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Hierarchy of density matrices in coherent semiconductor optics
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The hierarchy of many-body density matrices describing the nonlinear optical response of semicon-
ductors is studied. The analysis is restricted to the coherent electronic dynamics generated by the
relevant Hamiltonian. The strength of the optical excitation is used as a perturbation parameter, allow-
ing a controlled truncation of the hierarchy and a drastic reduction of the number of independent mul-
tipoint functions describing the response to any given order. Thus the many-body effects contributing to
the nth order susceptibility y'"' are described by [n+1/2] independent multipoint functions. As a
consequence of the assumed coherence it turns out that all densitylike variables can be expressed in
terms of transitionlike quantities. The proposed systematic treatment of Coulomb correlations is com-
pared with the conventional random-phase approximation factorization of many-body matrices.

I. INTRODUCTION

A considerable part of the work done in time-resolved
nonlinear optics of semiconductors serves the purpose of
studying the formation of resonant many-body structures
such as excitons and the subsequent decay of these tran-
sient structures through relaxation and dephasing pro-
cesses. ' ' Although excitons are the most prominent
structures, there is plenty of evid. ence that under suitable
excitation conditions biexcitons and even higher
electron-hole complexes do inhuence the observed sig-
nals. '

The pertinent theory describing the dynamics of the
semiconductor electrons under the influence of the driv-
ing laser field has the structure of an open hierarchy of
multipoint functions. As those, one may use either a set
of single-time reduced density matrices' or the corre-
sponding multitime Green functions. ' ' We shall con-
centrate here on the density-matrix approach.

Whenever one is dealing with a hierarchy of dynamical
objects one is facing the problem of finding an appropri-
ate termination procedure. Since the hierarchy of elec-
tronic multipoint functions is generated by the Coulomb
interaction, at first sight it seems plausible to seek a ter-
mination based on orders in the interaction. But due to
the long-range character of the Coulomb potential this
does not work, at least with the unscreened potential. A
way out of this dilemma is the classification of the many-
body effects as either screening or scattering, treating the
screening nonperturbatively. '

In our approach we shall not use the interparticle in-
teraction as a perturbation parameter. Inspired by the
classification of the nonlinear optical response according
to orders in the driving field, we base our truncation
scheme on the smallness of the optical excitation. This is
a well suited parameter for the classification of many-
body effects because the unexcited crystal can be de-
scribed as a zero-particle system using the electron-hole
picture. All many-body correlations then are generated
by the optical excitation.

The widely used random-phase approximation (RPA)

factorization approximates the many-body correlations
by the use of single-particle densities, i.e., two-point func-
tions only. In this way one is lead to the semiconductor
Bloch equations. ' Despite its success in many cases,
this approach nevertheless is questionable because it
neglects higher correlations in an uncontrollable way,
correlations that in many cases are important. In con-
trast, the controlled truncation scheme based on powers
of the excitation strength as it was presented in a recent
paper by two of us opens a way to describe the many-
body correlations by the use of a finite set of few-point
density matrices with an error that is of fixed but arbi-
trary order in the excitation strength. The result is a
closed set of equations, which is a natural generalization
of the semiconductor Bloch equations. In the present pa-
per we further extend this method and analyze the inter-
nal structure of the hierarchy. We explore exact interre-
lations between specific classes of density matrices, allow-
ing us to define the minimal set of dynamical variables
that are necessary for the description of g'"' experiments.
When we denote our equations as exact up to any
prescribed order this is to be understood in the restricted
sense of the coherent dynamics generated by the per-
tinent Hamiltonian. The problem of a similarly systemat-
ic treatment of the coupling to a heat bath is not dis-
cussed in this paper.

Our paper is organized as follows. After having
specified in Sec. II our semiconductor model, we discuss
the structure of the resulting hierarchy of density rna-
trices in Sec. III and give a geometrical visualization in
the form of an open pyramid. The central theorems of
the paper are presented in Sec. IV and discussed on an in-
tuitive level. The proofs are deferred to the Appendixes.
The time evolution of the system state is expanded ac-
cording to orders in the optical field. The connection to
the many-body character of higher-order correlation
functions is worked out in detail. Theorems that allow us
to reduce the number of independent density matrices in
a g'"' calculation are derived. Two of these theorems are
generalizations of contraction and factorization rules
known to third order of the optical field. ' The present
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theorems hold to arbitrary order. Section V is devoted to
a dsscussron.

II. MODEL HAMILTONIAN

Our model relies on two main assumptions. First, the
initial state of our system has to be the unexcited ground
state lo )

d; IO) =0, c; lO) =O, (2.1)

where d;(c; ) is the hole (electron) annihilator for Wannier
states i. The index i summarizes band and site informa-
tion. Thus summations over Wannier states i and j in-
volve a three-dimensional integration over the crystal
volume and a summation over all bands of either valence
or conduction type depending on whether the corre-
sponding operators represent electrons or holes. The as-
sumption concerning the initial state implies that the op-
tical excitation should vanish for t~ —(x). The second
assumption is that the material dynamics is generated by
the Hamiltonian

III. HIERARCHY OF DENSITY MATRICES

c[n](,) .=c, c,

(j)
Y[ n](;) .'=c~. d; ' '

c~ d; (3.3)

The relevant observables in optical experiments are the
interband polarization P and the charge density p. These
observables are derived from the single-particle density
matrices Yz = (die& ), C(2 = (c ic2 ), and D' = (d id2 ):

P(r„t)= J M;*(1 + c. c. , (3.1)
1 i

p(r„t) = —e (C» D"—) . (3.2)

Unfortunately, the equations of motion for Y„C, and D
do not form a closed set. Instead they are coupled to an
infinite hierarchy of higher-order density matrices. It
will turn out to be useful to introduce a notation for arbi-
trary density matrices by defining the operators (n )0)

H =H0+H~p,

with

H0 =Hb, „d+H@+H;„, ,

Hb, „d = g T c; c +g T;"d;. d
l,j I,J

H~=e gd, d;@,' —pc, c,4;

(2.2) c[—n](, )
.=d, d,

(c [n„])1' [n+]", E'[n ]„"c[n„],) . (3.4)

Y'[0]=c [0]:= 1 .

Therewith, an arbitrary normally ordered density matrix
can be written in the form

H;„,=—g (c; c; —d; d;) V;.(c; c —d Ch. ),
1)J

Hgp =HEp +H' c

HF(t+, ) = g M; d; c E(; ) ( t ) . .

[6;~„,HO] =0, [R,)„Hep '] =HEt+', '

with

(2.3)

8', :=gc, c, , 8', :=gd, d, (2.4)

Hb, „d is the undisturbed single-particle energy of the sys-
tem and H+ represents the interaction with an external
potential (including the spatial dependence of the band
edges in structured sample). Coulomb interactions of a
monopole-monopole type'"' ' are taken into account by
H;„„with the on-site potential V;; =O. The real-valued
optical field E(;.)(t) at a location between the sites i and j
couples to the system via the electric dipole interaction
Hgp ~ This Hamiltonian has been used successfully by
many authors to describe optical processes in semicon-
ductors 17, 19,20, 23, 24, 28, 29

In the subsequent analysis mainly one feature of the
above Hamiltonian will be used: The only part of H that
does not conserve the total number of conduction elec-
trons and the total number of holes separately is the cou-
pling to the light field HEp. More precisely, this means

:=n n+E [
——m, —m+2, . . . , m], (3.5)

I —n m —n
n„E '—

2
~ ~ ~

2

The majority number m in (3.5) is either the total num-
ber of electron operators or hole operators depending on
which is larger. The gap order n is the number of
effectively annihilated pairs. (3.4) has resonances near a
frequency of n times the gap frequency. The number of
unpaired particles n„by its sign expresses the particle
type, i.e., electron or hole.

The density matrices of type (3.4) form an open pyram-
id in the (m, ns, n„) space centered along the m axis (see
Fig. 1). The points in this pyramid of density matrices
are coupled to their next neighbors by the optical field E

We have only considered operators conserving the total
particle number in the electron picture. Obviously only
these operators are coupled to Y, C, and D by the Hamil-
tonian. The operator in (3.4) is characterized by three in-
tegers: n pairs are annihilated at locations that are
summarized in the pair of index sets ()M, p'), a number nz+

of pairs is created at the sites (v, v'), and a number n„of
unpaired electrons (or holes for negative n„) is
transferred from the Wannier sites ~ to A, . Thus the
operator is of mixed transition and transport (density)
type. The infinite set of density matrices can most con-
veniently be visualized if we arrange them in a space
spanned by n„and two other integers defined as

m:=n,++n, +2ln„lC [1, . . . , ~ I,
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IV. TRUNCATION, CONTRACTION,
AND FACTQRIZATIQN THKQREMS

In Sec. IVA we analyze the many-body character of
the optically driven electronic system using the
Schrodinger picture. This analysis is useful for the physi-
cal understanding and for the proof of various relations
between density matrices. These relations, discussed in
Sec. IVB, are the manifestation of the internal structure
of the hierarchy pyramid and allow us to reduce the
infinite set of many-body functions to a limited subset of
functions relevant for y'"' calculations.

FICx. 1. Hierarchy of density matrices up ty I=3. The sym-
bols ar„e, defined as r:=&d"c), C:,=&c c), D:=(d" d),
X:=&c d" dc), a:=&dcdc), S:=&c ccrc), T:=&d ddc),
W:=(dcdcdc), and Z:=(c d dcdc). The lines are only
guides to the eye.

and by the Coulomb interaction V. This means that the
equation of motion for a density matrix X(m, ns, n„) con-
tains source terms of the form

EXX( m—1,n +l, n„),
E XX(m —l, n -&1, n„+1),
E XX(m + l, ns+1, n„—1),
VXX(m +2,n, n„—1),
VXX(m, n, n„+1)

for n„K 0,

A. Connection between the order of perturbation
and the many-body character of the system

We say that a system of many particles has a many-
body charaerer, if it is not possible to describe it using
only one-particle states as is done in a Hartree-Fock
treatment. The many-body character of the system is re-
sponsible for the hierarchy problem. While the initial
state efII'ectively is of zero-particle character in the
electron-hole picture, the many-body character is gen-
erated through the action of the external optical field.
According to Hzz the eAect of applying the optical field
once is either the creation or the annihilation of one
electron-hole pair. This leads to a time evolution of the
system state such that an expansion with respect to the
optical field and a decomposition in Fock space into
states with definite numbers of electrons and holes are
not independent of each other.

In order to make this connection explicit we expand
the Schrodinger state of the system at time t according to
time-dependent perturbation theory in powers n of the
external field E:

E XX(m —l, n +1,0),
EXX(m+1, n +1,+1),
EXX(m+1, n +1,—1),
VXX(m +2, ns+1)

for n„=O, and

E XX(m —l, ns+ 1,n„),
E XX(m —1,ns+1, n„—1),
EXX(m+1, n +l, n„+1),
VXX(m +2,n, n„+1),
VXX(m, n, n„—1)

(3.6)

(4.1)

(4.3)

(4.4)

with

R', z, ~n„n„n, t ) =n, z, ~n„n„n, t & . (4.&)

A further decomposition of the state ~t)'"' into states
l n„n„,n, t & with definite numbers n, and n, of electrons
and holes, respectively, is always possible:

for n„&0. While the Coulomb interaction couples only
variables within horizontal planes of the pyramid (with
the same gap order), the optical field couples neighboring
planes with n —n' =+1. Terms with the optical field E
do not lead back from higher-order density matrices to
the electrodynamically relevant quantities P, C, and D,
whereas the Coulomb interaction does. Thus an exact
calculation of the electrodynamic observables requires us
to deal with the whole infinite hierarchy of many-body
density matrices.

Using the two properties (2.3) and (2.1) of our Hamiltoni-
an and the above recursion (4.2) and (4.3) we prove by in-
duction (see Appendix A) the following theorem.

Theorem 1 (expansion theorem) At any time . the
Schrodinger state of the system can be decomposed into
contributions of fixed order n in the optical field. Each of
these contributions can be expressed in a basis of states
with definite total numbers of electrons n, and holes n„
where the number of electrons always equals that of the
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holes and is smaller than or equal to the order n. The
difference between n:=n, =n, and n is even. Thus we
can write

~t )(n)—
n =n, n —2, +0

~n, n„, n, t ) .

Expectation values of normally ordered n-particle
operators identically vanish if the system is in a state with
less than n particles (this is what normal order means).
Because the number of particles in the states that are re-
quired to describe the system can be related to the order
of perturbation, as has been shown in Sec. IV A, the ex-
pectation values of operators involving a large number of
particle creators and annihilators will have vanishing
values except for high orders in the optical field. Thus if
one is interested in a fixed order of perturbation, e.g., a
g' ' experiment, the hierarchy of density matrices can be
truncated exactly at a distinct few-particle level, neglect-
ing all many-body density matrices that are of higher or-
der.

Theorem 2 (truncation theorem) Agiven dens.ity ma-

An equivalent formulation of the first part of the above
theorem (n, =n, ~ n) has already been proved in Ref. 25.
The extension (n —n even) is easily understood on a
qualitative basis. Any n -pair state can be thought of as
being generated by the following sequence of processes.
First the optical field is applied n times to create n

pairs followed by k ~0 further creation processes and k
annihilations. Thus any n -pair state is generated in a
process of order n +2k in the driving field. Therefore a
component with n pairs can only result in a contribution
of order n if n —n is even.

The principal physical meaning of the expansion
theorem is that all charge carriers exist in electron-hole
pairs and that the many-body character of the system can
be classified according to an expansion in terms of the op-
tical field. To nth order in the optical field "many-body
character" means the presence of states with up to n

pairs.

B. Consequences for the truncation and interrelations
between density matrices

trix X(m, ng, n„) as defined by (3.5) is at least of order m
in the optical field. Furthermore X is either even or odd
in the electrical field:

g (m +2!) .
th g (k) ~ ~k

l=O

This theorem has been used in Ref. 25 to give a
rigorous truncation of the hierarchy at the y' ' level. The
classification of density matrices into those of even and
those of odd order in the optical field is new. A similar
truncation scheme has been applied to a system of Frenk-
el excitons. ' The proof of the truncation theorem (given
in Appendix 8) consists of a straightforward application
of the expansion theorem.

The truncation theorem limits the set of y'"'-relevant
variables to those density matrices that contain up to n
electron and n hole operators. In the visualization of Fig.
1 this means that the open pyramid is terminated at
m =n. Up to order n only those multipoint functions
that are within the pyramid I n will be excited. But
not all these functions will affect the g'"'-type electromag-
netic response of the single-particle functions. For exam-
pie, the triexcitonic amplitude 8':= (dcdcdc ) is of third
order in the optical field, but 8' does not couple back to
Y, C, or D within y' ' via the sources (3.6) (see Ref. 25).
Although higher-order density matrices X(m, ns, n„) are
excited within the order m in the optical field, they do
not influence the electrodynamics except through the
source terms (3.6) of the equations of motion of Y, C, and
D. For most of them this requires convolutions with oth-
er functions, leading to additional powers in the optical
field.

This situation is illustrated in Fig. 2 showing the pro-
jection of the density-matrix pyramid onto the plane
spanned by the majority number m and the gap order n .
Figure 2(a) displays the coupling of density matrices in-
volving the optical field E. This coupling is from left to
right or bidirectional, e.g. , E X Y is a source in the equa-
tions of motion for the biexcitonic transition 8 and for
the electronic density C and E XC in turn is a blocking
type source for the exciton transition Y (phase-space
filling). In contrast, the Coulomb coupling displayed in
Fig. 2(b) is unidirectional from right to left; only density

4 0 within O(h+)

ng E coupling ng V coupling
re|evant for
X5 response

C

(a) (b) (c)

FIG. 2. (a) In the projection of the density matrix pyramid onto the plane spanned by m and n~, the couplings between different
variables induced by the optical field form a bidirectional network. (b) The Coulomb potential couples only variables with the same

gap order ng. It never leads to source terms with a lower majority number m than the driven density matrix. As stated in Theorem
3, this restricts the set of g'"'-relevant variables, as displayed in (c) for the case n =5. The number of density matrices with different
numbers of unpaired particles n„, which in this projection are represented by one point, is indicated.
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matrices with higher (or identical) m are Coulomb
sources to other variables. For t~ —~ all variables are
zero. As only Y has a source linear in E not involving
any other density matrix, the variables in the hierarchy
are excited successively from left to right due to the ac-
tion of the optical field. The iterative solution of the
equations of motion resembles the movement of a
draughtsman on a gameboard, where each step of the
draughtsman corresponds to one iteration. Using the
network of E sources in Fig. 2(a), a draughtsman starting
at the left corner needs n steps to reach the vertical plane
with m =n, each step at the expense of one order of the
optical field. This actually is the truncation theorem. At
the point (m, n, n„) that draughtsman acquires specific
information about the many-body correlations described
by the associated variable X(m, n, n„). In order to in-
form the experimentalist, who can only detect elec-
tromagnetic signals, the draughtsman has to carry his
knowledge back to one of the points Y, Y*, C, or D. To
do this, the player may again use the streets of Fig. 2(a),
but each step would then introduce an additional order in
the optical field. On the return journey, however, the
player can alternatively use the "free-ticket" lines of the
Coulomb sources shown in Fig. 2(b). These lines do not
increase the order of the optical field, but it should be
noted that they connect only horizontal planes with con-
stant n~. Thus at least ( ~ ng ~

—1 ( steps must be taken on
the E network to reach the planes of interband polariza-
tions ( Y, Y'* ). Likewise

~
n

~
steps are required to

inhuence the charge densities (C,D). These considera-
tions are summarized in the following theorem.

Theorem 3 (electrodynamic response theorem) Ay'"'.
calculation of the electromagnetic response to an optical
field only requires the evaluation of the density matrices
X(m, ng, n„) with m +m a(x~n

~

—1,0) ~ n to orders
n —max( !ns ~

—1,0) in the optical field.

Figure 2(c) shows the region of density matrices with
m +max( ~n~ ~

—1,0) ~ 5 relevant for the y' ' interband-
polarization response of the semiconductor. Thus 22
dynamical variables remain for the description of y' ' ex-
periments and eight remain for the case of g' ' (see Ref.
25).

Still it would be practically impossible to solve all these
equations. But, fortunately, the relevant variables are in-
terrelated by a number of identities. In Ref. 26 it was
shown that for the y' ' case the set of independent vari-
ables can be reduced to the excitonic transition Y and the
biexcitonic transition 8:=(dcdc }.The identities needed
to express the other six variables by Y and B were found
by inspection of the equations of motion in Ref. 26. Here
we generalize these identities by the subsequent two
theorems.

While the truncation theorem expresses the fact that
for each generation (annihilation) of carriers the field has
to be applied once, the theorem does not yet make use of
the feature that in each process a pair is involved. In a
system, however, where all carriers are generated (annihi-
lated) in pairs of electrons and holes the process of mov-
ing an electron from site x to x ' as described by the vari-
able C„.„:=(e,c } is equivalent to a process within an
exciton, where in addition a hole is present at site i (see
Fig. 3). Of course one has to sum over all possible hole
sites i. Higher orders in the optical field call for correc-
tions due to processes within biexcitons, triexcitons, etc.
This is the essence of the following theorem proved in
Appendix C.

Theorem 4 (contraction theorem). Density matrices
with a non vanishing number of unpaired particles
(n„&0) can be expressed by contractions of density ma-
trices with the same gap order n and the same or higher
majority number m containing only pair operators
(n„=0):

1 (i) )n(c [n„]&5 [n+] $ [n ]"„c[n„],}=+ g~„~ k g ( Y [n„]i "Y [k+n~ ]Ij~
". Y[k+n~ ]I~i~

".„Y[n„],
&')(n ! '»~ j 'k

tt

+Q(E + +
) with m =nz +&& +2~n„~ .

The rule for a successive calculation of the coeKcients
g„k reads

In the formulation of the theorem the dot operation
means concatenation of two multi-indices to one. The
contraction theorem reduces the three-dimensional
hierarchy pyramid in Fig. 1 to the central vertical sheet
with n„=O. This is a consequence of the expansion
theorem which states that in the three-dimensional
decomposition of the Schrodinger state only the contribu-
tions with equal electron and hole numbers do not van-
ish. Similar to the expansion of the Schrodinger state
with respect to n and n, the remaining density matrices
form a two-dimensional set. The third dimension is elim-

inated because of the pairwise generation of carriers.
While the contraction theorem connects variables with

comparable free oscilla, tion frequencies (with the same
gap order ng), in Ref. 25 a second type of identity was
also derived, establishing a relation between slow and fast

X'
«., — 1 O

X 2 X

FIG. 3. Contraction theorem (n„=1, l=1, n~+ = np =0): As
electrons always belong to electron-hole pairs, the transport of
an electron can be thought to be composed of contributions be-
longing to an internal electron transport in an exciton and in a
biexciton to O(E ).
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variables. In particular it was shown that the exciton
density N can be decomposed to lowest order into a prod-
uct of transition amplitudes

X '= (c,d2d, c ) = Y'* Y'+O(E ) . (4.6)

This factorization rule expresses the fact that excitons
behave like bosons to lowest order in the particle number
(and thus to lowest order in the optical field). If bosons,
e.g. , photons, are generated by a classical force as done
with the excitons by the coupling to the optical field E, a
coherent state is the result. This means that intensities
can be expressed as the product of amplitudes. As long
as the analogy to bosons holds, exciton densities can be
expressed as the product of exciton transition amplitudes.
A generalization of (4.6) to arbitrary order of the optical
field has to consider deviations from the bosonic behavior
that arise from phase-space filling and the Coulomb in-
teractions. This is achieved by the following theorem.

Theorem 5 (factorization theorem). Let P) be an opera-
tor acting in the subspace of states with equal numbers n
of electrons and holes and at maximum l pairs (n ~ 1) as
a projector to the ground state ~0). All other states with
definite particle number are assumed to be eigenstates of
PI. Then the following factorization of density matrices
with vanishing number of unpaired particles (n„=0)
holds:

( 9 [n+]„"P,Y[n ]„")(P, )

=( Y [nq+] P) )(P) Y'[n ]I')+O(E"' "&
) .

(4.7)
A convenient choice for the projector PI is

1

P(.= g p), g Y [k](,)"k[k]I;I", (4.g)
k=0 (

where the coefficients pk can be calculated recursively
from

k —1 p
go= 1 .

), =() (k —k')!

The proof of this factorization and of the required prop-
erties of PI as constructed above is given in Appendix D.

The projectors PI compensate deviations from the bo-
son character of multiexciton systems. Obviously, the in-
teger l that determines the extension of the subspace
where P) acts as a projector has the role of an index of ac-
curacy in (4.7). The first two projectors are given by

P,:==1, P, :=1—g Yt[1]J$'[1]J . (4.9)
l,J

The theorem will most often be used in a rearranged
form, where the representation (4.8) of P( has been insert-
ed:

=( Yt[n,+] && Y[n;]~)'
I

+ g p), g (& Y [n,+]:)($' [k]I.)'"Y[k+n ],',
,
",,")—(Y [n+].f'[n —]')')(Yt[k]".' $'[k]""))

(1)k, (J)k

l 1 —k
+ X P. X X P' g (&Y'[k+.,+],',

,
"., Y[k],'„"&(Y'[k j', "'Y[k+.-j"," ~'&

P (l)k v (i)k k'

O(
+ +2+2l

For l=O we get the factorization rules to lowest order

( Y [n, j [Yn] '))=( Y [n,+],"')( Y[n,-j)„'')

n++n +2+O(E~ ~ ). (4.11)

The rule (4.6) is of this type. For higher accuracies l, the
sums in (4.10) involve partially densitylike terms, i.e., ex-
pectation values that contain annihilators as well as crea-
tors. These can be eliminated applying (4.10) iteratively
with a lower accuracy, For I= 1 one obtains

( Y [n+] Y[n„]„")
=( Y [n+] )( Y[n j)' )

+ g ($ [n ]", e Y [1P)(Y[l]~e Y[np ]„")
11J

+O(E ' ' ), (4.12)

I

where we have used the notation

(4.10)

(3 eB):=(gp)—(g )(p)
Equation (4.12) is illustrated in Fig. 4. For arbitrary
I we express all partially densitylike variables
( Y [n ] r [n ] ) by a sum of products of transition am-
plitudes (9 [k~+]) and ( Y[k ]) with k+ ~+nl and
k n +l. Using (4.10) iteratively we can determine a
coefficient a for each term (labeled by q). The expecta-
tion value of the operator product then takes on the fol-
lowing form:

( Yt[n+]Y[n ])= g a, + ( Yt[k,+])Q ( Y[k, ])
k+ k

q q

2!+2
(4.13)
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ng 1

2 ----- 0-----------

Z = BY" + WB*- WY'Y'-

1( 1( 1t

BYB*+BYY"Y'+ O(E')
I I
I I

j) I I

I r
Jl

i(

independent variables for which the equations of motion
have to be solved to the transition densities
X(m, m, O)= Y[m] with 2m —1(n, which have to be
determined up to order n —I + 1.

1 1

FIG. 4. For 1=1 Eq. (4.13) reduces to (4.12). The figure illus-
trates the factorization of Z = ( Y' [1]Y[2]) as an example for
(4.12). Each unit of an upward (downward) arrow represents
one exciton annihilator (creator) and increments the order of
the optical field by one.

V. DISCUSSION

In previous works the theory has been worked out in
detail in a y' ' context. These applications are briefly re-
viewed in Sec. VA. As a first extension we present the
dynamics relevant for the coherent g' ' response. In ad-
dition, we analyze the relation between the present
theorems that provide an exact treatment of' the Coulomb
interaction and the usual RPA factorization of many-
body density matrices. The paper closes with an outlook
where the influence of dephasing processes on the validity
of the theorems is discussed.

kq n~ + I k~ +~ + l for all kq k A. Applications toy' '

The sum of all gap orders in each product is equal to the
gap order n —n + of the unfactorized variable

The method has been worked out in some detail up to
order E and applied successfully to two typical experi-
ments.

(i) The dynamical Stark eitect in CuC1 exhibits an
anomalous behavior attributed to the resonance with the
biexcitonic bound state. It is clear that for a description
of such an eft'ect in terms of density matrices one must go
beyond the standard RPA factorization on the two-point
level. A treatment along the lines described in the
present paper based on the functions Y and 8 has been
shown to nicely reproduce all experimental features.

(ii) The second example where our method has been
successful in explaining an experimental result not acces-
sible to an RPA-type calculation is the polarization
dependence of a four-wave-mixing signal that has its ori-
gin in the biexcitonic continuum.

gk —gk+ =n n+ —. (4.14)

B. Outline of the g' '-relevant dynamics

According to the concluding theorem of Sec. IVB, a
g{ ' calculation requires the solution of the equations of
motion for the excitonic transition Y= Y[1] in 0(E ),
for the biexcitonic transition 8 = Y[2] in 0(E ), and for
the triexcitonic transition W = Y[3] in 0(E ). From the
Hamiltonian (2.2) it is straightforward to derive the equa-
tions of motion for Y [m]:

[ i'(3, +%0[m]]—Y[m](,) =S~[m](;) +Sc[m](;)

with

The proof of (4.13) and (4.14) is straightforward, using
(4.10) and complete induction in l.

Thus to a given order in the optical field, the whole
pyramid of density matrices as illustrated in Fig. 1 can be
expressed by the upper edge with n„=O (contraction
theorem) and n =m (factorization theorem). As only the
first n of these transition amplitudes have nonvanishing
values within 0(E") (truncation theorem), only these
have a chance to contribute to a g'"' signal. According to
Theorem 3 (electrodynamic response theorem) not all of
them actually do. In Appendix E it is shown that the use
of the contraction and factorization theorems does not
convict with Theorem 3, i.e., that the application of these
theorems to a variable X(m, n, n„) with m +max(InsI

n —max{
~
n

~

—1,0)—1,0) ( n with accuracy 0 (E g '
) does not in-

volve density matrices X'(m ', n ', n„' ) with
m'+max(In&I —1,0)) n or accuracies higher than

n —max{ I n
~

—1,0)0(E ' '
). This leads to the following conclud-

ing theorem.
Theorem 6 (minimal set of X("' relevant variables) Us-.

ing the contraction theorem a g'"' calculation of the elec-
tromagnetic material polarizations requires only the eval-
uation of the density matrices X(m, n, O) with

m +max(In —1,0) ( n to orders n —max( Ins I

—1,0) in

the optical field. With the help of the contraction and
factorization theorems it is possible to restrict the set of

+e(III' —III,' )Y[m](;) + g —(V;;+V —2V; )Y[m](;)
I=1
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Pl m

[mj m = g g ( 1)k (M E y[m 1]j) Jl —Ijl+1 Jm yM E (~ty[ 1]j( 4 —)jk+) jmw )
k=1 1=1

We assume a symmetric interaction potential V, = V;. The sources of (5.1) involve the variables (c $'[m]c ) and
(d $ [m]d ). In order to get a closed set of equations these variables have to be expressed by Y; 8, and IVusing the
contraction and factorization rules of Sec. IV 8. Applying these rules to penultimate lowest order of the optical 6eld
yields

(c,$'[m](, I e2) = g y*[1P( y[m +1](,) .2+ g [(—,
' y*[2]j-J( —y*[1]j'.y*[1]j()y[m +2](,)".,'2

J J ~& ~J

—(y*[2]'; ', —Y'"[1]'; Y'*[1]',)y[m+1](,) ., Y[1]', ]+0(E +') . (5.2)

A similar result can be obtained for (d y[m jd ). With m =0, Eq. (5.2) also gives the electron densities expressed by Y
and 8. This is necessary for the calculation of intraband polarizations within y' '.

The source terms for F, 8, and 8'become

gE[y]2)=M„E((2)—y y*j(M„.E(„)yj2+M 2E(j2}y,') — y [(—,
'B*jj—y*j y' j)( M) E{„.)

Bj/ +M2E( 2)Bj,')

+0(E ),
—(8 ~j'J —y'j'y*j)(M„E{)„yjyj2+M 2E( 2) yj y, )]

(5.3)

[Y'j = y(V —V —V +V ) y~jB{j+y [()8*Jj,—Y*Jy~j., )p/1JJ, —(B~jj,—y*&y'"&, )y/8)J] +0(E7)
'I 'I

f~J

(5.4)

~E[8)24™12E((2)y4 ™)4E()4)y2 ™32E(32)y4 ™34(34) y2I3 3 3 1 1

y '(M)'E(1 )824+M3'E(3 )824+M2j E{2j)8'4 +M4'E(4j)82' )+0(E )
/, J

Sc[8]24= g y"; IV24j( V;, —V 2+ V, 3
—V 4

—Vj, + V, 2
—Vj3+ V 4)+0 (E ),

(5.5)

(5.6)

~E [ ~1246™12E(12)846 ™14E(14)826 ™16E(16)824™32E(32)846™34E(34)826
135 35 35 35 15 15

M36E{36)8 24 ™52E(52)8 46 ™54E(54)826 ™56E(56)824 +15 13 13 13 5

Sc[W]246=0(E ) .

(5.7)

(5.8)

Equation (5.1) for m=1,2,3, together with (5.3)—(5.8),
forms a closed set of three coupled equations for Y; 8,
and W that should be solved for the exact description of
coherent g' ' experiments. Calculations of that kind
with the goal to explain exciton-biexciton beats observed
in both the decay and the rising regime of time integrated
four-wave mixing or six-wave mixing show promising re-
sults.

C. Comparison with the RPA factorixation

In order to i11ustrate the physical meaning of the above
theorems we compare our truncation of the hierarchy
with the standard RPA approach. The lowest-order
RPA treatment amounts of the truncation of the hierar-

(1—2C )'+4lykl'=1. (5.9)

This rule is commonly used to reduce the number of in-

dependent variables in the description of coherent phe-

chy by a decomposition of four-point functions in sums of
products of the two-point functions F, C, and D. From
the k-space version of the RPA theory it is well known
that the dynamics in homogeneous, fully coherent sys-
tems is constrained by the conservation of the Bloch
sphere for each k. The conservation law holds for each k
individua11y, a1though in a RPA treatment di6'erent k
states are coupled by the Coulomb interaction. In the
case of a two-band semiconductor the conservation law
reads "'
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nomena. In particular it opens a way to eliminate the
slow variable C in favor of the fast variable Y. In our
more general truncation scheme an analogous reduction
of variables is achieved by combining contraction and
factorization rules. They thus provide a natural generali-
zation of the Bloch sphere conservation. This generaliza-
tion introduces no approximations with respect to the
Coulomb interaction and is not restricted to translation-
ally invariant systems. Therefore it can be applied to the
important case of semiconductor heterostructures and in-
terfaces.

It has to be expected that our representation of C
reduces to the RPA result when the many-body correla-
tions contained in the higher-order density matrices Y[n]
are neglected. Indeed, using (5.2), keeping all terms up to
0 (E ) and replacing the biexcitonic transition density B
by its RPA counterpart we find

C, = g Y"~ YJ + g Y*JY*~ Y'Yj +O(E ) (5.10)

Noting that in homogeneous systems the two-point func-
tions will depend only on the difference of their real-space
coordinates, the summations become convolutions that
factorize under Fourier transformation. Thus in k space
we obtain

C„=/Y„['+/Y„/'+O(E') . (5.11)

= Y*'Y'+C D"+O(E') (5.12)

Thus in the low excitation regime, the neglect of four-
particle correlations contained in the biexcitonic transi-
tion density B necessarily implies the RPA decomposi-
tion of all other four-point functions. Therefore we con-
clude that in the low excitation limit all deviations from
the RPA behavior in our system are described by the
difference between 8 and its RPA decomposition. This
difference includes biexcitonic bound states as well as
exciton-exciton interactions included in the correspond-
ing scattering continuum.

D. Conclusion and outlook

In the present paper we have concentrated on the
internal structure of the hierarchy of density matrices as
it is dynamically induced in coherent nonlinear optics of
semiconductors and we have proved a number of general-

This is equivalent to (5.9) when terms higher than O(E )
are neglected.

Besides the electronic density C, all four-point func-
tions can be expressed up to fourth order by the excitonic
and the biexcitonic transition densities Y and B. By ap-
plying the RPA decoupling scheme to B in these relations
we recover the corresponding RPA factorization for the
respective four-point function. To illustrate this state-
ment we consider the excitonic occupation density
X:=(c d dc). Using the contraction and factorization
theorems we get

RPA for B
~23 Y+2Y3 + y Y +2 Yel Yl Y3+O (E6)

j, l

ly valid theorems. How the method works in practice
has been demonstrated elsewhere. ' ' We believe that
at least up to order E the systematic treatment of the
hierarchy of density matrices can be worked out to be-
come a reliable tool for the analysis of optical experi-
ments with semiconductors. We expect from our experi-
ence that in the development of such a theory the proper
treatment of continuum states will play a decisive role.
Thus, e.g. , the y' ' theory of four-wave mixing (FWM)
exhibits a strong inAuence of the exciton-exciton scatter-
ing continuum.

A discussion on which the results obtained in the
present paper will hopefully shed some light concerns the
relative importance of interband and intraband informa-
tion in the context of different experiments. The ques-
tion ' has been raised whether in coherent optical ex-
periments interband densities such as Y = ( dc ) and in-
traband densities such as C = ( c c ) or D = ( d d ) con-
tain the same or complementary information about the
system under investigation. For example, the comparison
of FWM data with tetrahertz-emission signals and
transmissive electrooptic sampling data indicates mani-
fest differences between coherent beats involving inter-
band or intraband polarizations. In contrast, two-pulse
tetrahertz-emission spectroscopy proves that intraband
polarizations produced by the first pulse are sensitive to
the optical phase of the second, revealing a strong inter-
relation between intraband and interband polarizations.
A central result of the present paper, independent of a
specific order in the optical field, may be expressed as fol-
lows: In the coherent dynamics generated by the Hamil-
tonian (2.2) the set of interband functions exhaustively
characterizes the evolution of the system. All other func-
tions of intraband or mixed type can be eliminated by vir-
tue of the contraction and factorization rules. The num-
ber of interband functions being involved is determined
by the order in the driving field.

There are of course a number of open questions not
discussed in the present paper. In order to stimulate fur-
ther work let us mention here at least two examples.

(i) Our analysis so far has been restricted to the
coherent dynamics generated by the relevant Hamiltoni-
an. It would be desirable to supplement this kind of dy-
namics with some dissipative terms having their origin ei-
ther in the inhuence of a stochastic environment or in the
neglect of higher correlations. An interesting problem in
this context is the sensitivity of our rigorous theorems to
dissipative interactions. We expect that the factorization
theorem is the first one that will be violated since it has to
do with the sensitive phases. The factorization of densi-
ties into transition amplitudes is a manifestation of the
coherence of the excitation that will be destroyed in a dis-
sipative situation. The intraband densities as well as den-
sities of mixed type such as Z = (c d dcdc ) then become
independent variables.

(ii) An extension of the theory that must be considered
sooner or later is the inclusion of phonon dynamics into
the hierarchy, which has been, up to now, purely elec-
tronic. This kind of extension would also provide a start-
ing point for a proper treatment of an important class of
dissipative effects.
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APPENDIX A: PROOF
OF THK EXPANSION THEOREM

n —n+ —
~n„~ =n' —n —)(n„~(:=n, &0. Summation of

these two equalities yields 2n, n~ + n~
—2

~
n „~ n-+

—n =n —2p —2p
' —m. Thus

n =m +2(p+p'+n, ) with p +p'+n, &0

holds for all nonvanishing X'"'.

The proof of the expansion theorem uses complete in-
duction in n. (i) Using (2.3) and (4.3), Theorem 1 is valid
for n=0:

APPENDIX C: PROOF
OF THK CONTRACTION THEOREM

it )(n +1) (~n, n, n, t )'+'

(ii) Assuming the theorem to be valid for n and using
(4.2),

~

t ) '"+"can be decomposed

AD)1

Let I&" for positive (negative) n„denote an operator
with the following properties. All states with definite

mal
particle numbers are eigenstates of I& ". In the subspace
of all Fock states with n, ~ 1 electrons (holes) and

n, +
~ n„~ holes (electrons), I( " acts like the identity. With

this definition, in a first step, we prove

with

n =nn —2. . . ~0
p

+~n, n, n, t)( ') (c [n„]z$ [n~ ] (1—I(")$ [n~ ]"„c[n„],)
0 (~ m + 2l +2) (Cl)

(n~, n„,n, t )' —':= f dt'e
oo

XHzt, '(t') ~n„,n, n, t') .

Using (2.3) we see that

6', &„~n,n, ,nt )' —'=(n +1)~n,n, n, t )' —) .

According to the induction hypothesis, the inequality
n ~n holds and n —n is even. Thus we conclude that
n +1 ~ n + 1 and (n + 1)—(n +1) is even. Therefore the
theorem holds for n + 1 and, combining (i) and (ii), for all
n.

APPENDIX 8: PROOF
OF THE TRUNCATION THEOREM

The proof is parallel to Appendix B and we keep the no-
tations used there. Inserting the expansion of the
Schrodinger state according to the expansion theorem,
we realize that (1 I[ ") in (Cl)—only acts on states that
contain n, =n n+ —)]n„( =n—'

n ——(]n„~ electrons
(holes) and n, +m holes (electrons). On account of the

~n„
identity property of II ", nonvanishing contributions re-
quire n, = l +l' with l' ~ 1. Thus the expectation value is
of order

n =m +2(p+p'+n, )=m +2l+2(p+p'+l'),

with p +p'+ l' & 1, as stated by (Cl).
For positive/negative n„, a possible choice for I( is

According to the expansion theorem the expectation
value X(m, n n„) can be expanded with respect to the
optical field:

X(t)= g X'"'(t) with X(")~E
n=0

Splitting the sum in k = l and k =0, . . . , l —1, the proof
w/1

of the required properties of I&
" is straightforward, using

complete induction with respect to l. The contraction
theorem follows from (Cl), inserting the above choice of
I&

" and the transcription

Ic —1

ii (tt, q„—p)= gc [+k](;) c[+k](;)
p=0

(C2)

with n =n —k —2p; n'=k —2p', p,p'~0; and m =n
+n~ +2~n„~. For positive (negative) n„, the operator
Y[n ]c[n„] tries to annihilate n +

~ n„~ electrons
(holes) from

t n„', n ', k, t ) . This gives a nonvanishing re-
sult only for n~ &n +~n„~ and results in a state with
n

'
n —

~ n„ t
electron—s (holes). Similarly the creators

acting to the left yield zero, except for n~ & n~++ ~n„~.
The resulting states contain n —n + —

~ n„~ electrons
(holes). The scalar product of bra and ket requires

which again can be shown by induction.

APPENDIX D: PROOF
OF THE FACTORIZATION THEOREM

In a first step, we calculate a contribution

( Y [n+] P($ [n ]"„) ~ ~ with p ~21, using the
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expansion theorem as we did in Appendix B. Using the
same notations as in Appendix 8 (n —=n++n +p), we
only have to know the action of I'& on states with
n, =n

' —n = n —n + electrons and holes. From the ex-
pansion theorem we know that the inequalities
n «n++n +p —k and n' «k hold, thus 2n, =n
—n +n —n «p «2l. On these states, PI acts like the
projector lo) (ol and gives a nonvanishing result only for
n, =O. Therefore the only contributions to the expecta-
tion value are those with n =n+, n' =n, and
n «k «n +p. Substituting k': =k —n yields

& Yt[n,+]:P,Y[n, ]~')'"-~ '"~ "'

(& Y'[.„+] P, Y[;]„')&P, &)"

( y + p ~ )(n +n +p —k)(p )(k)
k=0

p p —k k

S(p —k k'—, k ', k k"—
, k "

) .
k =0 k'=0 k"=0

((Yt[n,+] P, &(P, Y[n,-]~'))" "

( Y [n+]'P ) ' (P Y[n ]~ )
k=0

p k p —k

g S(k —k",k', p —k —k', k")
k =0 k"=0 k'=0

k'=0
(n+, n+, n++p k', t Y [—n+], lo)

X(olY[n ']"„ln,n, n +k', t) . (D 1)

S(n„n2, n3, n4):=(n„+,n+, n++n„tl Y' [n„+],lo)

x (ol Y[n ]"„ln~, n~, n +n2, t )

In a second step we decompose the left-hand side and the
right-hand side of the factorization theorem separately

n +n +p
into contributions proportional to E ~ ~ . Using
(Dl), we obtain

x(o, o, n„t 0)(o o, o, n„t) .

Rearranging the order of summations such that gk be-
comes the innermost and substituting k:=p —k —k'+ k"
yields

(n++n + )((Y [n~+] Pt)(PIY[n~ ]„")) ' ' = g g g S(k —k",k', p —k k', k")—
k'=0 k"=0 k =k"

p p —k' p —k'

S(p —k —k', k', k —k",k")
k'=0 k"=0 k =k"

p p —k p —k

S (p k k', k ', k —k"—
, k ")—

k=0 k'=0 k"=0

=((Y'[n,+] P, Y[n, ]~')(P, ))"-

Thus the factorization theorem is valid to all orders
n++n +p)0 (E ~ ' with p «2l. According to the truncation

theorem, the first derivations will be of order
n +n +21+20E~

The projector properties of Pt can be proven if we sub-
stitute (C2) into the definition and obtain PI in a form
that is not normally ordered:

I k —
1

P, = 1+ g p„g (6', —k')( &t,
—k') .

k =1 k'=0

Written in this form Ptlp &, with lp & denoting a p-pair
Schrodinger state, can easily be shown to be zero for
1 «p « l and lo) for p=o, by splitting the sum into
k = 1, . . .p, k =p, and k ~p. Furthermore, all states
with a definite particle number are obviously eigenstates
of I'&, as required for the factorization theorem.

APPENDIX E: PRQQF QF THEOREM 6

It remains to prove that the calculation of a variable
X(m, n, n„) with m +max(ln

l

—1,0) «n to orders
n —max(lnsl —1,0) with the help of the contraction and
factorization theorems does not involve density matrices
X'(m', n ', n„') with m'+max( ln

'
l

—1,0) ) n or accuracies
of X' higher than n —max(

l ns l

—1,0).
The use of the contraction theorem requires the

knowledge of variables X'(m ', n, o) with
2k =m ' —m «2l = [n —max( l

n
l

—1,0) ]—m and thus
m'+max(

l ns l

—1,0) «n too. X' has the same gap order
as X and has to be calculated to the same accuracy.

The evaluation of X'(m, n, o) = ( Y[n+]Y[n '] )
with the help of the factorization theorem exact to
orders n —max(lnsl —1,0) according to Eq. (4.13) in-
volves transition densities X'(m ', n ', 0)= ( Y[k] ) with
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k ~ max( n +, n ) + l, where l is defined by
n + +n +21 = n —max{

~
n

~

—1,0). For these transitionP g
densities, m ' =ns =k ~ 1 holds and thus m '+ max(

~ ns ~—1,0)=2k —1 ~2max(n+, n )+2l —1 ~ n
In contrast to the contraction theorem, the factoriza-

tion theorem involves variables X' with ng =k Wng.
Therefore we have to verify that the calculation of X to
[n —max(~ns~ —1,0)]th order does not require X' to be
known to orders higher than n —max{~ng~ —1,0)
=n —k + 1. According to (4.14), X' occurs only in prod-

ucts of the form g( Y[k+])'Q( Y[k ]) with
gk gk+ =ns .This product has to be evaluated to or-
der n —max(~ng~ —1,0). One of the factors is X', the
product of the other factors is at least of order ( ~ ns ~

—k ~.

Thus X' has to be calculated to orders
[n —max( lns I

—1,o) ]—I lns I

—k I —n —k+1.
We conclude that within a y'"' calculation the factori-

zation theorem as well as the contraction theorem can be
applied without enlargement of the set of relevant density
matrices or the required accuracy.
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