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The transient transport of charged carriers is studied theoretically using the Boltzmann kinetic
equation in nonpolar semiconductors limited by acoustic deformation potential scattering in the
presence of steady electric fields. The conventional two-term approximation in the Legendre poly-
nomial expansion is employed for solutions to the Boltzmann equation for optically generated hot
electrons. The resulting time-dependent Boltzmann-Fokker-Planck equation is numerically solved
for the isotropic distribution function by utilizing a matrix method. The subsequent relaxation of the
nonequilibrium hot carriers toward a steady state is watched as time elapses for the pulsed initial
conditions. It is seen that the solution tends to the well-known nonequilibrium steady Davydov-
Druyvesteyn distribution function at an infinite-time limit. The obtained time-dependent solutions
are used to calculate the drift velocities of carriers, thus the transient electron mobilities, and also
the hot electron temperatures for various field strengths. In addition, the decay of the electron
temperature and mobility is analyzed in terms of an effective transient relaxation time. The notice-
able advantages of our numerical matrix method are as follows: it is very efficient in time, and its
interpretation of outcome is direct, in that the reciprocal of the smallest non-zero eigenvalue of the
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Boltzmann-Fokker-Planck operator corresponds to the characteristic relaxation time.

L. INTRODUCTION

The semiclassical Boltzmann equation is a widely used
theoretical tool in investigating the electrical transport
properties of semiconductors.!'? Since the density of car-
riers in semiconductors, which are responsible for trans-
porting charge, momentum, and energy, can be made
sufficiently low in most circumstances, a consideration
of uncorrelated two-body scattering is reasonable for an
effective description of many-body dynamics. For such
a low density system the statistical description in terms
of the one particle distribution function is particularly
useful and the Boltzmann equation is a well-established
kinetic equation for determination of the nonequilibrium
distribution function, including an understanding of its
limitation in the space and time scales under considera-
tion. Once the distribution function is determined, phys-
ically interesting macroscopic properties and transport
coefficients can be calculated. On the other hand, it is
still quite a difficult task to solve it, in general because of
its mathematical nature as an integro-differential equa-
tion and also because of physical constraints such as the
complex band structures as well as the various scattering
mechanisms.

Among the various methodologies of solving the Boltz-
mann equation we pay attention to the sp approximation
whose earlier appearances are in literature such as the
work of Yamashita and Watanabe3 and Levinson,* sub-
sequently in others,»>:® and also which has been treated
recently by several investigators.®”® When the consid-
ered semiconductor material is under the influence of the
steady electric fields, the cylindrical symmetry is induced
in the direction along the field. Then, when the scatter-
ing process involved is isotropic, it seems reasonable to
expand the solution to the Boltzmann equation in terms
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of the complete Legendre polynomials with the angle de-
fined between the direction of the electric field and the
momentum of an electron. The conventional two-term
approximation or sp approximation takes only two terms
in the expansion, assuming that the isotropic distribu-
tion function is dominant over other angle-dependent
terms. Thus the sp approximation should be useful when
a quasielastic scattering is dominant so that the role
of the scattering is to randomize the direction of elec-
tron momentum.!® Here, one should notice that the ex-
pansion is not a perturbation in the electric field, in-
stead it appears as an external parameter in this for-
malism. Thus the validity of the sp approximation
goes beyond the Ohmic regime to some extent. It is
well known that electron—acoustic-phonon scattering is
quasielastic and is a dominant scattering mechanism in
intrinsic nonpolar semiconductors such as Ge and Si at
low temperatures.!''! Consequently, the aforementioned
methodology of solving the Boltzmann equation has been
applied to these materials frequently in evaluating the
momentum and energy relaxation time and transport co-
efficients such as the mobility. However, most workers
have restricted their interest to the steady-state calcu-
lation and it is rare to obtain the time-dependent solu-
tion. This is presumably because the resulting differen-
tial equation of the sp approximation is still quite compli-
cated to solve under time-dependent condition and also
because most physical interest in the previous works was
restricted to the steady-state properties. However, with
the development of extremely short laser pulses and its
application to the spectroscopy it becomes possible to
experimentally study various transport properties in the
transient regime.'? 15 Then, it becomes an increasingly
important endeavor to investigate the relaxation of the
nonequilibrium distribution of optically excited electrons
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and their approach to equilibrium theoretically and thus
to calculate transient transport coeflicients which are im-
portant characteristics in device application.

This work presents the time-dependent solution of the
Boltzmann equation within the sp approximation, apply-
ing to a single-valley semiconductor that has some rel-
evance to nonpolar semiconductors under the influence
of the external stationary electric field. We adopt for
our calculations the material parameters of Ge, whose
electric-field dependence of drift velocity and electron
mobility in the steady state is well known.'*7® We re-
strict our attention to transport by a single type of car-
rier, optically excited electrons which are assumed to be
nondegenerate. Initially, the electrons are injected into
a particular conduction state and thus the electron dis-
tribution function at later times shows a transient be-
havior and eventually relaxes to the steady state via
acoustic deformation potential scattering, which in turn
approaches the equilibrium Maxwell-Boltzmann distribu-
tion function in the zero-field limit.

In the Boltzmann equation approach for transport
calculations, specifying the energy band structure and
the scattering mechanisms are prerequisite. Here we
specify our semiconductor such that electron—acoustic-
phonon scattering is the dominant scattering mechanism
and only an effective single spherical valley is considered
for the energy band. An argument for the validity of
the specifications is as follows. In general, for nonpo-
lar semiconductor electron—optical-phonon and electron—
acoustic-phonon scattering, electron-impurity scattering,
and also electron-electron scattering are involved. The
electron-impurity scattering is important for doped semi-
conductors at low temperatures, however, it may not
be considered for optically excited pure semiconductors.
And, we do not include electron-electron scattering, as-
suming that the density of excited electrons is sufficiently
small. The optical-phonon scattering is not treated either
since it is small compared to electron-acoustic phonon
scattering in nonpolar materials at low temperatures. For
band structures we adopt the single parabolic band with
spherical constant energy surface according to the usual
observation that the spherical model is sufficient for semi-
conductors with cubic symmetry although, for instance,
Ge has four equivalent valleys. This simplification is also
motivated by the recent temporal Monte Carlo result,
where it is reported that the simple Si model with a sin-
gle spherical and parabolic band and a simplified scatter-
ing mechanism generates accurate electron velocity and
electron energy up to intermediate applied fields.'®

Our goal is to provide the time-dependent solution to
the Boltzmann equation within the sp approximation and
thus to study the transient transport properties of opti-
cally injected hot electrons limited by long wavelength
acoustic phonons. The resulting differential equation of
the sp approximation is named the Boltzmann-Fokker-
Planck (BFP) equation since the differential operator de-
rived resembles the Fokker-Planck operator. The steady-
state solution to this problem was previously derived and
treated by other authors in a similar context.?»2® On the
other hand, the time-dependent solution has not been
obtained before. We treat the problem as an eigenvalue
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problem: we first solve the eigenvalue equation for the
BFP operator and expand the initial distribution func-
tion in terms of the eigenvectors obtained, then the so-
lution at a later time is written formally as sums of ex-
ponential terms with the exponent of time weighted by
the eigenvalues. In doing so, the essential ingredient of
our approach is to obtain an approximate Hilbert space
where the nonequilibrium distribution function is writ-
ten. Without knowing the exact eigenfunctions of the
BFP operator the usual technique is to expand the so-
lution in terms of some special orthonormal polynomials
so as to approximately represent the physical operator
as a matrix. Although this method is expected to arrive
at the solution faster than the commonly used Monte
Carlo numerical scheme,?? still it is an extensive numeri-
cal diagonalization procedure, since the desired accuracy
is dependent on the number of expanding basis func-
tions. We optimize this procedure by the unitary trans-
formation from the polynomial basis to the quadrature
basis.2! Then, the resultant matrix representation of the
Boltzmann-Fokker-Planck operator in the quadrature ba-
sis is diagonalized. In this case, the necessary order of
matrix for the desired accuracy, equivalently the num-
ber of expanding polynomials, is only a few tens. The
method of solving the FP equation by expansion into a
complete set is also discussed in Ref. 22. The prominent
advantages of our numerical matrix method are as fol-
lows: it is very efficient in time, and the interpretation of
its outcome is direct: if the eigenvalue spectrum of the
BFP operator is discrete the reciprocal of the smallest
nonzero eigenvalue would correspond to the character-
istic relaxation time. Since it is a continuing research
interest to develop a faster and more efficient numerical
method of solving the transport equation,?372% this work
may serve as an alternative in investigating the transient
transport problems in semiconductors.

The paper is organized as follows. In Sec. II, the con-
ventional two-term approximation for a solution to the
Boltzmann equation is reviewed in order to clarify the
various approximations taken and thus to understand its
physical implication, and also in order to provide the
derivation of the BFP equation which is the working ba-
sis of our transport calculation. The numerical matrix
method that we have utilized in solving the BFP eigen-
value problem is presented in Sec. III. The results and
discussions are provided in Sec. IV. Finally, a summary
is given in Sec. V.

II. THE BOLTZMANN-FOKKER-PLANCK
EQUATION

In this section we develop an approximate differential
equation whose solution specifies the nonequilibrium dis-
tribution function of the excited electrons, starting from
the semiclassical Boltzmann equation. It is well known
that the Boltzmann equation can be transformed into
a Fokker-Planck equation when an appropriate coarse
graining is taken in energy space.’?%27 We consider a
model semiconductor in which the transport carriers are
nondegenerate electrons that are created by an incoher-
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ent optical pumping and that are assumed to interact
with only long wavelength acoustic phonons via deforma-
tion potential scattering under the influence of stationary
electric fields.

Then, the Boltzmann equation to be considered is

df(k,t) eE f(k,t)
—T——{'T—J[ﬂ (1)

where the collision integral J[f] is given by

111~ [ Gy [SERVIE 0 - @, R)5(E0).

(2)

In the above e is the absolute value of the electron charge
and E is the static external electric field applied to the
semiconductor with one dimensional size L. The collision
operator J[f] is linear in the distribution function f be-
cause carrier-carrier scattering is not considered. Also,
S(k, E') specifies the transition rate of the electron be-
ing scattered from a state |k’) to another state k) by
emitting or absorbing a phonon within a parabolic en-
ergy band. As usual, we look for the expansion solution
to Eq. (1) in terms of the Legendre polynomial and take
the two-term ansatz®* as

F(E,t) = FO(er, t) + kfD (ep,t) cosh (3)

where 0 is the angle between the electric field and the
electron wave vector k. The constant energy surface is
specified as

ex = h?k?/2m* (4)

for the effective single spherical valley model with m*
being the effective mass of the electron. In the expan-
sion Eq. (3) the first term represents the isotropic part
of the distribution function and the second term speci-
fies the anisotropic contribution. Here, one notices that
the ansatz naturally incorporates the physical constraint
that the drift velocity is much smaller than the thermal
velocity. The transition rate at a long-time limit is de-
termined by the Fermi golden rule and can be written,
as for the present case,

SE,EY = 2 4(q) { g

5 nq+l}5(6k' — & £ hwy),

(5)

where the plus sign corresponds to the absorption of
a phonon and the minus sign indicates the emission
of a phonon in the collision process. In the above ¢
is the momentum transfer, ¢ = kE— E', assuming no
umklapp process. Also, ng is the thermal average oc-
cupancy of phonons in the mode wy, that is, ng =
1/lexp(hwqe/kpTo) — 1] and hw, is the energy of one
phonon. The hot phonon effect is not considered in the
current work, thus phonons remain in equilibrium at tem-
perature T and play the role as a heat reservoir. For the
considered acoustic deformation potential scattering
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A(q) = hE2q/2L3pc,, (6)

where ¢, is the speed of longitudinal waves, p is the
mass density of ions, and F; is the deformation potential
constant.?8

Then, by substituting Eqgs. (3) and (5) into Eq. (1),
and choosing the positive z as the direction of the electric
field, and also by making use of the orthogonality of the
Legendre polynomials, one can obtain a set of coupled
equations as

8f(0)(€k,t) eE (1) 2 8f(1)
8 A {f (ex,t) + 35k ey }
=JifO1 (7)
and
8f(1)(6k,t) eER Of© _ 1
U tewt) RO - i), (®)

where the expressions for J[f(?] and J[f(})] are given in
Ref. 27.

In the low-field approximation it is expected that the
distribution function only slightly deviates from the equi-
librium Boltzmann distribution function. In fact, it
can be easily seen that the collision integral vanishes
in Eq. (7) when f(© o exp(—ex/kpTy) is substituted.
Since the second term in the left side of Eq. (7) con-
tributes only as higher order effects, it can be concluded
that Eq. (7) admits the Boltzmann distribution function
as a correct equilibrium solution. Then, one can obtain
a self-contained equation for f(!) from Eq. (8) and can
proceed to solve it. This is the frequently used linearized
Boltzmann equation approach in the literature.29:3°

On the other hand, it is an increasingly im-
portant effort to study the high-field transport in
semiconductors.31734 In this case, even the isotropic part
of the solution at long times is not to be presumed to be
the Maxwell-Boltzmann distribution function. Instead,
that must be determined by solving Eq. (7). In this case
Eq. (7) is not self-contained. This difficulty is circum-
vented by the very assumption that the second term f(1)
in the expansion Eq. (3) is much smaller than the first
term,* and thus the variation of f(1) in time as well as
energy is negligible in the sense that it is at least one or-
der less significant compared to f(1), In other words, the
initial anisotropy of distribution function induced by the
applied field quickly diminishes due to the quasielastic
isotropic electron-phonon scattering in our model. Also,
because the energy of acoustic phonons is small com-
pared to that of electrons at temperatures considered,
hwg < ek, the off-diagonal terms of f(® and f(1) in
Egs. (7) and (8) are expanded in terms of hwg/e. In ad-
dition, we take the energy equipartition approximation,
ng+ 1 = ng = kpTo/hwy, which is valid because the
acoustic-phonon frequency is low for temperatures ~ 100
K. Finally, the phonon dispersion relation is specified as
wg = csq in the long wavelength limit.

Then, by taking all these into account one can obtain
a self-contained equation for f(°) and the result is
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AfO(z,t*y 1 8 [, , d ,

T_ﬁ% (a: —Zw—a)—{—aw(m +a:1:)
xfO (z, 1), 9)

where the dimensionless variables x and t* are defined to
be

€k
ksTo’

where the constants a and 7y are given in Ref. 27. Fur-
ther, we find it useful to define

9 (z,t") = VafO(z,t). (11)
Then, Eq. (9) becomes

8g(® (z,t*)
ot*

t* =t/7, (10)

+ LgO(z,t*) = 0 (12)

in which the linear differential operator L is defined to
be

L = _BB; [a(w) + %b(w)] , (13)
where
a(z) = (2? — 2z — a)/Vz, b(z) = (z® + az)/x.

(14)

One recognizes that the differential operator L takes
the form of the familiar Fokker-Planck operator.?? Since
Eq. (12) has been derived from the Boltzmann equation,
it is called the Boltzmann-Fokker-Planck equation. A
similar Fokker-Planck equation was derived recently by
Cavalleri and Mauri for systems with an electron-electron
interaction in the presence of an electric field.®

The steady-state solution for Eq. (12) is obtained from

a(@VE O @) + o [pa)Vaf O] =0, (15)

where the first term represents the drift flux induced by
the electric field and the second term represents the dif-
fusion flux in energy space due to the electron—acoustic-
phonon collision. Since the sedimentation equilibrium
is reached when the diffusion flux compensates the drift
flux, the total flux is required to vanish in the long-time
limit. Blatter and co-workers discussed the competing
aspects of acceleration and deceleration of the carriers
due to the electric field and the scattering with phonons
by a Fokker-Planck equation in energy space.?® By inte-
grating Eq. (15) one can obtain

FO@) = s exp [— I dm'a(w')/b(w')]

= Clz+a)%e %, (16)

where the integration constant C is determined from
the conservation of the number of particles. Here one
recognizes that the steady solution f(o)(az) is the well-
known Davydov distribution function of electron gas
under steady electric field. Also, one can notice that
(@ (z) approaches the equilibrium Maxwell-Boltzmann
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distribution o exp(—z) as £ — 0, which confirms that
the BFP equation produces the correct equilibrium so-
lution. In contrast, it is seen that the distribution func-
tion f(°)(z) behaves as exp (—z?/2¢) in the limit of very
strong fields, which is known as the Druyvesteyn distri-
bution function.3® Recently, evidence for a Druyvesteyn
energy distribution in hot electron electroluminescence
was reported.3® Also, a generalization of the distribution
function Eq. (16) was obtained by Liboff and Schenter
incorporating degenerate effects.®

III. NUMERICAL MATRIX METHOD

The numerical analysis that we have used for solu-
tions to the BFP equation is described in this section.
The BFP operator plays a role as the generator of time
translation for the distribution function. Thus, if the
eigenfunctions and eigenvalue spectrum of the BFP op-
erator are obtained, the time-dependent solution is for-
mally determined by causing the BFP operator to act
on the initial distribution function that is specified as an
expansion in terms of the eigenfunctions. Particularly,
when the eigenvalue spectrum is discrete, it can be ex-
pressed as a sum of exponential terms with exponents of
time weighted by eigenvalues. For this purpose, we find
it useful to normalize the distribution function g(® (z,t*)
with respect to the steady-state solution f(9(z) as

(0) *
o = 90, t7)
®(z,t*) = NOIE) (17)
so that ® will become unity as the system approaches the

steady state. Then, the BFP equation (12) is rewritten
as

0P (x,t*)

o+ L(z)®(z,t*) = 0, (18)

where the linear differential operator L is newly defined
to be

L - L=D"Y2)Lf ()

2
a(m)% - (a:)-a%g

Il

(19)

Hereafter, we will omit the asterisk in denoting time and
it should be understood to be dimensionless according to
Eq. (10) without confusion. The solution to Eq. (18) can
be formally expanded in terms of the complete eigenvec-
tors of the operator L as
B(z,t) = e Lt®(z,0)
oo
= > ane ™ (a) (20)

n=0

where the eigenvalue A, and eigenvector (™) (z) are sub-
jected to the eigenvalue equation

Le(z) = Ao(x). (21)

In Eq. (20) the expansion coefficients a,, are to be speci-
fied from the initial distribution of optically generated
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conduction electrons. The above eigenvalue problem
can be treated by employing the polynomial expansion
method:

B(z) = ) cadn(z), (22)

n

where the associated Laguerre polynomials with weight
function w(x) = xe ™ are chosen for the complete or-
thonormal polynomials {¢,(z)} in the relevant domain
of .38 Then, the eigenvalue equation is written in the
Hilbert space spanned by the polynomial basis {c,} as

YLD = e (23)
i

where the matrix representation of the operator Lis given
by

i = [ ” de gi(2) L5 (a). (24)

In order to obtain the desired accuracy a large number
of polynomials in the expansion that corresponds to the
dimension of the matrix to be diagonalized is usually re-
quired, which makes the numerical investigation very ex-
tensive. In the current work we employ a discrete ordi-
nate method that provides an effective numerical scheme
of discretization of the BFP operator at the set of opti-
mally chosen energy points. This optimization procedure
is essentially equivalent to the Gaussian quadrature rule
where a relatively small number of points accurately rep-
resent an integration. This is done by rotating the poly-
nomial basis into the quadrature basis {®;} according to

é,‘ = ZUJ','C]' y (25)
J

where the transformation is unitary and it is given as

Ui = ¢i(&)v/Xi » (26)
where {£;} and {x;} are the quadrature abscissas and

/Ooo dzx Po($)¢i(w)f,¢j (z) = —

/ dz i (2) [%[a(w)%(mm(xn
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weights, respectively, determined by the Gauss-Laguerre
rule. The details of this method have been reported re-
cently in Ref. 21. Then, the eigenvalue equation (36) is
written in the quadrature basis as

ZL@)@ = 2, (27)

where the matrix representation of the operator L in the
quadrature basis is obtained by the similarity transfor-
mation

LY = S UhLPU,.,; . (28)

lm

The result is given as

LY = a(&)DY - b(ﬁ)ZD“”Dl‘f’, (29)
where

dn )

DE;) = Z\/_U"-J

(30)

In the above, the matrix representation of the operator L
obtained is not symmetric, accordingly neither the reality
of the eigenvalues nor the orthogonality of the eigenvec-
tors is guaranteed. This is because the operator L is not
self-adjoint in the Hilbert space spanned by {¢,}. How-
ever, it is possible to construct a new Hilbert space in
which the transformed BFP operator is self-adjoint with
respect to the new weight function, Py(z) = \/zf(® ().
The new orthonormal complete basis {1, } is given as

w(z)
Po(z)

Then, one can evaluate the matrix element of the opera-
tor L in the newly defined polynomial basis such that

Yn(z) = -y Pnl(T)- (31)

82
525 ) Po(o) ()

- /0 " dz Po(a)b(e)pi(z)¥ (=) | (32)

where integration by parts has been used in the last step
with vanishing Py(z) at £ = 0 and oco. The result clearly
shows that the matrix representation is symmetric in the
newly defined Hilbert space. Due to the connection be-
tween two polynomial bases, Eq. (31), one can expect
that the matrix representation, Eq. (32), would be the
matrix representation of a different self-adjoint operator
in the {¢n} basis. In fact, this turns out to be the case
as is seen in the following:

/0 " dz Po(z);(z) Lap; (z) = /0 " dz Po(z)

- w(z)
XL( Polz )¢J( ))

= /dm w(w)d)i(ﬂv)M‘ﬁj(m) )
(33)
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where the new self-adjoint operator has been defined to

be

S Po(m) 7
M = v w(z) L

Thus the matrix element of the operator M in the poly-
nomial basis {¢,} is defined as

o)’ (34)

3 = [ dz w(@)b(a) 61(=) + pla)i(z)
x (¢ j(w>+p(m)¢,-(x>] : (35)
where
_ 1 (v'(@) _ P
p(z) = 3 (w(z) - P0($)>. (36)

We evaluate the above integration by utilizing the N-
point Gaussian quadrature to obtain

vy —an (&n) [#i(n) + P(En)i(€n)]

X [qu (€n) + P(€n) b5 (€n)]
= 3" () Uyt [ D) + P45

k,l,n
x [DS) + p(€)dw] (37)

which clearly manifests the symmetry in interchanging
the indices ¢, j. Then, the quadrature representation can
be obtained by performing the similarity transformation,
and the result is
or(p) (@) _ t (p)
NP = M =3 (U M0U |

im*""mq
m,q

= ij b(&n) [DI2 + p(&n)ni]

[D(‘” + P(€n)ong] - (38)

Therefore the problem is finally reduced to solving the
well-defined eigenvalue problem
MPeH = 206, (39)
where A, is the uth eigenvalue and \IJ§~” ) is the jth compo-
nent of the uth eigenvector. Once the eigenvalue prob-
lem is solved, the time-dependent distribution function
is obtained at the discretized energy points {§, 7 =
0,...,N — 1} according to

. =, o (&) G
@(fi,t) = Z cue m‘l’z ’ (40)
©=0 0\Sz

where the coefficients ¢, are determined from the initial
condition. In the long-time limit the solution should ad-
mit the known steady distribution function as a solution,
which means that the smallest eigenvalue must be zero.
Then, the steady-state distribution function is calculated
from
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$(&i,t - 00) = ) co¥” | (41)

the value of which is unity according to the normalization
Eq. (17).

IV. RESULTS AND DISCUSSIONS

We have solved the BFP equation by utilizing the ma-
trix method that is presented in the preceding section.
Consequently, the time-dependent distribution functions
have been obtained for nonequilibrium electrons that
were assumed to be injected into a conduction band by
incoherent optical excitation. Then, the relevant trans-
port properties have been evaluated and analyzed in the
transient regime under the various physical conditions in
detail. The results are presented here.

The material parameters that we have adopted for the
current calculations are the ones appropriate for Ge at
To = 100 K:37

m* = 0.2me,

p = 5.35 g/cm®,

Cs 5.4 x 10° cm/sec,
E, = 9.5eV.

The electron mean free path evaluated from these param-
eters according to Ref. 27 is given as lo. = 5.6 x 107°
cm and the characteristic time 7¢ is determined to be
70 = 0.59 nsec. The eigenvalues in the formal solution,
Eq. (40), are in units of 7, ! and the energy points {¢;}
are in units of kgTo = 8.6 x 1073 eV.

The smallest eigenvalue of the matrix representation of
the BFP operator must be zero, as mentioned earlier, be-
cause of the condition of particle conservation. Thus the
accuracy of our numerical calculation is strictly depen-
dent upon the satisfaction of this requirement. However,
the satisfactory value of the smallest eigenvalue is not ob-
tained by simply increasing the order of matrix. Instead,
the goal was achieved by introduction of the rescaling
factor s in the formulation according to

1
z—oc = “z, (42)
s

where s = T'/Ty. By doing so, we freely normalize the en-
ergy with respect to some other temperature T different
from the equilibrium 7y. It turns out that the rescaling of
energy becomes important with an increase of the applied
field. A larger scale factor means that effectively more
quadrature points are placed in the high energy region.
For this purpose, we replace = by sz’ in the formulas, for
instance, the symmetrized matrix representation of L is
written as

N-1
P = 2 3 blste) [ + plstn)tn]
n=0

x [DS) + p(s6n)dns ] (43)

where
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2(s —1)z'2 + (1 — 2a/s)z’ + afs
4z'(z' + a/s)

P(sml) ’ (44)

’ 1 2, @,
b(sz') = ﬁ(w +2a). (45)
The optimal value of s for a given £ and N has been
determined by trial and error until the smallest eigen-
value reaches zero as shown in Table I, where the eigen-
value spectrum of the BFP operator is given for a field
of E = 1.0 x 10* V/m using the number of expansion
polynomials (or, equivalently the number of optimally
chosen energy points) of N = 25. It shows that the
eigenvalue spectrum is discrete at least for a few of the
lowest values. The exact dependence of the eigenvalue
on the scaling parameter is expected to be complicated
and is not given here as a functional form, however, it is
possible to obtain such a desirable value. In a separate
calculation it has been seen that for a fixed N the value
of the optimum scaling parameter that produces the de-
sired A\g becomes larger as the magnitude of the electric
field increases. This means that more points are sampled
in the high energy region in order to accurately represent
the distribution function under the high-field condition.

The steady-state distribution function f(©)(z) is ob-
tained at the discretized energies according to

VEFO(sg) = —u(e) [2]]

The result is given in Fig. 1 for the various magnitudes
of the field but for a fixed N, where the electron popula-
tion is normalized to unity for convenience. In the figure
the squares represent the numerically obtained data and
the solid lines are the analytical result from Eq. (16).
The numerical outcome coincides with the analytic re-
sult, which demonstrates clearly the effectiveness of the
current numerical scheme: only a small amount of numer-
ical data represents the steady-state distribution function
correctly, N = 15 in this case. The role of the parameter
s is observed to be placing more points optimally in the
high energy region in the higher-field case, compared to
the result of the smaller field for a fixed N. Also, it is
seen that more electrons are occupied in the high energy
state when the applied fields are stronger, which means
the average electron energy is bigger for large fields com-
pared to that of the smaller field case.

(46)
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FIG. 1. Average electron population in the steady state

for several electric fields with a fixed N = 15 at Tp = 100
K; the solid lines are the results from the analytic Davydov
distribution /zf(® (z) and the centered symbols (O) indi-
cate the data obtained from the numerical matrix method

w(é;) [‘I’EO)]z /Xj-

Since we are interested in incoherent relaxation of the
energy distribution function, here no attention is paid
to the actual optical generation processes of the initial
hot electron distribution. In other words, the initial con-
dition should not matter in the time scale we consider.
Accordingly, we have chosen the pulsed initial condition
as a simple model, assuming that all excited electrons are
pumped into a particular conduction state z = s&,,,

f(o)(sElvt = 0) = N061m7 (47)

.

where §;,,, is the Kronecker delta function and Ny speci-
fies the total number of the excited electrons N, accord-
ing to

TABLE I. Dependence of the eigenvalues on the scale factor s; E = 1.0 x 10* V/m and N = 25.
S Ao Al Az /\5 /\10
1.00000[—2]> 5.7655[+1] 3.0483[+2] 7.5028[+2] 3.3665[+3] 1.2930[+4]
1.10000[—1] 7.7392[—1] 9.2249[+0] 2.4006[+1] 1.0984[+2] 4.1280[+2]
2.40000[—1] 3.7330[—3] 4.5697[+0] 1.0719[+1] 4.2519[+1] 1.5164[+2]
3.00000[—1] 4.0905[—5] 4.4873[+0] 1.0143[+1] 3.4951[+1] 1.1736[+2]
3.20100[—1] 2.2036[—7] 4.4838[+0] 1.0103[+1] 3.3480[+1] 1.0944[+2]
3.22500[—1] 1.8602[—9] 4.4836[+0] 1.0101[+1] 3.3332[+1] 1.0858[+2]
3.22251[—1] 7.1844[—11] 4.4836[+0] 1.0101[+1] 3.3347[+1] 1.0867[+2]
3.22293[—1] 9.7842[—14] 4.4836[+0] 1.0101[+1] 3.3345[+1] 1.0866(+2]

®[+n] = 10%™.
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N(t=0) = 8/‘00 dz'D(s:c')f(o) (sz’,0)

0
=5 xw H&)D(s&) O (s&,0) , (48)
l

where D(z) is the density of states that equals
2V N./z/+/7 in which N, is the effective density of states
that is defined to be (m*kpT/mh?)3/2/\/2. Then, the
subsequent relaxation of the electron distribution func-
tion is completely specified by Eq. (40) where the expan-
sion coefficients c, are determined by the initial condition
®(s£;,0) = f(s&,0)/f©(s€). The result is written as

e N(0) [ Po(stn) w(&) ]
D(s6;,t) = D(56m) f© (561 [PO(S&) w(ﬁm)]
XMZE_A“t\I,gﬂ)‘I,%). (49)

S/ XmXl1 M

It can be proved easily that Eq. (49) satisfies the cho-
sen initial condition by making use of the orthonomality
condition Eu \Ill(“) \IIS#) = ;m. In order to demonstrate
the relaxation of the initially sharply peaked electron dis-
tribution toward a steady state we find it convenient to
define the ratio of the distribution function with respect
to the steady result as

@*(Séj,t) = @(Séj,t)/‘ﬁ(sgj,t = OO)

1 = (w)
_ —Autg ) (e)
=~ > e twiwn) (50)
m]‘ Em pn=0

which tends to unity at long times. The result is drawn
in Fig. 2 for a low field E = 5.0 x 102 V/m at various
time steps calculated with N = 15. In Fig. 2(a) elec-
trons are initially pumped into the energy = 0.9 and in
Fig. 2(b) z = 4.6. A smooth line has been drawn through
the data points (O), although the distribution function
is evaluated at the discretized energies. The initially
sharply peaked distribution function at the injected en-
ergy broadens with time and approaches the steady-state
distribution at infinite time. The portion of the curves
below unity indicates an underpopulation of carriers with
respect to the steady-state distribution and the portion
above unity represents an overpopulation. It shows that
electrons excited at a higher energy relax slowly com-
pared to the low excitation result due to the fact that
it should emit more phonons before reaching the steady
state. The same features are seen in Fig. 3 for a much
higher field of strength E = 5 x 10* V/m for two initial
conditions evaluated with N = 35; = 30 in Fig. 3(a)
and z = 49 in Fig. 3(b). The initially J-function-like
pumped electron distributions are significantly depopu-
lated already within a time scale of tens of picoseconds.

Once the distribution function is determined, the
macroscopic thermodynamic states of the electron gas
such as the total number of excited electrons, the hot
electron temperature, and the drift velocity can be cal-
culated by taking proper moments over the distribution
function. In particular, the number of electrons should
remain constant in time since neither recombination pro-
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cess nor trapping are considered in the current calcula-
tion. We have checked the condition of particle conser-
vation at each time utilizing the following expression in
order to monitor the numerical accuracy:

Ng(t) = Ne(t)/Ne(0)

N-1 2 1/4 a/2
X1 Sm S&l/a +1
x| ()" ()

=0

3(3_1)§m

eI T A (51)
©

1.4’ T T T T
(a)

»
N
M
0.4 I I I ! 1
0.0 2.0 4.0 6.0 8.0 10.0
x
10.0 T T T T T
(b)
8.0 -
6.0 -
S
N
e 4.0 -
2.0
L
0.0 L 1 I 1 1
0.0 2.0 4.0 6.0 8.0 10.0
X
FIG. 2. Relaxation of the time-dependent distribution

function ®*(z,t) = ®(z,t)/®(z,00) at several times in units
of 70 = 0.59 nsec for an electric field E = 5 x 10° V/m at
To = 100 K; the electrons are initially peaked at (a) = = 0.9;
(b) ¢ = 4.6, where z is in units of kgTp = 8.6 x 1072 eV. The
symbols (O) indicate the values of the distribution function
at the discretized energy points.
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and the result was quite satisfactory that the calculation
produced NZ(t) =1 at all times.

Next, we define the hot electron temperature T.(t) to
be the average electron energy evaluated by the time-
dependent distribution function obtained according to

3 oo
EkBTe(t) = kBTOSZ/ dz'D(sz')z' f(sz',t). (52)

0
Here, we find it convenient to normalize the electron tem-
perature with respect to the equilibrium Ty as T)(t) =
Te(t)/To, for which the expression is given as

N-1
TX(t) = TX(o0) + Zauexp(—)\ut), (53)

p=1

®(z,t)

6.0 T T T T T
(b)
50
4.0
=
.\Ii 3.0 -
e
2.0 -
1.0 — »
// 0.57,
0.0 1 1 1 1 Il
0 20 40 80 80 100
x
FIG. 3. Same as Fig. 2 for an electric field E = 5 x 10*

V/m: the initial peak is located at (a) z = 30; (b) = = 49.
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where TX(oo) is the steady-state electron temperature
and

@ :gsN_l ¢ X1VEm (61 / 0+ 1) el m | 12
#73% 2 Y Wk V& (sEm o + 1) e D6
x| gk, (54)

The relaxation of the nonequilibrium electron tempera-
ture corresponding to the distribution functions in Figs. 2
and 3 is shown in Figs. 4 and 5, respectively, including
several additional initial conditions. The electrons are
accelerated toward the opposite of the direction of the ap-
plied field, which results in an increase of average electron
energy in time. This gain of energy is compensated by the
electron’s loss of energy through scattering with acoustic
phonons. Thus, before reaching the sedimentation equi-
librium, electrons are either heated up or cooled down
depending on the initial excitation condition. These tran-
sient effects are clearly manifested in the results. In Fig. 4
it is seen that the initial electron temperature 77 (0) heats
up when the electron temperature at ¢t = 0 is lower than
the steady hot temperature T (co) and it cools down
when T (0) is higher than T} (c0). For the chosen low
field of E = 5 x 102 V/m the hot electron temperature
in the steady state is close to To, Tx(o0) = 1.03, which
is independent of the initial excitation conditions. The -
same features are shown for a high field, E = 5.0 x 10
V/m in Fig. 5 where the steady hot temperature is de-
termined to be T)(co) = 15.4. In Fig. 6 another il-
lustration is given of transient behavior of the decay of
the electron temperature with changing of the magni-
tude of applied fields for a fixed initial condition = = 4.6

5.0 T T T T T T T T T

>
A
.&. n
0.0 L 1 Il 1 1 1 L 1 L
0.0 1.0 2.0 3.0 4.0 5.0
t
FIG. 4. Decay of the electron temperature T.(t)

= T.(t)/To for initial conditions = = 0.90, 1.76, 2.97, 4.60,
and 6.86 at To = 100 K with E = 5 x 10> V/m; the steady
temperature is T. (0co) = 1.03.
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t
FIG. 5. Same as Fig. 4 for another field of E = 5 x 10*

V/m with initial conditions x = 7.9, 17.0, 24.3, 30.1, and
48.6; the steady temperature is T (00) = 15.4.

that corresponds to T(0) = 3.1; in evaluating the re-
sults N = 15, 19, 21, 25, and 29 were used for fields
E =5.0%x102, 5.1x10%, 1.0x10%, 3.7x10%, and 5.0x10*%
V/m, respectively. It shows a tendency that the elec-
tron temperature approaches a steady-state value faster
when the applied field is stronger. For the high fields
the electron temperature increases sharply in an initial
short time. This is because electrons accelerate quickly
and thus gain energies from the field before having a
chance to emit phonons. This sharply increasing feature

20 T T T T T T T
i 5.0x10* V/m i
/
15 - .
3.710* V/m
~
LX)
.\: 10 _
3]
1.0x10* V/m |
5.1x10° V/m
51 5.0x10° V/m |
0 L 1 L 1 1 1 1
0.0 1.0 2.0 3.0 4.0
t
FIG. 6. Same as Fig. 4 but with a fixed initial condition

z = 4.6 for various electric fields E = 5.0x10%, 5.1x10%, 1.0x
10%, 3.7 x 10*,and 5.0 x 10* V/m.
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of electron temperature diminishes as the magnitude of
fields decreases. For the low fields the temperature de-
cays gradually until it reaches the steady value.

It is useful to characterize the decay of the electron
temperature in terms of the relevant relaxation time
which can be defined in a variety of ways. Here, we de-
fine an effective transient energy-relaxation time 7(t) as
is done in the work of Kim and Shizgal®® through

oT¢ (t) T2 (t) — Te(o0)
at 7(t) ’ (55)
which brings out, with the help of Eq. (53),
N-1
Z oy, exp (—Aut)
T(t) = (56)

p=1
N-1
Z oAy exp (—Aut)
p=1

The time variation of 7(t) is depicted in Fig. 7 with
E = 5.0 x 10® V/m for several initial excitation con-
ditions. It manifests that the relaxation time tends to
a constant after an initial transient time, whose value is
seen to approach 1/\;, which equals 0.3379 = 0.19 nsec in
this case. This observation can be understood by taking
a long-time limit of Eq. (56) such that
1 a

()= 5+ T:\Iexp{—(Az - A1)t} (57)
where A; < A;. Thus, when the eigenvalue spectrum of
the BFP operator is at least partially discrete, which is
the case of our results, the average electron energy de-
cays exponentially in the long-time limit and the relax-
ation can be characterized by the smallest nonzero dis-

0.45 T T T T T T T

0.40

0.30

0.25 1 1 L 1 1 1 L
0.0 0.5 1.0 1.5 2.0

t

FIG. 7. Time variation of the transient energy relaxation
time 7(¢) for E = 5.0 x 10® V/m with initial conditions z =
4.5, 6.0, 6.9, 7.8, and 8.9.
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crete eigenvalue ;. While the initial transient occurs,
the temporal behavior of the decay would be more intri-
cate so that there may exist more than two relaxation
times at a certain stage and that it would be nonexpo-
nential in a shorter time scale in general. In Fig. 8 the
normalized relaxation time, 7*(t) = 7(t) /A]', is pre-
sented for various applied fields. Clearly, it is manifested
that the relaxation time approaches a constant 1/A; for
a given field after a sufficiently long time. For the higher
fields the long-time characteristic of exponential decay
of average energy is established faster compared to the
lower-field cases. The complicated structures which ap-
pear in a very short time (S 0.17¢) are not important
because phenomena which appear in such a short-time
regime are out of the scope of the Boltzmann transport
theory.

In a recent work a formula for a temperature relax-
ation rate for metallic systems was derived by Allen.
Allen’s Egs. (1) and (2) in Ref. 40 are equivalent to
our Eq. (1) for nondegenerate electrons in the zero-field
case and also when one neglects hot phonon effects by
assuming Ng as the Planck distribution function with
the equilibrium temperature in it. Then, the emphasized
parameter A{w?) in the reference is related to our energy-
relaxation time 7(t) as

WkBTe(t)

)\(wz) = 3 ‘r*l(t).

The estimated numerical values for a peak tempera-
ture T*(0) = 2.9 are A(w?) = 4.4 x 102 /sec? ~ 1.9 x
1072 meV? (A = 1) at ¢t = 1 and A(w?) = 2.8 X
1022 /sec? =~ 1.2 x 1072 meV? at t = 5. However, one
should notice that there exists an essential difference be-
tween two calculations: Allen used the thermal distribu-
tion function with the time-dependent temperature in it.
On the other hand, our calculation obtains the athermal
distribution function by solving the Boltzmann equation
and then evaluating the time-dependent temperature.
The time-dependent drift velocity vg which is defined
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FIG. 8. Temporal behavior of the normalized energy re-

laxation time 7*(t) = T(t)//\l_1 with a fixed initial condi-
tion & = 4.6 for various electric fields E = 5.0 x 10%, 5.1 x
10%, 1.0 x 10%, and 5.0 x 10* V/m where the corresponding
A7! = 0.46, 0.19, 0.13, and 0.06 nsec for each field, respec-
tively.

where n is the density of pumped electrons and the con-

stant vg = 2\/§eElac/ (3\/m7rkBT0). Then, the field-

dependent transient mobility can also be calculated from

p) = 3 valt) | = poots [ a0t (59

where po is the zero-field mobility defined as po =
vg(E — 0)/E. Here, we report the transient mobility
normalized with respect to the zero-field mobility, which
is calculated from

pr(t) = p(t)/po

to be the average velocity of electrons over the distribu- N_1
tion function is calculated as = p*(o0) + z Buexp (—Aut) , (60)
N, o af ) (sz',t) p=1
= vg— de'e' — 2272 58
va(t) vo— s ; 'z B , (58) where
J
pdy —3/2 a _(1-—s)¢ 12 ) (1)
> (e (strfa+ 1) et-0e ) T ww
=0

B

Il

(V]
=
¥

{X15f1/2 (s&r/a +1)% 1m0 }1/

=0

In Fig. 9 the normalized transient mobilities p*(t) are
demonstrated for a field of E = 5.0 x 10® V/m under
several excitation conditions. Interestingly, the mobility
of electrons that are excited at low energies increases for
a short period of time and then decreases gradually to
the steady-state value of p*(co) = 0.63. On the other

e

(61)

hand, the mobilities of electrons that are injected at high
energies increase monotonously until they saturate to the
steady state. In Fig. 10 the time-dependent mobilities
are drawn for various field strengths with a fixed initial
excitation condition = = 4.6. The mobility grows slowly
for low fields until it reaches the steady state. As the field
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FIG. 9. Transient mobility of electrons u*(t) = ,u(t)/;m
where po = 3 x 10* cm?/(Vsec) for an electric field
E = 5.0 x 10®> V/m with various initial conditions z =
1.8, 2.2, 3.3, 4.5, and 8.9; the steady mobility p"(oc0) equals
0.63.

increases the temporal tendency is changed from growth
to decay. For high fields the mobility decays quickly and
transits to the steady state faster than low-field cases.
Also, the steady mobility is seen to get smaller as the field
increases, for instance, p*(c0) = 0.97 for E = 5.0 x 102
V/m but p*(co) = 0.48 for E = 1.0x10* V/m. Similar to
the energy-relaxation time, one may define the mobility
decay time as

1.0 T T T T L T T
0.8 5.0x10° V/m
5.1x10° V/m -
0.6 N
E 1.0x10* V/m
3
0.4 3.7x10* V/m 7
0.2 i
| 5.0x10* V/m |
0.0 L 1 1 1 L 1 1
0.0 1.0 2.0 3.0 4.0
t
FIG. 10. Same as Fig. 9 with a fixed initial condition z =

4.6 for various electric fields E = 5.0 x 10%, 5.1 x 103, 1.0 x
10%, 3.7 x 10*,and 5.0 x 10* V/m.
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TABLE II. Hot electron temperature and mobility vs elec-
tric fields in the steady state where E is in units of V/m, the
temperature is normalized by Tp = 100 K, and the mobility
is normalized with respect to o = 3 x 10* cm?/(V sec).

E Te (o) ()
1.0[+1]* 1.00 0.995
5.0[+1] 1.00 0.995
1.0[+2] 1.00 0.994
5.0[+2] 1.03 0.973
1.0[+3] 1.10 0.927
5.0[+3] 2.12 0.635
1.0[+4] 3.56 0.483
5.0[+4] 15.4 0.230
1.0[+5] 30.2 0.164
2[+n] = 10™.
N-1 -
Z Buexp (—Aut)
1

Tu(t) = (62)

=
N-1 )
Z BuAu exp (—Aut)

Again, the decay is exponential in the long-time limit
and the corresponding effective constant relaxation time
is characterized by the reciprocal of the smallest nonzero
eigenvalue. On the other hand, the detailed time depen-
dence of the initial transient would be different from that
of the energy relaxation in general.

Finally, some of the calculated steady values of the
hot electron temperature and mobility are reported in
Table II. The stronger the magnitude of the applied field
is, the hotter the steady value of the electron tempera-
ture is. Also, a clear manifestation of nonlinearity in the
transport coeflicient is seen: the value of the mobility de-
viates significantly from Ohm’s law as the electric field is
increased.

V. SUMMARY

The Legendre polynomial expansion has been a widely
used method in obtaining an approximate analytical so-
lution to the Boltzmann equation for studies of electri-
cal transport in semiconductors under the influence of
electric fields. Particularly, the two-term approximation
is useful for nonpolar materials because in these mate-
rials it not only allows an accurate result for the car-
rier density, drift velocity, and electron temperature but
also it represents the distribution function itself reason-
ably well. In the early investigations, however, most
works were focused on the steady-state phenomena, for
instance, the energy distribution functions and mobilities
were obtained under steady-state conditions with respect
to the applied electric field.

In this paper we have extended this approach to the
time-dependent regime, and consequently the transient
transport of charged carriers has been studied. The semi-
conductor considered as a model is a gas of nondegenerate
conducting electrons that are excited by incoherent op-
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tical pumping, limited by acoustic deformation potential
scattering in an effective single parabolic and spherical
energy band under the influence of external stationary
electric fields. Consequently, the Boltzmann equation
was converted into a more tractable differential equation,
which was named the Boltzmann-Fokker-Planck equa-
tion, for the energy distribution function. The resultant
equation was solved numerically under the general time-
dependent situation for the pulsed initial conditions by
utilizing a matrix method. The matrix method we used
has been proven to be very efficient for a complicated
transport calculation in the sense that a relatively small
number of eigenfunctions is needed for the BFP operator
to correctly produce an accurate distribution function.
This method is analogous to the Gaussian quadrature
rule in numerical integration, which produces a desirable
accuracy while utilizing a small number of quadrature
points optimally.

It is seen that the sharply peaked initial electron distri-
bution broadens with time smoothly and eventually re-
laxes to the sedimentation nonequilibrium distribution,
the well-known Davydov-Druyvesteyn distribution func-
tion, in the infinite-time limit. The condition of particle
conservation was monitored in order to assure the nu-
merical accuracy at each time. Subsequently, the macro-
scopic thermodynamic variables such as the hot electron
temperature, drift velocity, and also the transport coeffi-
cients such as the mobility were evaluated by calculating
relevant velocity moments over the distribution function
obtained. The transient mobility approaches the steady-
state value differently depending on initial conditions and
magnitude of fields. Under a low excitation condition the
mobility increases for a short period of time and then re-
laxes to the steady value. On the other hand, it increases
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monotonously until it saturates to the steady value for
electrons that are excited at high energies. The mobility
approaches the steady-state value faster when the applied
field is bigger under the same excitation condition. Also,
the results show that the steady mobility decreases as the
magnitude of the field increases, which reflects deviations
from the linear response. The electron temperature heats
up under the low excitation conditions and cools down
under the high excitation conditions before reaching the
steady hot temperature for a chosen field. The electron
temperature decays faster for a higher field compared to
the result of a smaller field and the steady hot electron
temperature becomes hotter as the strength of the ap-
plied field increases.

In addition, we have introduced the time-dependent re-
laxation time of the average electron energy and of mo-
bility in order to analyze the transient behavior more
quantitatively. The nature of the approach to the steady
state has been discussed in terms of the eigenvalues of the
BFP operator. The important aspects of our results are
that the decay of electron temperature as well as mobility
toward steady state is exponential in the long-time limit
and that the corresponding relaxation time is character-
ized by a smallest nonzero eigenvalue of the BFP oper-
ator. In a shorter-time transient regime it is expected
that the relaxation would be more complicated.

ACKNOWLEDGMENT

This research has been supported by the Ministry
of Education through the Institute of Basic Sciences
at Chonnam National University (Grant No. BSRI-94-
2431).

* Author to whom all correspondence should be addressed.

1B. R. Nag, Theory of Electrical Transport in Semiconduc-
tors (Pergamon, Oxford, 1972).

?E. M. Conwell, High Field Transport in Semiconductors
(Academic, New York, 1967), Suppl. 9.

3J. Yamashita and M. Watanabe, Prog. Theor. Phys. 12,
443 (1954).

*1. B. Levinson, Fiz. Tverd. Tela. (Leningrad) 6, 2113 (1964)
[Sov. Phys. Solid State 6, 1665 (1965)].

5C. Hammar, J. Phys. C 8, 70 (1973).

SR. L. Liboff and G. K. Schenter, Phys. Rev. B 34, 7063
(1986); G. K. Schenter and R. L. Liboff, J. Appl. Phys. 62,
177 (1987); Phys. Rev. B 40, 5624 (1989).

7S. M. Cho and H. H. Lee, J. Appl. Phys. 71, 1298 (1992).

8B. A. Sanborn, P. B. Allen, and G. D. Mahan, Phys. Rev.
B 46, 15123 (1992).

9G. Cavalleri and G. Mauri, Phys. Rev. B 49, 9993 (1994).

195, K. Sarker, Y.-K. Hu, C. J. Stanton, and J. W. Wilkins,
Phys. Rev. B 35, 9229 (1987).

' Numerical Data and Functional Relationships in Science
and Technology, edited by O. Madelung, Landolt-Bérnstein,
New Series, Vol. 17, Pt. a (Springer-Verlag, New York,
1982).

123. A. Lyon, J. Lumin. 35, 121 (1986).

13J. L. Ouder, D. Hulin, A. Migus, A. Antonetti, and F.

Alexandre, Phys. Rev. Lett. 55, 2074 (1985).

14W. L. Lin, L. G. Fujimoto, E. P. Ippen, and R. A. Logan,
Appl. Phys. Lett. 50, 124 (1987); R. W. Schoenlein, W. Z.
Lin, E. P. Ippen, and J. G. Fujimoto, :bid. 51, 1442 (1987).

W. H. Knox, Hot Carriers in Semiconductor Nano-
structures: Physics and Applications (AT&T, Holmdel, NJ,
1992), p. 313.

1®E. G. S. Paige, J. Phys. Chem. Solids 16, 207 (1960); A. F.
Gibson, J. W. Granville, and E. G. S. Paige, ibid. 19, 198
(1961).

7A. Neukermans and G. S. Kino, Phys. Rev. B 7, 2693
(1973).

18R, Nava, C. Canali, F. Catellani, G. Gavioli, and G. Otta-
viani, J. Phys. C 9, 1685 (1976).

R. Y. Chen and D.-S. Pan, J. Appl. Phys. 70, 4938 (1991).

20C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645
(1983).

21C. S. Kim, J. Korean Phys. Soc. 27, 260 (1994).

22H. Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1989).

23J. P. Aubert, J. C. Vaissiere, and J. P. Nougier, J. Appl.
Phys. 56, 1128 (1984).

248, Krishnamurthy, A. Sher, and A. B. Chen, Appl. Phys.
Lett. 55, 1002 (1989).

2%Y. S. Sun and C. J. Stanton, Phys. Rev. B 43, 2285 (1991).



14 220

26G. Blatter and F. Greuter, Phys. Rev. B 34, 8555 (1986);
G. Blatter and D. Baeriswyl, ibid. 36, 6446 (1987).

27C. S. Kim and D. Y. Kim, J. Korean Phys. Soc. 26, 343
(1993).

28J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

2M. Combescot and J. Bok, Phys. Rev. B 35, 1181 (1987).

3°D. S. Tang, Phys. Rev. B 36, 2757 (1987).

31F. Capasso, in Lightwave Communications Technology,
Part D: Photodetectors, edited by W. Tsang, Semiconduc-
tors and Semimetals Vol. 22 (Academic, San Diego, 1986),
p. 1.

32H. H. K. Tang, Phys. Rev. B 486, 6768 (1992).

DEUG YONG KIM AND CHANG SUB KIM 51

33E. Bringuier, Phys. Rev. B 49, 7974 (1994).

34D. Arnold, E. Cartier, and D. J. DiMaria, Phys. Rev. B 49,
10278 (1994).

35M. J. Druyvestyn, Physica 10, 61 (1930).

363. Buddhudu, W. E. Hagston, M. J. Swift, and A. J. War-
ing, J. Phys. C 21, L725 (1988).

37K. Seeger, Semiconductor Physics (Springer-Verlag, New
York, 1989).

38H. Hochstadt, The Functions of Mathematical Physics
(Dover, New York, 1972).

9C. S. Kim and B. Shizgal, Phys. Rev. B 44, 2969 (1991).

“OP. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).



