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We consider a highly doped semiconductor with a metallic impurity band at 7' = 0 K. A small
number of localized spins is assumed to exist as well, with a site concentration much smaller than
that of the dopant impurities. The carriers in the impurity band are described in an independent-
particle tight-binding approximation. The effective interaction among the localized spins is expressed
in terms of the spin susceptibility of the impurity band, which is obtained in turn by Green-function
perturbative techniques within an approximation due to Matsubara and Toyozawa, asymptotically
valid at high concentration. The range function of the effective interaction shows a damped oscilla-
tory Ruderman-Kittel-Kasuya-Yosida form, with a wavelength of the order of the average separation
of dopant impurities. Exponential decay is a consequence of the disorder of the one-electron impurity
potential. The results are relevant in connection with the low-temperature magnetic properties of
heavily doped semiconductors and also for magnetic multilayers with such systems as separators.

I. INTRODUCTION

As is well known, Si and Ge doped with several atomic
species of valence different from four, exhibit shallow im-
purity states. As the impurity concentration increases
and reaches a critical n., an insulator-metal transition
(MIT) is observed, and on the metallic side, for n > n,,
the electronic properties at low 7" are dominated by car-
riers (electrons or holes, depending on whether the dop-
ing is n or p type, respectively), which form an impurity
band of states. As n increases further, a second kind of
phase transition is observed in which the Fermi level in
the impurity band, which increases with n, reaches for
n = n.p the bottom of the corresponding empty band
(conduction band for electrons, valence band for holes)
of the host semiconductor, and the electronic properties
for n > ngp, are dominated by the states of the bottom
of that band, in the presence of a random potential pro-
duced by the impurities.!

Recent experiments have dealt with the change of the
magnetic properties at low T as a function of n, for n
near n..>® The conclusion seems to be that local mag-
netic moments exist at n < n., and persist above n., into
the disordered metallic phase, where they seem to dom-
inate the low T thermodynamic properties and the spin
dynamics.

The idea that in a few percent of the impurities there
are local conditions (local electron concentration and ef-
fective Coulomb repulsion), which allow for nonvanishing
local moments, seems to be in agreement with experimen-
tal results on Si:P. The ESR studies of boron compen-
sated Si:P near the MIT support a model in which both
local moments and itinerant (impurity band) electrons
are present. Also, susceptibility measurements® show a
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divergent susceptibility as 7' — 0, indicating the presence
of localized spins.

The existence of local moments in the metallic phase
was already suggested by early measurements? and a
first theoretical explanation was advanced by Toyozawa®
within a Hartree-Fock formulation. A recent theoreti-
cal simulation of the disordered impurity band in the
Hartree-Fock approximation® indicates that the percent-
age of dopant sites with nonvanishing local moments
would vary from 1% at p = 3 to 16% at p = 1, in terms
of a dimensionless dopant concentration defined as

p = 32mn(a*)3,

where n is the volume dopant concentration and a* is
the effective Bohr radius of the shallow impurity wave
functions. In these units, the MIT would occur at p. =
1.6, according to Mott’s criterium.

The experiments indicate that an effective exchange
interaction exists among the local moments. This inter-
action was estimated in numerical simulations,® for the
insulating phase, as due to direct exchange among elec-
trons on neighbor impurity sites. On the metallic side of
the MIT, the expected concentration of local spins should
be very small, thereby ruling out the process of direct ex-
change among them. In this case, we could consider as
an alternative the possibility of indirect exchange inter-
action among those local moments that still survive in
this phase.

This consideration leads us to discuss as well the pos-
sibility that magnetic layer systems separated by such
a heavily doped semiconducting layer might interact
through the same effective indirect exchange. In the case
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of magnetic multilayers, the local spins are those belong-
ing to the magnetic layers, so that any complete descrip-
tion of this problem should include some model for the
magnetic-metal/semiconductor interface.

In the present work, we consider that the semiconduc-
tor under study is doped with only one impurity species,
that the impurities are distributed randomly, and that
only a few percent of the sites exhibit local moments. We
study the indirect exchange interaction among these lo-
calized spins via itinerant electrons of the impurity band,
at zero temperature, using a tight-binding Hamiltonian
within a hydrogenlike 1s basis. Our results show that
this interaction has a damped Ruderman-Kittel-Kasuya-
Yosida (RKKY) range function.

II. MODEL AND METHOD OF CALCULATION
A. The impurity-band problem

As a first approximation, we apply to this problem
the results of a classical paper by Matsubara and Toy-
ozawa (MT) (Ref. 7) on disordered electronic systems.
Their model assumes that the impurities are distributed
completely at random in the semiconductor host lattice.
At each impurity site, according to the effective mass
approximation, one obtains the usual shallow impurity
states. We shall adopt the simplest possible approxi-
mation for these localized states, and consider them 1s
hydrogenic-type states with an effective Bohr radius a*,
which can be typically from 10 to 50 lattice constants.
Using this basis, MT consider a tight-binding Hamilto-
nian,

?‘L = ZZ Zanaingana7 (1)

m #n O

where V,,,, is the hopping integral from site n to site
m, and af_ and an, are, respectively, the creation and
annihilation operators of an electron with spin o at the
corresponding site.

The Hamiltonian can be diagonalized by an orthogonal
transformation,

Omo = Z C:rnu Aya (2)

I

where A,,, is the annihilation operator for the uth eigen-
state of an electron with o spin in the presence of all the
impurities, in a given fixed configuration.

In the tight-binding approach, the spin operators at
the position of the impurity R,, are

—

o= (Rm) = al1 ams. (3)

Let us imagine now, following the ideas summarized in
J

V (R, R) =
—J
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the Introduction, that a few percent of the impurity sites
have a nonzero local magnetic moment in the metallic
phase, in which the impurity band is occupied by elec-
trons with energies up to the Fermi level.

B. Generalized RKKY interaction

Let us consider in what follows an n-type sample, so
that the impurities are donors and the majority carriers
are electrons, and let us neglect the effect of the compen-
sating impurities, if present. We assume that at some
sites {Ra} local moments exist, which we shall represent
by spin operators {5‘;}

As in the case of noble metals with paramagnetic impu-
rities, let us assume a local Friedel exchange interaction,®

V(Rn) = JoSg - Gné5 5. (4)

between a conduction electron at ﬁm with spin &, and a
local spin at site R, Sg. Equation (4) can be written as

—

where the electronic magnetic moment m, = v&(R,) and
the external field, due to the local spin S(R) at R, is

S

B(R,) = —=S43055,- (6)
Y

In (6) we write a Kronecker §, since the set of sites is
discrete.

In the static limit of the linear response theory, we
can express the induced static magnetic moment at the

impurity site R, as
() = * Y [ x(Ra7iFip,0) B(fig)dr, ()
5 Jo

where the sum extends over all magnetic sites, which act
as field sources.

We chose convenient units for x in (7) by introducing
the factor v2. The fluctuation-dissipation theorem yields
for the response function y%x the expression:

’YZXab(ﬁav 75 Rﬁv 0) = _7:0(7)([7”&(1%7’ 7), mb(éﬂ7 0)]),
(8)

where (a, b) stand for the cartesian or circular space com-
ponents, and (A) is the thermodynamic canonical aver-
age.

If another local static spin is at site R", the potential
energy of interaction with the induced electronic spin at
site fil is

X(élvT; RB,O) (—79§E> dr éﬁ,ﬁﬁéﬁ',ﬁl

= —J02 Jﬁ',ﬁz _‘R‘, - Z _‘R'ﬁ\/o X(RhT;RﬁaO)dT)a (9)
B
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where we assume that x is isotropic, as discussed be-
low. Summing over all magnetic sites, we get the total
interaction energy among local magnetic moments as an
effective spin-spin interaction thereof. In the static limit
this interaction is

1 —
= 5 Z Jeﬂ(RayRB)

a#pB

S. - Ss, (10)

with
Jeit(Ra, Rg) = —Jgf x(Ra,7; Rg,0)dr (11)
1]

and by appeal to (8), we have

X (Ro,7;Rp,0) = —i0(7){[0a(Ra,7),08(Rg,0))).
(12)

Since x is assumed isotropic, which it will necessar-
ily be after averaging over impurity configurations, we
calculate only the transverse component,

X T (B, B, 0) = —i0(7) ([0~ (Rn,7), 0" (Bm,0))),
(13)
where
ZQ (7)) Ap—(7),
o (én,T) = ZQ",VAL_ T)AL4+(T),
[’ 4
QL”V = c:nu,cmuy (14)

[see Egs. (2) and (3)].

Upon substitution of (14) into (13), we are led to the
calculation of commutators of productors of operators
Ao, which are easily performed since they obey fermion
anticommutation relations:

(AL, Ao} = 6,000 (15)
The result is

X (1) = —10(7’)29" Q’ fu(l—F)

—f(1- fu)] e'n (Bu=B), (16)
with the notation

1

fu= eBE.—Er)  1° (17)

At this point, we follow MT and introduce the one-
particle Green’s functions,

G o (1) = Fi(n | e *HFOT | m)f(£7)
=Fi Y chpemue BFOTO(&T),  (18)
©
which are spin independent in the present approxima-
tion. + (—) stand for retarded (advanced) assymptotic
conditions. G* (G ™) is analytic in the upper (lower) half

plane of the energy. In fact, the Fourier transform of (18)
is
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GE (E) = ke
m(E) E—-E, +ie (19)
Matsubara and Toyozawa also define
=— Z 8(E — E)ChpCmpus (20)

which for » = m gives minus the local density of states.

We now integrate Eq. (16) with respect to 7, to obtain
the Fourier transform for w = 0 (static limit), and we
also introduce a double integration on energy:

Z/dE/dE’ o E,i(i) §(E

L) S(E' — E,) Q1,0 (21)
which can be rewritten in terms of Gy,, G, as
E' )
) 5 [ ap HEVSE
Xx—+ni(0) = /d /dEE jo
XGni(E) Gin(E"). (22)

Upon performing one energy integration, we get
1 [e <]
X 0) =~ [ aBAEmIGLEN)  (23)

This function of fén and fi, is the generalization of the
RKKY range function ®(| R — R, |) (Ref. 8) to an ar-
bitrary spatial distribution of atoms, within the tight-
binding, independent-particle approximation. Omne re-
covers the well known expression if one assumes a per-
fectly ordered lattice of sites, and substitutes the one-
electron propagators for a crystal into (23).

In the rest of this section, we summarize the procedure
for finding the configuration average of (23), following the
MT formalism. Let us stress, however, that (23) is the
correct expression for x in the present approximation,
for a fixed configuration, and it can be used to obtain
the probability distribution of x, and accordingly of the
range function, without recourse to the further drastic
approximations involved in the MT procedure for obtain-
ing averages over configurations. In what follows, a bar
over a quantity will denote its configurational average.

Matsubara and Toyozawa developed a graphical
method to treat the spatial disorder in the semiconductor
and they obtained the diagonal (Gn») and nondiagonal
(Gnm) Green-function matrix elements, in terms of the
self-consistent solutions (£*,(*) of the equations:

we 8 [ t2 dt

(1—ws)+ I [m (82 +1)% + (p€*/wy)’
(24)

+ _ (&) 8 t et dt

(ryw) = w4 I /oo (82 +1)° + (p€*/ws)’
(25)

with the dimensionless parameters,
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E + e
W+ = )
+ Vo
R
B 26
=2 (26)

where Vj is twice the ionization energy of the 1s-state,
R =| ﬁn — ﬁm | and p and a* have been defined in the
introduction.

The quantities £ and { are defined as

¢5(E) = EGan(E),
(*(E) = E Gum(E), (27)

and they are dimensionless.
We further make the approximation,

Ghn(E) Ghn(E) = Ghn(E) Gim(E) (28)

(which neglects the interference of electron and hole prop-
agating in the random potential), so we can rewrite the
average of (23) as

1" Im((¢F)?)
—+(,, —
X (w,nm)|w=0 = '—;r*‘*/‘o- /_oo w2 dw.
(29)
The MT approximation is adequate for p > 1, as re-
gards the one-particle propagators. The further factor-

ization (28) is only made for simplicity. It has been used
with success by MT to calculate the conductivity.

III. RESULTS AND CONCLUSIONS

We have one varying parameter in this problem,
namely, the dopant concentration n, which leads to a
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FIG. 1. Dimensionless susceptibility Vox as a function of

R/d for p = 1. We display also the values of R/a* for reference
on the horizontal scale.
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FIG. 2. Same as Fig. 1, forp=7.

characteristic length d = n=1/3. It is, therefore, interest-
ing to use d as unit length.
We fit the numerical results with the expression

R/l

e

X=ops cos(R/A). (30)
The results of the self-consistent calculation, for the
static electronic magnetic susceptibility x~ %, as a func-

tion of the distance between localized sites, in units of d,
are shown in Fig. 1 for p = 1 and in Fig. 2 for p = 7. We
also indicate the values of R/a* on the horizontal axis in
both figures. At all concentrations, x oscillates with a
well defined wavelength A, which scales approximately as

A=Cp75, (31)
as shown in Fig. 3 in a log-log plot. The straight line is
the best linear fit to the numerical results.

Fitting the amplitude, on the other hand, leads to min-
imum square fit results for a(p) and l(p)/d shown in
Figs. 4 and 5, respectively. The length ! can be inter-

B LN S S S e
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1/p

FIG. 3. Wavelength A of the susceptibility as a function
of 1/p in units of the effective Bohr radius a*, in a log-log
plot.
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FIG. 4. Plot of coefficient a of Eq. (30) vs p.

preted as an average localization length of electrons and
holes in the disordered potential.

We see that both [ and a saturate approximately for
p > 4. Let us remind you that the MIT for Si:P oc-
curs experimentally at p = 0.8, which corresponds to
ne = 1.95 x 10'® cm™3, while at the second transition
mentioned at the Introduction ne, = 1.70 x 10 cm™3
and p = 7. The oscillating behavior of x is qualita-
tively consistent with early results for the off diagonal
Gri(EF) obtained with numerical simulations,® which are
free from the MT approximations.

The present results should encourage the experimen-
tal obtention of magnetic multilayers with highly doped
Si:P or similar systems as separators, which should show
magnetic coupling even at extremely low temperatures.
The limitation which our results impose upon the phys-
ically reasonable widths of such separators, namely, of
the order of I, should in fact be relaxed considerably by
a better theoretical treatment of the impurity-band sus-
ceptibility, which would avoid the averaging procedure
of MT and the factorization of the product of Green’s
functions made in Eq. (28). We expect to find much
longer localization lengths and, accordingly, a possibility
of wider separators. Recent experiments have confirmed
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FIG. 5. Parameter ! of Eq. (30) vs p, in the units of d.

the feasibility of magnetic multilayers coupled through a
semiconducting separator'®:!! at room temperature. The
effective interaction we found can be applied, in principle,
to the description of the magnetic properties of the im-
purity band at low temperatures in the metallic regime,
where, as we mentioned before, a finite concentration of
local spins persists.
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