

If the phonons interacted only with electrons by non-
umklapp processes, they would reach a local detailed bal-
ance with the electrons just as the plasmons do. But, in

I

fact, the phonons interact with other phonons through
anharmonic lattice forces. The excess momentum given
to the LO phonons by the nonequilibrium electron system
is dissipated primarily through interactions with acous-
tic phonons, which can lose momentum to the environ-
ment through umklapp processes. Traditionally, mobility
calculations employed the "Bloch assumption" that the
phonon system may be treated as if it were in thermal
equilibrium, valid when anharmonic processes are much
faster than electron-phonon scattering. However, re-
cent work shows that correctly accounting for nonequi-
librium LO phonons can significantly modify electronic
transport in polar semiconductors. This section main-
tains the notation N&h for the nonequilibrium phonon
distribution, though the field dependence of the phonon
Green's function is suppressed.

The electron-phonon component of W'"'i in (38) gives
the collision term

M2) 2([~pi, {q,cuI i ~) + 1]lmD(q, erg g ~)f{k) [1. —f(k —q)]
AO eU

g
—~ph(q, ~~,~-,)imD(q, ~~,~-,)f ( —q) [

—f(k)]). (47)

D(q, ~) = D(o)

1 —M2D~o~y(q, ur)

2ldTo/A
~' —~~2o —2~ToM,'X(q, ~) /h

(48)

contains the self-energy term II' " = M y due to
the polarization of the electron gas. The real part of
II' " renormalizes the LO-phonon frequency, giving rise
to two hybrid modes of mixed electron-phonon charac-
ter. The coupled modes have been treated previously
with the finite-temperature plasmon-pole approximation
for y. In this approximation, the electronic excita-
tion spectrum that couples to the phonons is repre-
sented. by a single mode with energy varying between

The electron-phonon matrix element is screened by only
the electronic part of the total dynamic dielectric func-
tion. The long-wavelength, static limit of the RPA e(q, cu)

is the temperature-dependent Thomas-Fermi dielectric
function with the high frequency d-ielectric constant e

Therefore, Eq. (47) in this limit gives a somewhat difFer-

ent result than treatments of electron —LO-phonon scat-
tering using Thomas-Fermi screening with the static di-
electric constant ~o. For the nondegenerate case, the
long-wavelength limit of (47) is in agreement with the
original treatment of screening in polar semiconductors
by Ehrenreich.

The ion-ion Coulomb interactions included in H~
[Eq. (1)] make a self-energy contribution to the phonon
Green's function. The real part of this contribution
shifts the LO-phonon energy from ~go to Logo in
the denominator of the noninteracting Green's function
D~ l = —2wTo/h(uL& —tu ). Damping due to anhar-
monic interactions and disorder is neglected here.

The interacting phonon Green's function

2(dTci (M —Ld )
D(q) ~) =

5(ld —Q/+ ) (Ld —Ld )

~IO+~„+

+4~&(~r.a 4'To) (52)

In the plasmon-pole model for the coupled modes, the
phonon spectral function —~lm[D(q, u)] appearing in the
electron-phonon collision term (47) has b function peaks
at M+ and M

Im[D(q, (u)] = Im[D+ (q, (u) + D (q, ~)],

PHOTO & —caP

Iin[D+(q, u))] = ~

x [b(~ + ~~) —b(~ —~~)] . (54)

I

~„=/4mne2/m*e at small q and h2q /2~* at large
q. The plasmon coupling strength and energy are deter-
mined by requiring fulfillment of the f-sum rule and zero-
&equency Kraxners-Kronig relation, so that the plasmon-
pole approximation for y is

]
x""(q,~) = (49)

~„=(u„[1 —e '(q, 0)] (5o)

Using the plasmon-pole susceptibility y"" in the phonon
self-energy II' P" gives a phonon Green's function with
poles at the two frequencies u+ and u
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At low densities, the low-energy hybrid mode has fre-
quency ~ close to the uncoupled plasmon frequency ~„,
but has nonzero weight in the phonon spectral function
determined by the factor (w —ur„)/(w+ —w ). Even
though this factor is small at low densities, the low-
energy mode has an exponentially larger thermal occupa-
tion %~h(u ) at low temperatures than the high-energy
hybrid mode or uncoupled phonon mode do. Therefore,
for low densities and temperatures, the presence of Mph
in (47) suggests that the mobility calculated by including
scattering Rom the coupled modes should be lower than
the mobihty calculated by using the uncoupled mode ap-
proximation. In addition, "antiscreening" efFects due to
the dynamic nature of the system response can gener-
ate screened potentials that are actually greater than in
the unscreened case. Reference 7 presents numerical re-
sults for n-type GaAs that show that including dynamic
screening, Inode coupling, and electron-electron scatter-
ing does significantly lower calculated mobilities in situ-
ations where ionized impurity scattering does not domi-
nate, as in modulation-doped structures.

IV. CONCLUSI(3N

The total dielectric function ez (q, w) lends itself to a
simple and general method for deriving the inelastic col-
lision term in the electron Boltzmann equation for scat-
tering &om a coupled electron-phonon system. %'hen
the Born approximation is valid, the inelastic difFeren-
tial scattering rate TV' ' can be expressed in terms of
the nonequilibrium total dielectric function e~, which in-

eludes screening by both electrons and phonons. In the
RPA, W'" separates into a purely electron-electron in-
teraction plus an electron-phonon term describing inter-
actions with the hybrid modes. These interactions are
dynamically screened by only the electrons. Reference 7
investigates the efFects of the phonon self-energy, dynami-
cal screening, and electron-electron scattering on the mo-
bility in n-type GaAs by means of a numerical solution
of the linearized Boltzmann equation.

Because the total dielectric function approach to the
Boltzmann equation treats the electrons and ions in a
~snifl. ed manner, it can be applied quite generally to a
wide variety of coupled systems. More accurate and com-
plete treatments ' of the lattice part of eT could be
useful for more complex electron-phonon systems. Also,
it would be very interesting to try to include electron-
impurity scattering through the eT (q, w) for an imper-
fect crystal with local phonon modes. Another logical
direction to pursue would start from a dielectric function
that goes beyond the RPA to include electron exchange
efFects in order to derive the exchange scattering term
in the Boltzmann equation. However, a systematic ap-
proach to improving on the RPA is required, since ex-
change corrections can be largely canceled by correlation
terms.
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